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Abstract

Ideas spread across social networks, but not everyone is equally positioned to be a successful recommender. Do individuals
with more opportunities to connect otherwise unconnected others—high information brokers—use their brains differently
than low information brokers when making recommendations? We test the hypothesis that those with more opportunities
for information brokerage may use brain systems implicated in considering the thoughts, perspectives, and mental states of
others (i.e. ‘mentalizing’) more when spreading ideas. We used social network analysis to quantify individuals’ opportunities
for information brokerage. This served as a predictor of activity within meta-analytically defined neural regions associated
with mentalizing (dorsomedial prefrontal cortex, temporal parietal junction, medial prefrontal cortex, /posterior cingulate
cortex, middle temporal gyrus) as participants received feedback about peer opinions of mobile game apps. Higher informa-
tion brokers exhibited more activity in this mentalizing network when receiving divergent peer feedback and updating their
recommendation. These data support the idea that those in different network positions may use their brains differently to
perform social tasks. Different social network positions might provide more opportunities to engage specific psychological
processes. Or those who tend to engage such processes more may place themselves in systematically different network
positions. These data highlight the value of integrating levels of analysis, from brain networks to social networks.

Key words: mentalizing; social influence; social networks; information brokerage; Facebook; betweenness centrality;
recommendations

Online social networks, such as Facebook, play an increasingly
dominant role in influencing the spread of ideas and behaviors
(Simmons et al., 2011; Bakshy et al., 2012; Guille et al., 2013).
Within social networks, some individuals are in a better pos-
ition than others to encounter, adopt and share new ideas or in-
formation (Burt et al., 2013). Do such individuals with more
opportunities to connect otherwise unconnected others—high
information brokers—use their brains differently than low in-
formation brokers?

Although separate bodies of research have characterized neu-
rocognitive processes involved in communication and social in-
fluence (Cascio et al., 2015) and social network effects on
behavior (Smith and Christakis, 2008), these lines of work have

not yet been integrated (c.f., Zerubavel et al., 2015). Here, we test
a novel proposition concerning the relationship between per-
sonal social networks and core mental processes, or ‘network
cognition’ (c.f. Brashears and Quintane, 2015). Specifically, we
test the hypothesis that people with more opportunities for
information brokerage may use brain systems implicated in con-
sidering the thoughts, perspectives, and mental states of others
(i.e. ‘mentalizing’) more when spreading ideas. We focus on rec-
ommendation behavior as one key social process and combine
tools from social network analysis (SNA) with functional neuroi-
maging to gain insight into how broader social environments
interact with key neural systems during social transmission of
information.
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SNA of logged data (e.g. from Facebook) provides an object-
ive and rich set of measures and techniques to quantify the
size, structure and scope of an individual’s social environment
(Borgatti et al., 2009; Burt et al., 2013). In doing so, these meas-
ures allow researchers to operationalize classic sociological con-
cepts such as opportunities to connect otherwise unconnected
others, often termed ‘information brokerage’ (Arnaboldi et al,
2013; Burt et al., 2013). This characteristic can be stated mathem-
atically by ‘ego betweenness centrality’ (Freeman, 1979;
Marsden, 2002; Everett and Borgatti, 2005), which is typically
associated with greater opportunities to pass information and
exert influence between others (Figure 1). Individuals whose so-
cial network structures present more brokerage opportunities
should likewise be exposed to more perspectives of others, and
these past experiences may guide how they engage with new
social situations (Burt et al., 2013). In particular, higher informa-
tion brokerage may afford more opportunities to practice men-
talizing, as when translating ideas between different
individuals or groups.

Past neuroimaging research demonstrates that successful
transmission of ideas covaries with activity within brain regions
that are also associated with mentalizing (Dietvorst et al., 2009;
Falk et al, 2012, 2013). In other work, mentalizing skills (via a be-
havioral task) have been tied to larger support network size
(Stiller and Dunbar, 2007). Mentalizing commonly recruits the
dorsomedial prefrontal cortex (DMPFC), the temporal parietal
junction (TPJ) and precuneus/posterior cingulate cortex (PC/PCC)
(Saxe and Kanwisher, 2003; Saxe and Powell, 2006; Decety and
Lamm, 2007). In addition, studies have implicated middle and
ventral areas of the medial prefrontal cortex (MPFC) and bilateral
superior temporal sulci (STS) and temporal pole in mentalizing
(Frith and Frith, 2003; Schurz et al, 2014; Denny et al, 2012).
Indeed, an automated meta-analysis of 124 studies that include
the term ‘mentalizing’ produces a reverse inference (RI) map
including clusters in the DMPFC, bilateral TPJ, PC/PCC, middle
temporal gyrus (MTG) and MPFC (Figure 2). However, the rela-
tionship between social network characteristics and engage-
ment of brain regions implicated in mentalizing during
recommendations has not been studied.

In addition, previous work on the relationship between social
network characteristics and cognition has focused primarily on
network size or ‘ego degree’ (Dunbar, 2012; c.f., Molesworth et al.,
2015). For example, neurocognitive research has considered cer-
tain aspects of brain structure and function, such as correlations
between network size and the size of specific brain regions
(Bickart et al., 2011; Dunbar, 2012). In the current investigation,
we go beyond network size to consider the network ‘structure’ in
the form of information brokerage. Information brokerage may
be particularly important for facilitating the spread of informa-
tion, and may also be systematically related to cognitive tenden-
cies (Burt et al., 2013), such as the tendency to consider the
mental states of others. We examined whether neural activity
within the mentalizing system differs as a function of an indi-
vidual’s potential information brokerage capacity within their
social network, operationalized by ego-betweenness centrality.
In doing so, we tested a novel social network cognition account
of influence: that individuals with greater ego-betweenness cen-
trality would show more mentalizing activity when considering
and using social feedback to make recommendations to others.

The combination of neural and SNA metrics thus offers the
opportunity to analyze links between mechanisms involved in
sharing and the positions occupied by individuals in social net-
works. We focused on logged social network data obtained from
the Facebook accounts of a sample of adolescents, a group in

which social ties and interactions are particularly salient.
Facebook networks have been validated as reasonable proxies
for offline interaction networks in related groups (La Gala et al.,
2012; Kane et al., 2014) and may be especially important within
adolescent groups. In parallel, neural measures can offer a non-
invasive way to simultaneously interrogate multiple neurocog-
nitive processes that may be key to sharing information. We
examined neural activity during a mobile game recommenda-
tion task that simulates the experience of learning about
and recommending online applications (i.e. a task that is similar
to what adolescents might do in day to day life, while still main-
taining a high degree of experimental control (Cascio et al.,
2015).

Materials and methods
Participants

Sixty-five adolescent males were recruited from the Michigan
Driver History Record via the University of Michigan
Transportation Research Institute as part of a larger series of
studies examining male adolescent driving behavior. All partici-
pants were between the ages of 16–17 (M ¼ 16.9, SD ¼ 0.31) and
male, right-handed, did not suffer from claustrophobia, were
not currently taking any psychological medications, had normal
(or corrected to normal) vision, did not have metal in their body
that was contraindicated for fMRI, and did not typically experi-
ence motion sickness. Legal guardians provided written in-
formed consent following telephone discussion with a trained
research assistant, and teens provided written assent. 50 of
these 65 participants both completed the online social network
survey, including providing access to their Facebook network
data and had usable neuroimaging data from the fMRI App
Recommendation Task (described below; Figure 3).

Acquisition of online social network

Participants completed a survey in which they were asked
whether they had a Facebook account. If so, they were asked to
login to their account and add an application that requests ac-
cess to information regarding their Facebook activity, friends
and links between their friends using the Facebook OpenGraph
API. These data were anonymized and used to compute betwe-
enness centrality as a measure of information brokerage within
the participants’ networks. Participants had an average of 510
friends in their full Facebook networks (range ¼ 84–1548; SD ¼
317.3). Ego betweenness was calculated for the full networks as
cB(v)¼

P

s;t2V
r s; tvð Þ=rðs; tÞ and ranged between 0.035 and 0.75 (nor-

malized using the total number of possible brokerage opportuni-
ties, i.e. the number of possible edges, to range between 0 and 1
using the formula 2/((n�1)(n�2)), where n is the number of nodes
in the graph; see (Freeman, 1979; Brandes, 2001) as implemented
in (Hagberg et al., 2008), where higher values indicate more
opportunities to broker information between more different
groups. Social network size was also recorded as the number of
confirmed friendships in the participant’s Facebook network.

Task and procedure

The App Recommendation Task was designed to examine social
influence on recommendation behavior in the fMRI environ-
ment (O’Donnell, et al., 2015). The task captures neural proc-
esses associated with sharing recommendations, ostensibly for
a mobile game website and manipulates social feedback regard-
ing the recommendations of peers. The task stimuli consist of
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icons representing real puzzle based game apps and their asso-
ciated descriptions acquired from the iTunes App Store, but un-
known to most people (i.e. not culturally popular games that
many people have already encountered). Actual apps from the
App Store were used to maintain a sense of realism and rele-
vance to the adolescent participants. As part of the task, partici-
pants were exposed to information that is available at the App
Store, namely, game titles, logos, and brief descriptions of the
games. Games from one category (puzzle-based games) were
used to reduce strong preferences for one particular game genre
over another (e.g. shooter game vs sports games) and all game
descriptions were limited to a consistent two sentence structure
(e.g. Zombie Grandmother: ‘Fight your way through the army of
the Undead blasting them with fireballs, cutting ropes and
breaking chains. Defeat your main target, the Zombie
Grandmother!’).

Participants completed two rounds of the App
Recommendation Task. Prior to the fMRI scan, participants
learned about 80 previously unknown puzzle games from the
iTunes App store and responded on a five-point scale to the
question ‘I would recommend this to a friend’. During the fMRI
session they were reminded of their initial rating, then they
received experimentally manipulated feedback indicating how a
group of their peers who had already participated in the study
had ostensibly rated the same app (feedback was of one of four
conditions: (i) NOT RATED—no group feedback, (ii) SAME—group
agreed, (iii) HIGHER—group average was higher than partici-
pant’s initial rating or (iv) LOWER—group average was lower
than participant’s initial rating). The social feedback ratings
were pseudo randomly generated to maintain 20 trials for each
feedback type. Finally, participants were given an opportunity to
update their initial recommendations if they wished, and to lock
in a final response in the scanner. In other words, during the
fMRI portion of the task, each game rating block consisted of
three parts. First participants saw a reminder of the game using
the title and logo along with a reminder of how they initially
rated the game (2 s). Next participants were exposed to manipu-
lated peer group recommendations relative to their own (higher,
lower or same) or no peer group feedback (not rated) (3 s).
Finally, participants were asked to lock in a final recommenda-
tion for each game for the website (3 s; Figure 3). A fixation cross

was displayed between each 8-s trial (mean 2.5 s, range 0.12–5.4,
SD 1.47).

Social influence effects were examined using R Core Team
(2014). For each participant we computed: the proportion of tri-
als when they made a change to their initial rating for an app
after receiving social feedback that was different (either higher
or lower) from their initial rating and the proportion of trials
where they made a change despite receiving supportive social
feedback (i.e. that peers rated the app the same).

MRI data acquisition and preprocessing

Imaging data were acquired using a 3 Tesla GE Signa MRI scan-
ner. Functional images were recorded using a reverse spiral se-
quence (TR ¼ 2000 ms, TE ¼ 30 ms, flip angle ¼ 90�, 43 axial
slices, FOV ¼ 220 mm, slice thickness ¼ 3mm; voxel size ¼ 3.44 �
3.44 � 3.0 mm). We also acquired in-plane T1-weighted images
(43 slices; slice thickness ¼ 3 mm; voxel size ¼ 0.86 � 0.86 � 3.0
mm) and high-resolution T1-weighted images (SPGR; 124 slices;
slice thickness ¼ 1.02 � 1.02 � 1.2 mm) for use in coregistration
and normalization.

Functional data were pre-processed and analyzed using
Statistical Parametric Mapping (SPM8, Wellcome Department of
Cognitive Neurology, Institute of Neurology, London, UK). To
allow for the stabilization of the BOLD signal, the first four vol-
umes (8 s) of each run were discarded prior to analysis.
Functional images were despiked using the 3dDespike program
from the AFNI toolbox. Next, data were corrected for differences
in the time of slice acquisition using sinc interpolation; the first
slice served as the reference slice. Data were then spatially re-
aligned to the first functional image. We then co-registered the
functional and structural images using a two-stage procedure.
First, in-plane T1 images were registered to the mean functional
image. Next, high-resolution T1 images were registered to the
in-plane image. Following coregistration the high-resolution T1
images were segmented into white and gray matter allowing
the skull to be removed. Structural and functional images were
then normalized to the skull-stripped MNI template provided by
(FMRIB Software Library v5.0) FSL (‘MNI152_T1_1mm_brain.nii’).
In the final pre-processing step the functional images were
smoothed using a Gaussian kernel (8 mm FWHM).

Fig. 1. Example ego networks for participants high and low in brokerage opportunities. Gray node is the ego, i.e. the Facebook user. Node size represents the number of

connections to other nodes in the network. Other node colors represent community membership according to a community detection algorithm. Networks contain

similar numbers of friends but high and low opportunities for brokerage. Network A contains 184 nodes with ego betweenness score of 0.06. Network B contains 140

nodes with ego betweenness of 0.59.
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Regions of interest

We used Neurosynth (Yarkoni et al., 2011) to carry out an auto-
mated meta-analysis of the functional neuroimaging literature
on ‘mentalizing’. We queried the Neurosynth database (updated
as of August 2016) for published studies containing the term
‘mentalizing’ which resulted in 124 studies from which associ-
ated MNI coordinates were extracted. These underwent a
Neurosynth meta-analysis and a FDR 0.01 corrected RI map was
created and saved as an ROI mask (see Figure 2). This map
included subregions in the DMPFC, bilateral TPJ, PC/PCC, MTG
and MPFC.

fMRI data analysis

Data were modeled at the single subject level using the general
linear model as implemented in SPM8. The four peer group
feedback conditions (not rated, same, higher and lower) were
combined with outcomes pertaining to whether participants
updated their initial recommendation or not following feedback
about group recommendations (change and no change) as
regressors in the model. The 6-s period including peer feedback
(FEEDBACK) and the final rating (RESPONSE2) were modeled to-
gether in a single regressor.

Participants rarely changed their recommendation when the
group rating was consistent with the participant’s initial recom-
mendation and when no rating was available; thus, these condi-
tions did not have sufficient instances across participants to be
modeled on their own and were combined with trials where no
response was recorded under an ‘OTHER’/nuisance regressor
condition. The initial reminder period was modeled as a condi-
tion of no interest. The six rigid-body translation and rotation
parameters derived from spatial realignment were also
included as nuisance regressors. Data were high-pass filtered
with a cutoff of 128s.

Two different focal contrasts at the participant level were
compared with baseline activity: (i) trials in which participants
were presented with feedback that the peer recommendations
differed from their own ([group rated higher þ group rated lower
] > rest), and separately (ii) trials in which participants were pre-
sented with feedback that the group’s recommendation differed
from their own and they updated their final recommendations
([group rated higher and participant changed their final rating þ
group rated lower and participant changed their final rating] >
rest).

Next, we created random effects models at the group level
that averaged across each participant level contrast of interest.
Parameter estimates of activity from our hypothesized, meta-
analytically derived functional mentalizing network were ex-
tracted in units of percent signal change, using Marsbar (Brett

et al., 2002). We then ran multiple regression analyses in R Core
Team (2014), in which neural activity within the mentalizing
network was predicted from participants’ ego betweenness cen-
trality, as well as social network size. This allowed us to exam-
ine the interaction between social feedback and information
brokerage position on neural activity during decision making
and to determine whether activity in regions associated with
mentalizing during social decisions was associated with either
social network size or structure. In addition, we ran parallel re-
gression analyses predicting brain activity during trials in which
participants received feedback that the peer group rating dif-
fered from their own and they changed their initial rating, con-
trolling for neural activity during trials in which they received
feedback indicating the group agreed with their initial rating
and they did not change this rating. We also ran a similar ana-
lysis controlling for neural activity during trials in which partici-
pants received feedback that the group rating differed from
their own and did not change their rating. These analyses allow
us to determine whether there is an effect of social network
structure on brain activity within our regions of interest that is
related to using divergent peer feedback to update recommen-
dations, that goes above and beyond (i) making a rating that
agrees with the group opinion, and (ii) receiving feedback that
diverges from one’s own opinion.

Finally, to check for significant activation outside of our a
priori hypothesized regions of interest (i.e. to determine the
specificity of our ROI results), we ran a group level model with
each participant’s information brokerage (i.e. betweenness cen-
trality) score used as a regressor for whole brain effect for trials
in which participants were presented with feedback that the
group’s recommendation differed from their own and
they updated their final recommendations. We ran a parallel
analysis for network size. Both whole brain analyses were
thresholded at P < 0.001 with a cluster size of 76 corresponding
to P < 0.05 corrected based on 3dClustSim (Version
AFNI_16.2.02).

Results
Behavioral data

As expected, participants updated their recommendations sig-
nificantly more often when receiving feedback that peer recom-
mendations differed from their initial ratings than when
peer feedback reinforced their initial ratings [paired t(49) ¼
12.22, P < 0.001, r2 ¼ 0.75 CI (0.32, 0.45)] (O’Donnell, et al., 2015).
We observed no difference, however, in tendencies to change
ratings after receiving differing feedback according to social net-
work size, controlling for behavior after receiving reinforcing

Fig. 2. Regions of interest in the mentalizing network. A Neurosynth (Yarkoni et al., 2011) RI map of the term ‘mentalizing’, based on 124 studies FDR 0.01 corrected was

used to create this ROI mask.
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feedback [b¼�0.02, t(47) ¼ �0.12, P ¼ 0.909, r2 ¼ 0.00, CI
(�0.0002, 0.0001)], or tendencies to change ratings after any
form of feedback [b ¼ �0.04, t(48) ¼ �0.25, P ¼ 0.808, r2 ¼ 0.00, CI
(�0.0001, 0.0001]). We observed marginal differences in tenden-
cies to change ratings after receiving differing feedback accord-
ing to brokerage position (ego betweenness), controlling for
behavior after receiving reinforcing feedback [b ¼ �0.24, t(47) ¼
�1.73, P ¼ 0.090, r2 ¼ 0.06, CI (�0.66, 0.05)], and in the tendency
to change ratings after any form of feedback [b ¼ �0.23, t(48) ¼
�1.60, P ¼ 0.117, r2 ¼ 0.05, CI (�0.48, 0.06)]. In other words, those
high and low in network ties and information brokerage were
equally likely to update their recommendations in response to
peer feedback, with those lower in brokerage updating margin-
ally more often overall.

fMRI data

We tested the hypotheses that (i) participants with larger
Facebook networks (i.e. higher in network ties), and separately
(ii) those higher in information brokerage would show increased
activity in the network comprised of DMPFC, bilateral TPJ,
MPFC, PCC and MTG when encountering opinions that differed
from their own. We first examined social network size in rela-
tion to activity within brain regions derived from a Neurosynth
automated meta-analysis of the term ‘mentalizing’ (Figure 2),
including DMPFC, bilateral TPJ, MPFC, PCC, and MTG. Social net-
work size was not significantly related to activity in this net-
work of interest in response to peer feedback that differed from
their initial recommendations [b ¼ 0.006, t(48) ¼ 0.04, P ¼ 0.967,
r2 ¼ 0.00, CI (�0.0001, 0.0001)]. We next examined information
brokerage in relation to this same neural activity. Participants
higher in ego betweenness centrality showed greater activity in
the network of interest when receiving peer feedback that dif-
fered from their initial recommendations [b ¼ 0.312, t(48) ¼
2.274, P ¼ 0.028, r2 ¼ 0.097, CI (0.031, 0.503)].

Next, we examined whether this increased brain activity was
associated with conforming to the peer feedback. Social network
size was not significantly related to activity in the hypothesized
mentalizing network of interest when participants received and
conformed to divergent peer feedback [b ¼ 0.105, t(48) ¼ 0.728, P
¼ 0.47, r2 ¼ 0.011, CI (�0.00009, 0.0002)]. In contrast, those with
higher betweenness centrality in their Facebook networks
showed greater activity within the hypothesized mentalizing
network during trials when they received and conformed to di-
vergent peer feedback [b ¼ 0.343, t(48) ¼ 2.526, P ¼ 0.015, r2 ¼
0.117, CI (0.07, 0.63); Figure 4]. This result also held controlling
for individual differences in activity within the mentalizing ROIs
when participants received feedback indicating either (i) peer
agreement and did not change their behavior [b ¼ 0.283, t(47) ¼
2.123, P ¼ 0.039, r2 ¼ 0.199, CI (0.02, 0.56)] or (ii) that the group
opinion differed from their initial rating and did not change their
behavior [b ¼ 0.346, t(47) ¼ 2.504, P ¼ 0.016, r2 ¼ 0.118, CI (0.07,
0.63)]. Thus, participants who were higher in information
brokerage were especially likely to show increased activity in
meta-analytically defined sub-regions of DMPFC, bilateral TPJ,
MPFC, PCC and MTG when they changed their minds to incorp-
orate peer feedback, whereas network size was not associated
with activity in these regions. Additionally, these effects held
when controlling for individual differences in neural activity
within the network of interest associated with maintaining the
same opinion as the peer group, and separately receiving diver-
gent peer feedback but not updating one’s final recommenda-
tion to conform to peers.

We also ran whole brain regressions of participants’ network
size and information brokerage (i.e. ego betweenness centrality)
against neural activity during trials where peer feedback dif-
fered from initial rating and led to a change of rating to explore
other neural activity outside of meta-analysis mentalizing ROI.
This analysis confirmed the relationship between activity in the
hypothesized network of interest and information brokerage

Fig. 3. App Recommendation Task (Cascio, et al. 2015). Prior to the fMRI scan participants saw descriptions of each app and made an initial rating (RESPONSE1).

Participants then completed the social feedback portion of the App Recommendation Task during the fMRI session. Ratings were given on a five-point Likert scale,

where 1 ¼ wouldn’t recommend and 5 ¼ would recommend. Ratings were based on exposure to peer group feedback (higher, lower, same or not rated) in conjunction

with a reminder of the participant’s initial rating.
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(see Figure 5 and Table 1). However, consistent with the ROI
results there were no significant activations associated with
network size. Together, these results demonstrate that the
underlying neural mechanisms that lead to social influence on
recommendation behavior covary with opportunities for infor-
mation brokerage in personal social networks.

Discussion

We show that social network structure, but not size, is associ-
ated with brain activity in meta-analytically defined subregions
of DMPFC, bilateral TPJ, MPFC, PCC, and MTG during social judg-
ments. In particular, information brokers—individuals with
more opportunities to connect otherwise unconnected others in
their social networks—show increased activity in these regions
when learning that others’ opinions differed from their own.
Moreover, higher brokers, relative to lower brokers, also show

increased activity within these regions when updating their rec-
ommendations to realign with peer recommendations.

DMPFC, bilateral TPJ, MPFC, PCC and MTG were identified
using Neurosynth’s RI map of ‘mentalizing’ (Yarkoni et al., 2011).
In parallel, previous studies have linked brain activity within
each of these regions to mentalizing and social judgments (Frith
and Frith, 2001; Saxe and Kanwisher, 2003; Amodio and Frith,
2006; Saxe and Powell, 2006). Understanding others’ mental
states may be particularly important for successfully communi-
cating information to others, and specifically making successful
recommendations. In line with this view, previous neuroimag-
ing research has linked brain activity in TPJ to successful recom-
mendation behavior and social sharing (Dietvorst et al., 2009;
Falk et al., 2013; O’Donnell, et al., 2015). Individuals who engaged
the bilateral TPJ more while considering novel ideas in a recom-
mendation task were better at convincing others to adopt their
opinion (Falk et al., 2013) and this was reflected in the way they
presented the ideas to others (Falk et al., 2012; O’Donnell et al.,
2015). Likewise, salespeople who communicated more effect-
ively with their clients also showed increased activity within
TPJ and MPFC (Dietvorst et al., 2009). More broadly, our findings
reinforce an expanded view of brain regions within the
hypothesized mentalizing system not only to include simulat-
ing the mental states of others in direct interaction (Saxe and
Kanwisher, 2003; Decety and Lamm, 2007), but also to include
the use of these regions to incorporate peer feedback in recom-
mendations made to others (Falk et al., 2013; O’Donnell, et al.,
2015). This may include simulating both the mental states of
peers (whose feedback is incorporated) as well as imagined re-
cipients of the recommendations.

A separate line of research has documented that information
brokers have particular advantages in situations that require ac-
cess to novel information (for a review, see Burt et al., 2013).
Might these advantages relate to the fact that higher informa-
tion brokerage is associated with greater activity in regions of
interest implicated in mentalizing during social decision mak-
ing? One possibility is that opportunities to broker information
between diverse groups require thinking about what is import-
ant to both parties and how to best present (frame) information
for them, affording those within such social network positions
more practice in this domain. It is also possible that people who
tend to take the perspectives of others are more likely to form re-
lationships with diverse groups, predisposing them to being in-
formation brokers (Kalish and Robins, 2006; Burt et al., 2013). In
both cases, the socio-cognitive process of making and updating
recommendations differs based on the degree to which an indi-
vidual interfaces with external perspectives in daily life. This
highlights the importance of considering broader social environ-
ments, and social network position in particular, in understand-
ing the brain bases of social transmission.

More broadly, our data add to previous theories suggesting
that an individual’s social network structure and position can be
conceptualized as an individual difference variable that influ-
ences and is influenced by psychological tendencies (Burt, 2012;
Burt et al., 2013). This would imply that the spread of ideas
through networks depends not only on brokerage positioning,
but also on the social cognitive framework tied to being a broker.
Yet, past research has not considered how those with higher
brokerage in their personal networks may use their brains differ-
ently in the context of social decision making. We found that in-
dividuals whose social networks provide them with more
opportunities to share novel information or make connections
between other pairs of individuals in their networks (i.e. high in-
formation brokerage) showed greater levels of activity in regions

Fig. 4. Association between information brokerage and neural activity in

hypothesized mentalizing network of interest when receiving peer feedback

and finalizing recommendations incorporating social feedback.

Table 1. Positive associations between information brokerage and
neural activity during social feedback leading to behavior change

Region hemisphere x, y, z size t-stat

DMPFC R 5 60 34 76 4.59
SFG (BA 6) R 18 8 70 276 6.24

DMPFC R 11 29 61 3.27
SFG L �16 8 64 4.61

DLPFC (BA 10) R 39 43 25 467 5.36
Insula R 29 -9 16 5.18

Putamen L �23 8 16 267 4.72
Anterior insula L �30 32 10 3.27
DLPFC (BA9) L �33 46 37 3.27

Insula R 32 15 �14 87 4.65
Temporal pole R 42 22 �20 4.49

Calcarine/Cuneus R 1 �88 7 100 3.92

Note: Threshold, P < 0.001, k ¼ 76, where k is the number of voxels per cluster

based on a 3dClustSim simulation corresponding to P < 0.05, corrected. DMPFC,

dorsomedial prefrontal cortex; DLPFC, dorsolateral prefrontal cortex; SFG, super-

ior frontal gyrus; MFG, middle frontal gyrus. Note: no negative associations were

observed between information brokerage and neural activity during social feed-

back leading to behavior change. Likewise, no whole-brain associations were

observed with social network size.
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associated with mentalizing while considering social feedback
concerning mobile game app recommendations. These findings
resonate with past research linking ‘self-monitoring’—the ten-
dency to adapt one’s self-presentation to the current context—
to higher network brokerage (Oh and Kilduff, 2008). Our data are
also consistent with recent findings demonstrating that more
popular individuals show heightened activity in DMPFC, PC, and
TPJ during social judgments (Zerubavel et al., 2015). More gener-
ally, these results bolster the emerging idea that cognitive fac-
tors underlie social network structure (Brashears and Quintane,
2015), and highlight the value of studying the neurocognitive
factors in parallel with personal network structure. Given that
both high and low information brokers tend to update their rec-
ommendations in response to peer feedback to similar degrees,
social network differences may manifest in ways that are not
apparent with self-report or behavioral measures alone. In other
words, the effects of brokerage on cognitive processes were
more clearly observed in the neural processes underlying deci-
sion making than in the decision outcome itself.

In line with the importance of considering social network
structure (in addition to size), we do not find a significant rela-
tionship between network size and activity within our hypothe-
sized mentalizing network when receiving divergent peer
feedback and incorporating it into recommendations. Recent
neurocognitive studies have reported links between social net-
work size and amygdala size (Bickart et al., 2011), grey matter
volume of social cognitive regions (Kanai et al., 2012), and func-
tional resting-state connectivity between the amygdala and so-
cial perception regions (Bickart et al., 2012). In contrast to such
work, we observe a clear connection between social network
structure (brokerage role) and activity within hypothesized men-
talizing regions during an active recommendation task. One pos-
sibility is that the task presented to our participants (i.e.
incorporating divergent peer opinions into a final recommenda-
tion) may capture a different type of processing than the proc-
esses reflected during resting state, and hence covary with
different network metrics. This follows as making recommenda-
tions is one important way that ideas spread and information is
brokered. In addition, prior studies have also relied upon self-
report data of social resources. In contrast, we have made use of
objectively measured social network data and considered a dif-
ferent social resource, i.e. information brokerage. Such networks
and log data of online interactions can serve as rich proxies for
social resources and thus present new opportunities to address
questions about the brain bases of social interaction. In combin-
ation with past work, the significant role of social network struc-
ture—and not size—during the active task of using social
information to make recommendations highlights the value of

using a broad range of social network metrics for studying net-
work cognition.

Despite this value, the current data should be considered in
light of strengths and limitations to the social and psychological
inferences that can be drawn from these correlational data. This
study balances external and internal validity; the task used mir-
rors situations in which individuals make online recommenda-
tions (e.g. product ratings) by incorporating product information
in conjunction with existing social feedback (e.g. ‘like’, 61 or
thumbs up/down ratings of reviews). For example, when making
product recommendations people are often exposed to the rec-
ommendations of others in the process, thus undergoing some
degree of social influence on our own recommendations. Thus,
we used a task designed to replicate making online recommen-
dations (ratings for mobile game apps) and receiving social feed-
back about these decisions (O’Donnell et al., 2015). After making
their initial recommendations, we systematically manipulated
the social feedback provided to participants to allow for the
comparison of supportive (i.e. group rating was SAME) vs differ-
ing (i.e. group rating was HIGHER or LOWER) feedback. That said,
one major limitation is that our approach relies on RI to draw
conclusions about potential cognitive processes that may differ
by network position. The brain regions we focus on for their role
in mentalizing (DMPFC, bilateral TPJ, PC/PCC, MPFC and MTG)
are also implicated in other cognitive functions beyond mental-
izing; hence, our interpretations of associations with this brain
activity should be considered one of a wide range of possible
psychological interpretations. However, the use of a large-scale
automated meta-analysis to derive clusters preferentially asso-
ciated with mentalizing allows us to take one step toward test-
ing the theoretical claim that information brokerage c=10?>co-
varies with activity within this brain system.

Our data should also be interpreted within the constraints of
the sample studied—adolescent males. Gender may be associ-
ated with general network characteristics and network cognition
tendencies. Most notably, women tend to have larger networks,
greater proportion of family ties, and greater capacity to recall
social network features (see Brashears, 2008 and Brashears et al.,
2016, for reviews on gender differences in networks). As such,
gender differences should be considered in future work on the
correlates of ego betweenness and in investigations that com-
bine brain and social network analyses more broadly. There is
also evidence that personal network structure shifts over the
course of the human lifespan. For example, Wrzus et al. (2013)
review how personal friendship networks increase in size
through young adulthood, before dropping steeply thereafter. In
parallel, a growing body of literature has documented dynamic
changes in the structure and function of teenage brains as well
as in how the brain responds to social and emotional tasks

Fig. 5. Whole brain analysis showing association between information brokerage and neural activity during social feedback leading to recommendation change. Note:

x¼0, y¼10, z¼34; threshold ¼ P < 0.001, k � 76, where k is the number of voxels per cluster based on a 3dClustSim simulation corresponding to P < 0.05, corrected.
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across development (Crone and Dahl, 2012). As such, studies
that combine SNA and neuroimaging during social and cognitive
tasks across development may be particularly fruitful. Likewise,
focus on multiple operationalizations of social networks (e.g.
communication networks vs. friendship networks) may also be
particularly informative in relation to the brain’s response to so-
cial tasks.

More broadly, our findings lay the foundation for further
study of how brain network and social network dynamics may
interact in the context of social interactions and decision mak-
ing. Our data demonstrate how an individual’s position in a net-
work may not only affect the interactional dynamics with
existing network ties (Burt et al., 2013); rather, social network
position appears to be associated with different neurocognitive
processing at a more basic level. In turn, this may affect how
new social interactions unfold and how social network struc-
tures evolve.
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