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Apolipoprotein profiling as a personalized approach
to the diagnosis and treatment of dyslipidaemia
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Abstract

An elevated low-density lipoprotein cholesterol concentration is a classical risk factor for cardiovascular disease.

This has led to pharmacotherapy in patients with atherosclerotic heart disease or high heart disease risk with statins

to reduce serum low-density lipoprotein cholesterol. Even in patients in whom the target levels of low-density lipo-

protein cholesterol are reached, there remains a significant residual cardiovascular risk; this is due, in part, to a focus on

low-density lipoprotein cholesterol alone and neglect of other important aspects of lipoprotein metabolism. A more

refined lipoprotein analysis will provide additional information on the accumulation of very low-density lipoproteins,

intermediate density lipoproteins, chylomicrons, chylomicron-remnants and Lp(a) concentrations. Instead of measuring

the cholesterol and triglyceride content of the lipoproteins, measurement of their apolipoproteins (apos) is more

informative. Apos are either specific for a particular lipoprotein or for a group of lipoproteins. In particular measure-

ment of apos in atherogenic particles is more biologically meaningful than the measurement of the cholesterol concen-

tration contained in these particles. Applying apo profiling will not only improve characterization of the lipoprotein

abnormality, but will also improve definition of therapeutic targets. Apo profiling aligns with the concept of precision

medicine by which an individual patient is not treated as ‘average’ patient by the average (dose of) therapy. This concept

of precision medicine fits the unmet clinical need for stratified cardiovascular medicine. The requirements for clinical

application of proteomics, including apo profiling, can now be met using robust mass spectrometry technology which

offers desirable analytical performance and standardization.
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Introduction

Individuals with risk factors for cardiovascular disease

(CVD) (which include smoking, hypertension, diabetes

mellitus (DM), central adiposity and dyslipidaemia)

and patients suffering from CVD may be treated with

a combination of life style modification and pharmaco-

therapy. Currently, cardiovascular risk stratification is,

in part, based on classical lipid parameters cholesterol

(C), triglycerides (TG), high-density lipoprotein-choles-

terol (HDL-C) and low-density lipoprotein-cholesterol
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(LDL-C). Although guidelines outline an impressive
list of preventive and therapeutic measures,1 risk strat-
ification and treatment are not always successful in the
long term. There are several indicators of sub-optimal
patient management, including, but not limited to: (1)
residual risk despite successful therapy, e.g. with sta-
tins,2 (2) underdiagnosis of CVD in women,3 and (3)
the presence of atherogenic remnant disease that is
hard to diagnose with current diagnostic procedures.4

Currently, the traditional evidence based medicine
approach is used for risk stratification and therapy in
patients with CVD. However, it is time for a paradigm
shift from ‘reactive medicine’ that generally treats one
particular item, e.g. LDL-C, to ‘proactive P4 medicine’
(predictive, preventive, personalized, and participato-
ry), that is person-centric, based on disease mechanism
and systems biology.5,6 In this holistic approach med-
ical decisions are based on individual patient character-
istics (including biomarkers) rather than on averages
over a whole population. In this review, we summarize
evidence for and propose the use of a multiplexed panel
of apolipoproteins (apos) as an adjunct for cardiovas-
cular risk stratification, to facilitate implementation of
precision medicine (Figure 1).

A checklist to identify clinical management decisions
linking biomarker testing to health outcomes was
recently developed by the Test Evaluation Working
Group of the European Federation of Clinical
Chemistry and Laboratory Medicine (EFLM).7

The present review has been structured in line with
this checklist and is organized into four domains: (a)
identification of the unmet clinical need (deficiencies in
current clinical care and described in the present sec-
tion) (b) verification of the unmet clinical need i.e. are
there existing biomarkers that might fill this unmet

need (in particular the roles of apos in lipid metabolism

as described in the section Biochemistry and pathobi-

ology of apolipoproteins: Insight into dyslipidaemia

and atherosclerosis), (c) validation of the intended use

of the proposed biomarker marker (e.g. in sections on

the current evidence for the role of apos in a clinical

setting based on outcome studies at both the protein

level and the genetic level) and (d) assessment of the

feasibility of the new biomarker to influence clinical

practice and health outcomes (recommendations for

medical laboratories on the role of apo quantitation

in the clinical care pathway, to be addressed in the

section Embedding apolipoprotein profiling in cardio-

vascular precision clinical care pathways).7

Residual CV risk beyond conventional CVD therapies

In the management of CVD the use of the most appro-

priate medication requires a clear definition of the

underlying metabolic problem in a particular patient.

Although the diagnosis may look simple, say diabetes

mellitus type 2 (DM2) or ischemic heart disease, the

most appropriate therapeutic measures may be difficult

to select for each individual patient. Currently, clinical

chemistry testing for dyslipidaemia in plasma/serum is,

besides clinical history, echocardiography, electrocardi-

ography and angiography, a cornerstone in the inves-

tigation of patients with CVD. The concentrations of

cholesterol, TG, HDL-C and LDL-C are risk factors

used to identify, stratify and characterize dyslipidae-

mia. This enables prescription of specific therapy

directed towards these risk factors.
However, even if all risk factors present are treated,

there remains residual CVD risk. In trials that studied

statin vs. placebo therapy residual CVD risk was

Figure 1. Conceptual view of the proposed paradigm shift from traditional, population-based medicine with prescription roulette
due to statin intolerance/poor patient medicine concordance rather than lack of statin efficacy in attaining an LDL-C target and
inadequate targeting of the individual lipoprotein risk factors, to precision medicine with personalized therapies, based on biology-
driven test results.
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shown to be 25–40% in the statin-treated groups.8–13

Interestingly though, intensive statin therapy resulted
only in a slight decrease in incidence of major CVD

events.14–16 In 2005, Libby stipulated that the post-
statin era suffers from a residual burden of cardiovas-
cular mortality in about two-thirds of the patients with
CAD, indicating the need for better understanding of
factors contributing to this unexplained residual risk.2

Superko similarly concluded that a therapy that focusses
on LDL-C reduction alone neglects other important

aspects of lipoprotein metabolism.17 In the Multi-
Ethnic Study of Atherosclerosis, the overall residual
risk in statin-treated individuals was >17% in a 10
year period. Even in a subset of patients with a baseline
LDL-C< 2.58 mmol/L, DM, LDL-particle size, hs-CRP
and coronary artery calcification (CAC) were the most

important predictors of residual risk.18 This raises the
question of how to diminish residual risk.

CVD in women

The treatment of CVD in women remains insufficient:

compared to men, the prevalence and mortality of
CVD in women is increasing. CVD generally manifests
itself 10 years later in women than in men.
Furthermore in addition to atherosclerotic coronary
artery disease, non-atherosclerotic coronary artery dis-
ease may be an important cause of myocardial infarc-
tion, particularly in younger women. Risk factors in

women include DM, endothelial dysfunction, leukocyte
activation, platelet activation, renal dysfunction, and
hypertension. The presenting symptoms are often
non-specific in women, resulting in delayed diagnoses.
In pre-menopausal women, severe manifestations of
CVD, such as acute myocardial infarction (MI) and

sudden death, are relatively rare. Women tend to devel-
op asymptomatic heart failure secondary to CVD more
frequently than men.19 Specific differences in CVD risk
factors related to blood lipids have been described in
women: (1) low HDL-C is more predictive for cardio-
vascular events in women than a high LDL-C; (2) high
Lp(a) is a risk determinant for CVD in pre-menopausal

and post-menopausal women <66 year; and (3) the
concentration of total cholesterol seems to be associat-
ed with CVD only in pre-menopausal women and the
concentration of TG only in older women.20

Inadequate cholesterol-based tests do not identify
atherogenic remnant disease

Remnant-cholesterol (remnant-C) includes primarily
VLDL-C, IDL-C and Lp(a). Calculated remnant-C

shows a skewed distribution with a tail towards
higher concentrations in a general population.21

Hypertriglyceridemia (HTG) is associated with

elevated concentrations of TG-rich lipoproteins

(TRLs), apoB100, apoCIII and small dense LDL

(sdLDL-C), in the setting of a normal or low concen-

tration of LDL-C. Elevations of these (apo)lipopro-

teins, as are often observed in patients with DM or

metabolic syndrome, are associated with increased

CVD risk. In a model that included established risk

factors, sdLDL-C was associated with incident CHD

with a hazard ratio (HR) of 1.51 (95% confidence

interval (CI), 1.21–1.88) for the highest vs. the lowest

quartile. Even in individuals considered to be at low

CVD risk based on their LDL-C concentrations,

sdLDL-C predicted risk for incident CVD (HR 1.61;

95% CI, 1.04–2.49).22 LDL-C and remnant-C in

�90,000 individuals from the Danish general popula-

tion who were followed for up to 22 years were asso-

ciated equally with risk of CHD and MI. Non-fasting

remnant-C concentrations were associated stepwise

with all-cause mortality ranging from HR of 1.0

(95% CI, 0.9–1.1) to HR of 1.6 (95% CI, 1.4–1.9)

(P¼ 0.001), whereas LDL-C concentrations were asso-

ciated with decreased all-cause mortality risk in a U-

shaped pattern, with HRs ranging from 0.8 (95% CI,

0.7–0.8) to 0.9 (95% CI, 0.8–1.0) (P¼ 0.002). Only non-

fasting remnant-C concentrations were associated with

increased all-cause mortality risk.21

Ineffective therapy due to average conclusions and

average dosing not considering the individual patient

Statin group drugs to reduce LDL-C are widely used in

the management of CVD. Clinical practice guidelines

for the most part stipulate the titration of statin doses

to achieve pre-specified ‘group’ (i.e. rather than indi-

vidualized patient) LDL-C targets.1 A key question

however is what is the personalized target for the

patient? Treatment of comorbidities, such as other dys-

lipidaemias, DM, metabolic syndrome, hypertension or

renal insufficiency, deserves attention in the individual

patient. In other words, guidelines mention average

target levels for the average patient, but an individual

patient is likely not to be the average patient.
In recent years, several novel lipid lowering pharma-

cological therapies other than statins have been devel-

oped and results from clinical trials are now emerging.23

These include ezetimibe, a cholesterol absorption inhib-

itor, and the very potent PCSK9 inhibitors, that have

already been licenced in Europe and the US.24 More

recently, initial studies with anti-sense oligonucleotides

(ASOs) blocking apoCIII and apo(a) have shown prom-

ising results.25 With these new therapies emerging, there

is a need for specific guidance in selection of the most

appropriate therapy and selection of the patients for

this therapy.
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We believe the time has come to change from generic

therapy tailored towards the average patient to guide-

lines that address the specific goals to be met in the

individual patient. Molecular markers which reveal

the underlying biology and pathology can give better

clues for definition and treatment of disease than aver-

age target levels of LDL-C. To that purpose, the use of

a multiplexed apo panel is advocated over the tradi-

tional lipoprotein profile that is based on cholesterol

and TG, and evidence for the use of such an apo panel

is presented.

Apolipoprotein quantitation by mass spectrometry

To accommodate the proposed paradigm shift to per-

sonalized healthcare, laboratory professionals explored

alternative analytical strategies to define metabolic risk

factors in individual patients. Mass spectrometry (MS)

is a strategic (antibody-independent) technology for

highly multiplexed protein quantification, that has

recently entered the medical laboratory.26,27 Multiple

clinically relevant (apolipo)proteins can simultaneously

be enzymatically digested,28 upon which protein-

specific signature peptides can be quantified using MS.
Newly developed (multiplex) biomarker methods

should meet basic clinical chemistry principles.29

Criteria for imprecision and bias should be pre-

defined, e.g., based on biological variation,30 and the

methods should be robust and high-throughput to

facilitate measurement of larger volumes of samples.

The use of commutable and value-assigned serum-

based calibrators should facilitate harmonization of

assay methods and may contribute to a more rapid

transition of biomarker discovery to clinical utility

with benefit for the patient’s treatment and improve-

ment of general health care.
We and others have now reported the development

of liquid chromatography-mass spectrometry (LC-MS)

based methods for the multiplexed quantitation of

serum apos.31–35 We were able to show that our

method demonstrates stable performance over a

longer period of time.36 Moreover we showed that

LC-MS based apoE phenotyping (qualitative analysis

of apo e2, e3 and e4 alleles) using unique signature

peptides performs equally well compared to genotyp-

ing.37 These results show the strength of MS in

metrology, as the technique allows for unequivocal

identification and quantitation of well-defined measur-

ands at the proteoform level through the use of specific

and unique peptides. This has now also been recog-

nized by the clinical chemistry community, as an

IFCC working group has been initiated to establish

metrological traceability and standardization of apo

quantitation and phenotyping using MS (http://www.

ifcc.org/ifcc-scientific-division/sd-working-groups/wg-
apo-ms/).

Inadequate standardization of Lp(a) measurement

Apo(a) is a heterogeneous glycoprotein with large size
heterogeneity ranging from 200 to 800 kDa, due to a
size polymorphism. The measurement of Lp(a) is indi-
cated in intermediate CVD risk patients, patients with
inherited dyslipidaemias and patients with premature
vascular disease.1,38 However, the size polymorphism
of apo(a) hampers the accurate quantitation op Lp(a)
in g/L,39,40 as well as standardization. While Lp(a) has
been known to be a risk factor for CVD for a long
time, the poor quality of quantitative tests has ham-
pered adoption of Lp(a) in clinical care pathways so
far. The National Heart Blood and Lung Institute
Working Group on Future Research Directions on
Lipoprotein(a) and Cardiovascular Disease therefore
recently recommended the development of a standard-
ized measurement of Lp(a), in which apo(a) values
should be quantified in nmol/L.41 Here too, MS
seems to be an excellent technology to achieve this, as
selection of a non-kringle IV-2 peptide would allow for
quantitation of apo(a) at the molar level.

Biochemistry and pathobiology

of apolipoproteins: Insight into

dyslipidaemia and atherosclerosis

ApoB100

Human apoB100 is a 4536-amino acid secretory glyco-
protein, and a single molecule is present in each VLDL
particle when secreted by the liver. Lipoprotein lipase
(LPL) and hepatic lipase (HL) are responsible for lipol-
ysis of TG of the VLDL particle in the circulation,
leading to formation of VLDL-remnants. Although
VLDL-remnants (also called IDL) are predominantly
cleared by the liver (through apoE-mediated pathways,
see below) a large part of VLDL-remnants is converted
– via IDL – into LDL by further lipolysis of TG.
ApoB100 is responsible for uptake of VLDL, IDL
and LDL by the hepatic LDL-receptor (LDLR).42

Generally, the concentration of LDL in the circulation
is relatively high, compared to that of VLDL and IDL.
LDL is relatively poor in TG and rich in cholesterol,
whereas VLDL and IDL are particles that are relatively
rich in TG.

Each particle of VLDL, IDL and LDL contains – in
theory – one copy of apoB100. In the small intestine, a
truncated form of apoB is formed corresponding to its
N-terminal 48% (apoB48), which directs the formation
of CMs. These TG-rich and cholesterol-poor particles
undergo lipolysis of TG in the circulation, leading to

Renee Ruhaak et al. 341

http://www.ifcc.org/ifcc-scientific-division/sd-working-groups/wg-apo-ms/
http://www.ifcc.org/ifcc-scientific-division/sd-working-groups/wg-apo-ms/
http://www.ifcc.org/ifcc-scientific-division/sd-working-groups/wg-apo-ms/


uptake of CM-remnants by the liver and – in certain
circumstances – accumulation of CM-remnants in
the blood.43

A high level of total cholesterol and particularly of
LDL-C is a strong risk factor for atherosclerosis under-
lying several diseases such as CHD. In the initiation of
atherosclerosis crucial events are the subendothelial
retention and modification of apoB100-containing lip-
oproteins. However, not only abundancy of LDL but
also abundancy of remnant particles trigger the athero-
sclerotic process, although the latter by mechanisms
that are currently understood poorly.44 LDL-lowering
drugs (e.g., statins, ezetimibe and PCSK9 inhibitors)
are currently the most effective lipid lowering therapies
in routine clinical use and are shown to reduce coro-
nary events and improve survival, which is attributed
to the reduction in LDL-C.

Apart from VLDL, IDL and LDL, a fourth lipo-
protein type, Lp(a), carries apoB100 (Figure 2). Lp(a)
is composed of an apoB100-containing LDL-like par-
ticle, covalently linked to the plasminogen-like glyco-
protein apo(a). Lp(a) is a highly prevalent genetic risk
factor for CVD and calcific aortic valve disease.45

In patients with high concentrations of sdLDL, the
risk of CHD is best assessed by apoB concentrations
(thus including apoB100 and apoB48), as the presence
of sdLDL is not reflected by elevated LDL-C concen-
trations. Thus, an apoB measurement includes, besides
LDL, also Lp(a), IDL, VLDL and CM-remnants,46

and is recommended as (1) assessment of risk of
CHD and (2) target of lipid-lowering therapy.47,48

ApoCI

ApoCI is a single-chain polypeptide of 57 amino acids.
ApoCI is produced in the liver and is a constituent of
VLDL and HDL. ApoCI is an inhibitor of LPL activ-
ity, and inhibits the binding of VLDL to LDL-receptor
related protein (LRP),49,50 as well as the apoE-
mediated binding of VLDL to the LDLR and the
LRP.51,52 ApoCI is a potent activator of lecithin:

cholesterol acyltransferase (LCAT),53,54 leading to ele-

vated HDL-cholesterol ester concentrations.55–57 In

apoCI-deficient mice, the primary metabolic defect is

an impaired VLDL uptake by the liver in vivo.58

Interestingly, whereas overexpression of human

APOC1 in transgenic mice predominantly inhibits the

uptake of VLDL by the liver, the absence of endogenous

apoCI in mice appears to have the same effect, although

to a lesser extent. ApoCI has been reported to inhibit

cholesteryl ester transfer protein (CETP) activity.

ApoCII

ApoCII is a single chain polypeptide of 79 amino acids.

ApoCII is an essential cofactor of LPL, the rate-

limiting enzyme for the hydrolysis and removal of

TG in CMs and VLDL.59 Like apoCI, but less effec-

tively, apoCII inhibits the apoE-mediated binding of

VLDL to the LRP.49 The plasma TG concentration

is independently associated with the apoCII concentra-

tion in a model including waist, circumference,

apoCIII, apoE, glucose, insulin and mean LDL size

in hyperlipidaemic patients.60

Statin treatment resulted in significant apoCII

reduction by �20%.61–63 It was found that the

apoCII-lowering effect of rosuvastatin occurred only

in the subgroup with TG concentration �1200 mg/L.63

In a study of 27 patients with primary HTG

(TG>3500 mg/L) who received atorvastatin (20 mg/

day or 80 mg/day) for four weeks, dose-dependent

reductions of total cholesterol and TG were observed.

In addition significant reductions in apoCII (by 28%

and 42%), apoCIII (by 18% and 30%), and apoE (by

37% and 49%) were observed.62

Individuals who are completely deficient in apoCII

have chylomicronaemia and grossly elevated plasma TG

concentrations, although their parents, who have half

normal plasma concentrations of apoCII, have normal

TG concentrations.64 However, transgenic mice overex-

pressing human APOC2 had HTG, due to an accumula-

tion of TG-rich VLDL in their circulation, caused by an

impaired clearance of VLDL-TG, consistent with a defec-

tive LPL-mediated hydrolysis of VLDL-TG.65 These

results are in contrast with the LPL-activating action of

apoCII: it may be that apoCII is an activator of LPL at

low apoCII concentration, whereas a high apoCII concen-

tration directly inhibits VLDL lipolysis.49 Thus, both an

excess and a deficiency of apoCII are associated with

reduced LPL activity and HTG.66

ApoCIII

ApoCIII is a 79-amino acid polypeptide that is pro-

duced mainly in the liver and to a lesser extent in the

intestines. ApoCIII is a significant component of TRLs
Figure 2. Density and particle size of the different lipoproteins.
Their major apolipoprotein constituents are indicated.
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and a minor component of HDL.67 ApoCIII exerts its
impact on TG metabolism by four distinct mecha-
nisms: (1) apoCIII functions as an inhibitor of HL
and LPL, key enzymes that catalyse the hydrolysis of
TG in VLDL and CMs;68–70 (2) apoCIII acts to retard
apoE-mediated hepatic uptake of TRLs;71,72 (3)
apoCIII serves to facilitate VLDL-TG assembly and
secretion from the liver;73–76 and (4) apoCIII complete-
ly abolishes the apoB100-mediated binding of lipopro-
teins to the LDLR, probably due to a masking of the
receptor domain of apoB100 by apoCIII.77,78

In the fasting state, apoCs are mainly associated
with HDL, whereas in the fed state, as well as in
patients with HTG, the apoCs preferentially redistrib-
ute to the surface of CMs and VLDL particles.79

Elevated plasma apoCIII concentrations are associated
with augmented production and retarded clearance of
TRLs, characteristic of HTG. Plasma apoCIII concen-
trations were positively correlated with (1) plasma TG
and (2) VLDL-TG.80

Fibrates, a class of drugs that reduce plasma TG
concentrations, effectively decrease apoCIII synthesis
rate in humans81 as well as APOC3 mRNA concentra-
tions in isolated human hepatocytes and rat livers via a
peroxisome proliferator activated receptor (PPAR)-
dependent pathway.82–84 The development of ASOs
targeted to the hepatic mRNA of apoCIII holds con-
siderable promise, as dose-dependent reductions in TG
levels of up to 80% are attainable.85

ApoE

ApoE, a 299-amino acid polypeptide, is a ligand for the
LDLR and LRP, binds to (hepatic and endothelial) cell
surface heparin sulphate proteoglycans, and plays a
key role in the receptor-mediated uptake of apoB100-
containing lipoproteins including remnant lipopro-
teins.79 In addition to its well-established function,
apoE is proposed to modulate TG lipolysis.86 ApoE
can specifically inhibit the LPL-mediated hydrolysis
of emulsion TG both in vitro and in vivo and inhibits
the LPL-mediated processing of TRLs, including
VLDL-TG.87–89 Plasma apoE is synthesized primarily
by liver hepatocytes, which account for �75% of the
body’s apoE production. Various cell types throughout
the body, including macrophages, also synthesize
apoE.90 The hepatic uptake of VLDL-remnants and
CM-remnants is facilitated by apoE, but is inhibited
by apoCI, apoCII and apoCIII.91

Epidemiologic studies have shown that apoE poly-
morphism is associated with interindividual variations
in plasma lipid concentrations as well as susceptibility
to atherosclerosis.86,91 ApoE4 is associated with
higher plasma total cholesterol, LDL-C, and apoB100
concentrations than apoE3. In addition, apoE4 is

proposed to be an independent risk factor for CHD

regardless of its effect on plasma cholesterol concentra-

tions.92–94 On the other hand, homozygotes of apoE2,

insofar as they do not develop type III hyperlipoprotei-

naemia (also called dysbetalipoproteinaemia), show lower

plasma total cholesterol and LDL-C concentrations,

lower apoB100 concentrations, and higher plasma

TG concentrations than homozygotes of apoE3.

Homozygotes of apoE2 demonstrate higher postprandial

plasma TG concentrations than those of apoE3 and

apoE4.95,96 Furthermore, apoE2 is proposed to reduce

the risk of CVD.97 However, homozygotes for apoE2

who develop type III hyperlipoproteinaemia due to sec-

ondary precipitating factors are susceptible to CVD.98,99

Apo(a)

Lp(a) is composed of an apoB100-containing LDL-like

particle, covalently linked to the plasminogen-like gly-

coprotein apo(a). Lp(a) is highly polymorphic in size

due to the number of kringle IV type 2 (KIV2)-encod-

ing sequences, giving origin to >40 apo(a) isoforms

varying in number among individuals and populations.

Although its exact role in lipid metabolism is unknown,

Lp(a) is a highly prevalent genetic risk factor for CVD

and calcific aortic valve disease (CAVD). Lp(a) concen-

trations in the atherothrombotic range are generally

accepted as >300 to 500mg/L (>75 to 125 nmol/L).

Such concentrations affect 20% to 30% of the global

population, with possibly higher incidence in patients

with established CVD and CAVD.41

The atherogenicity of Lp(a) is caused by interference

with the fibrinolytic system, the affinity to secretory phos-

pholipase A2, the interaction with extracellular matrix

glycoproteins and the binding to scavenger receptors on

macrophages. An association between high Lp(a) and

incidence of venous thromboembolism (VTE) has been

described. Apo(a) KIV-2 repeat number was significantly

lower in VTE patients (excl. hereditary and acquired

thrombophilia) than in controls (11 vs. 15, respectively).

KIV-2 repeat number was independently associated with

VTE.100 Elevated Lp(a) concentration has a strong asso-

ciation with angiographically documented CAD45,101 and

with risk of cardiovascular death, non-fatal MI and

ischemic stroke.102 Nordestgaard et al. advocate screen-

ing for elevated Lp(a) in those with intermediate or high

CVD/CHD risk, and use of pharmacotherapy for Lp(a)

and CVD/CHD risk reduction, accepting a desirable con-

centration <500 mg/L.103

Apo A-I

ApoA-I is the major apo in HDL, accounting for 70%

of all HDL-associated proteins, and mediates many of

the anti-atherogenic functions of HDL. ApoA-I is
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produced both in the liver and intestines, and is respon-

sible for initiating reverse cholesterol transport, where-

by excess cholesterol in peripheral tissues is carried

back to the liver for excretion. Patients with low con-

centrations of apoA-I (<1.2 g/L) are more likely to

have CVD than those with high apoA-I concentrations
(�1.6 g/L).104

As with LDL, the cholesterol content of HDL par-

ticles varies among patient types and is influenced by

plasma TG concentrations; patients with high TG tend

to have low apoA-I concentrations. Nonetheless, it is

unclear whether apoA-I alone is a predictor of CVD

risk independently of its association with HDL.105

Genetic evidence for the role of

apolipoproteins in CVD

Three types of studies are typically used to determine

whether a certain parameter is a risk factor for CHD.
These studies include primary evidence through obser-

vational studies, randomized controlled trials (RCT),

and lately Mendelian randomization trials (MRTs).106

Because genetic evidence from MRTs is most compel-

ling, in this review we specifically focus on evidence for

the role of apos in CHD obtained from such study

designs. Mendelian randomization was first proposed

in 1986 to evaluate whether the association between

cholesterol concentrations and cancer was really caus-
ative using apoE genotypes (e2, e3, e4),107 and has been

reviewed extensively.108 It is a method in which mea-

sured variation in genes of interest is used to evaluate

the effects of a measure of exposure (e.g., concentra-

tions of cholesterol or TG) on disease states (e.g., inci-

dence of CHD).109 The design is highly resistant to

reverse causation and confounding, which often

impede or mislead epidemiological studies. Most strik-

ing are occasions where observational epidemiological
studies have highlighted a seemingly substantial causal

association that later failed to be confirmed in large-

scale RCTs. An example is the hypothesis that b-caro-
tene protects against cancer, which was derived from

several observational epidemiologic studies.110 This

hypothesis was tested in the ATBC and CARET stud-

ies, both RCTs in which a 16%111 and 28%112

increased incidence of lung cancer was reported in indi-

viduals treated with b-carotene, respectively.

Genotypes are randomly inherited from parents to off-
spring, known as Mendelian randomization, and as

such, the genotype distribution used in RCTs should

be unrelated to confounders that may affect conven-

tional observational studies.108 Moreover, a genetic

polymorphism can, by definition, only be causative to

a change in the measure of exposure, thus avoiding

reverse causation. However, genetic pleiotropy

may confound results from MRTs, and a number of

methods to identify pleiotropy in MRTs have been

described.113

ApoB

There is a large body of evidence for a direct implica-

tion of LDL and other apoB-containing particles

(VLDL, IDL and Lp(a)) on the development of CVD

in a concentration dependent manner.114 Specifically, a

number of meta-analyses, such as the Prospective

Studies Collaboration and the Emerging Risk Factors

Collaboration, have provided evidence that there is an

association between exposure to LDL and risk of

CVD.115,116 Even though mutations in the APOB

gene might be prone to pleiotropy due to association

with other lipoproteins or risk factors for CVD, some

MRT studies have used single nucleotide polymor-

phisms (SNPs) in APOB to evaluate CVD risk.

Kathiresan et al. evaluated the role of LDL-C and

HDL-C in CVD through common SNPs in nine

genes.117 APOB SNP rs693 was shown to be individu-

ally associated with LDL-C concentrations in 5287

subjects of the cardiovascular cohort of the Malmo€
Diet and Cancer Study. Subsequently, a panel of nine

SNPs from nine genes, including APOB rs693 could be

associated with incident CVD, providing evidence for

the causal association of LDL-C concentrations with

CVD. In a similar approach, APOB rs562338 was

included in a multi-SNP panel to assess the relation

between LDL-C and CVD risk.118

Besides the MRTs, there is evidence for the role of

apoB from observational studies towards inherited

forms of CVD. Individuals with a loss-of-function

mutation in the apoB gene typically have familial

hypercholesterolemia (FH), which is characterized by

substantially elevated concentrations of LDL-C and

early-onset CVD, specifically CAD (e.g. Pang

et al.119), further validating the causative role for

apoB in CVD.

ApoCII

The second most frequently reported cause of chylomi-

cronaemia, often resulting in severe pancreatitis, is the

presence of homogeneous APOC2 loss-of-function

mutations.120 Indeed, several case reports indicate chy-

lomicronaemia and decreased concentrations of

apoCII in individuals with APOC2 loss-of-function

mutations.121–125 However, so far, these numbers are

too small for full observational studies, and MRTs

have not yet been conducted. In 38 patients with very

premature STEMI, 4 patients with low apoCII concen-

trations (�5.0mg/L) had worse reinfarction-free or

revascularization-free survival than those with apoCII
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>5.0 mg/L during follow-up of 10 years (Figure 5(a)

and (b)).126 These findings point towards a role for

apoCII in CVD, and might warrant further evaluation

of the role of apoCII in an MRT.

ApoCIII

There is a long-lasting debate on whether or not TG

concentrations are a risk factor for CHD, and several

studies indicated that TG concentrations are associated

with CHD. However, adjusting for confounding varia-

bles (e.g., DM) weakened these associations. Because

apoCIII is one of the major constituents of TRLs,

MRT studies were performed to further evaluate the

relationship between TG concentrations and CHD risk.
In one study, four rare apoCIII variants were iden-

tified to be associated with lower TG concentrations:

nonsense mutation R19X, two splice-site mutations

(IVS2þ 1G!A and IVS3þ 1G!T) and a missense

mutation A43T. Carriers of these mutations had 39%

decreased TG concentrations and circulating concen-

trations of apoCIII were 46% lower. When these muta-

tions were subsequently tested in 110,097 individuals

from several studies, carriers had a 40% reduction in

CHD.127 In a similar study, three apoCIII variants

could be associated with a 44% reduction in TG con-

centrations. In a Danish cohort of 75,725 individuals, it

was subsequently observed that carriers of these var-

iants had a 41% reduction in CHD.128 These studies

clearly indicate that reduction of apoCIII reduces CHD

risk. However, whether this reduction in CHD is TG

mediated is unsure, as reduced concentrations of

apoCIII have also been associated with lower concen-

trations of LDL-C.129

Further evidence for the role of apoCIII as a risk

factor for CHD can be found in a study which found

that about 5% of the Lancaster Amish are heterozy-

gous carriers of an APOC3 null mutation (R19X).

Lower TG and LDL-C concentrations were observed

in mutation carriers and the incidence of subclinical

atherosclerosis was decreased, indicating a cardiopro-

tective effect of apoCIII deficiency.130 The same muta-

tion has subsequently been found to be enriched in an

isolated Greek population, in which it could be associ-

ated with reduced TG concentrations.131,132

Apo(a)

Apo(a) is the characteristic polymorphic protein car-

ried by Lp(a) particles, and evidence for the role of

Lp(a) as a risk factor for CVD has recently been

reviewed.45 A number of observational studies have

clearly identified Lp(a) concentration to be associated

with CVD incidence,102,133,134 indicating a potential

causal role for Lp(a). In a meta-analysis in which 36

studies with 7385 cases and 8514 controls were includ-

ed, small apo(a) isoforms (approximately 22 or fewer

KIV2 repeats) were shown to be associated with a two-

fold increased risk for CVD when compared to larger

apo(a) isoforms.135

To further assess the role of Lp(a) particles in CVD

risk, MRTs have been performed (e.g. 133,136–138), and

results were recently reviewed.45 Here the most impor-

tant, and novel findings are summarized. In 2009, LPA

SNPs rs10455872 and rs3798220 were shown to be

associated with Lp(a) concentration. These same

SNPs were subsequently shown to also be associated

with CVD risk,136 thus directly indicating a causal

effect for apo(a) concentration on CVD. These results

were corroborated by Kamstrup et al.133 Recently, the

Mendelian randomization strategy was also used to

estimate the required change in plasma Lp(a) concen-

tration that should therapeutically be reached to pro-

duce a clinically meaningful reduction in CVD risk.138

A panel of 43 genetic variants, which explained 51–

63% of the variance in Lp(a) concentration, was used

to predict Lp(a) concentration, and it was modelled

that each 100 mg/L lower Lp(a) was associated with

a 5.8% lower CVD risk. By comparing the risk reduc-

tion with the same parameter for LDL-C risk reduc-

tion, it could be inferred that an 1 g/L reduction in apo

(a) concentrations would provide a similar reduction

in CVD risk as a 1 mmol/L reduction in LDL-C con-

centrations, which is generally regarded clinically

meaningful.138

There is an inverse relation between apo(a) concen-

tration and the number of apo(a) KIV2 repeats.

However, there is large interindividual variation in

this correlation,45 which is indicated by a study that

showed that the size variation of apo(a) could explain

17% of the apo(a) concentration in Sudanese, but 77%

in Mexicans.139 Because of this correlation, it has long

been unclear whether just Lp(a) concentration, or also

apo(a) KIV2 number influences CVD risk. To address

this question, Salaheen et al. performed an MRT by

identifying genetic variants associated independently

with either apo(a) KIV2 number (rs2457564) or apo

(a) concentration (rs3777392) in the Pakistan Risk of

Myocardial Infarction Study (PROMIS).140 Genetic

data from 60,801 CHD cases and 123,504 controls

from the CARDIoGRAMplusC4D consortium

revealed that the OR for MI was 0.96 per 1SD incre-

ment of apo(a) KIV2 number, while an OR of 1.27 was

observed per 1SD increment of apo(a) concentration.

Because the SNPs were chosen to be specific for their

apo(a) characteristic, it could be concluded that both

apo(a) KIV2 numbers as well as apo(a) concentration

are independent causal risk factors for CVD.140
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ApoE

In a study evaluating the effect of long-term exposure

to lower LDL-C concentrations on the risk of CVD,

nine SNPs in six genes, among which APOE rs4420638,

were studied.141 The APOE SNP was shown to be asso-

ciated with reduced LDL-C concentrations in a meta-

analysis involving 126,788 samples. In a subsequent

meta-analysis, these nine SNPs, including APOE

rs4420638 were associated with a decreased risk of

CHD. The correlation of proportional CHD risk

reduction and lower LDL-C revealed 18% CHD risk

reduction per 0.25 mmol/L lower LDL-C (�72% lower

risk per mmol/L lower LDL-C).141 In a meta-analysis

of 26 statin trials, treatment with a statin was associat-

ed with a 24% reduction of CHD risk per mmol/L

reduction of LDL-C. Thus, compared with treatment

with a statin later in life, prolonged exposure to lower

LDL-C beginning early in life was associated with a

two- to three-fold greater reduction in the risk of

CHD for each unit lower LDL-C (Figure 3).129,141

This was further corroborated by Kathiresan et al.,

who monitored the same APOE rs4420638 SNP to

study the relation between LDL-C and CVD risk in

the Malmo€Diet and Cancer Study.117

ApoE has three common alleles encoded by the

APOE gene. These alleles occur at different frequencies

in humans (e2, 5–10%; e3, 65–70%; and e4, 15–20%)

and give rise to three homozygous (apoE2/2, apoE3/3,

and apoE4/4) and three heterozygous (apoE3/2,

apoE4/2, and apoE4/3) phenotypes.142 The structural

basis for the three isoforms occurs through amino acid

interchanges (single base changes in the apoE gene) at

residues 112 and 158: apoE2 has cysteine at both sites,

apoE4 has arginine at both sites, and apoE3 has cyste-
ine (Cys)-112 and arginine (Arg)-158.143 The hypothe-
sis that the APO e2/3/4 genotype affects plasma Lp(a)
concentration was tested by Kritharides et al.144 They
found that the APOE e2 genotype is a strong determi-
nant of low Lp(a) concentrations, but the APOE e2
genotype does not modify the causal association of
Lp(a) with MI or CAVD.144

ApoA1

Haase et al. sequenced the regulatory and coding
regions of APOA1 in 190 individuals from the
Copenhagen City Heart Study with the lowest 1%
(n¼ 95) and highest 1% (n¼ 95) apoA-I concentra-
tions.145 Genotype combinations of two SNPs were
associated with increases in apoA-I and HDL-C con-
centrations of up to 6.6 and 8.5%, respectively.
Although these genotypes would theoretically predict
reductions in 9 and 8% for CHD risk and 14 and 12%
for MI risk, these genetic variations of APOA1 did not
associate with decreased risk of CHD or MI in daily
practice. The authors suggest that the atheroprotective
effects of high concentrations of apoA-1 and HDL-C in
epidemiological studies may not be due to the apoA-I
and HDL-C elevations itself, but may be caused by the
concomitant reduction in TG concentrations and thus
by the concomitant reduction in atherogenic remnant
lipoproteins.145

ApoA-IV

ApoA-IV has been observed to be associated with lipid
concentrations, renal function, and adiposity- and
diabetes-related parameters. Mack et al. conducted
bidirectional Mendelian randomization analysis to
assess the causal relationship of apoA-IV with these
phenotypes.146 These causal relationships were found
with estimated glomerular filtration rate, and serum
TG concentration, independently from HDL-C and
LDL-C concentrations. Evaluating the inverse direc-
tion of causality revealed a possible causal association
of apoA-IV on HDL-C.46

ApoA-V

The Triglyceride Coronary Disease Genetics
Consortium and Emerging Risk Factor Collaboration
assessed the �1131T>C (rs662799) promoter polymor-
phism of the apoA-V (APOA5) gene in relation to TG
concentration, several other risk factors, and risk of
CHD.147 �1131T>C was modestly associated with
lower HDL-C, lower apoA-I, and higher apoB, and
strongly associated with elevated TG. The OR for
CHD was 1.18 (95% CI 1.11–1.26; p¼ 2.6� 10�7)
per C allele. �1131T>C was significantly associated

Figure 3. Overview of the relation between reduction in LDL-
C and reduction in CVD in genetics and intervention studies. A
lifetime reduction of LDL-C by genetic traits (studies indicated by
the green dots, mutations indicated) reduces the risk of CVD
two to three times more than pharmacological reduction of
LDL-C by statin therapy during an average of five years (studies
indicated by the blue dots).
Source: reproduced with permission from Elsevier.129
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with higher VLDL particle number and smaller HDL
particle size, factors believed to mediate the effects
of TG.147

In an evaluation of the contributions of rare muta-
tions to MI risk in the population, Do et al. sequenced
the protein-coded regions of 9793 genomes from

patients with MI at an early age (�50 years in males
and �60 years in females) along with MI-free con-
trols.148 Carriers of rare APOA5 mutations (1.4 of
cases vs. 0.6% of controls) were at 2.2-fold increased
risk of MI. APOA5 mutation carriers had higher
plasma TG, which suggested that elevated concentra-
tions of TRLs contribute to MI risk.148

Apolipoprotein profiles and

cardiovascular risk: Evidence

from outcome based studies

Besides evidence for the role of apos in CVD from
genetics studies, there is now also ample literature

describing associations between protein concentrations
and CVD outcome. Initially, these studies were per-
formed using immunoassays, but recently studies
using MS have emerged.149 Specifically, several studies
have attempted to improve current LDL-C measure-
ments by targeting apoB100, the major apo of LDL.

In a large cohort study of 175,553 individuals Walldius
et al. reported that the relative risk (RR) of MI per 1SD
increment of LDL-C was substantially reduced after
additional adjustment for apoB100; in contrast,
apoB100 was still associated with substantial risk
when adjusted for LDL-C, indicating that the risk of
atherosclerotic disease is best predicted by apoB100,

instead of LDL-C and non-HDL-C.150 Pischon et al.
found that apoB was more strongly related to CHD
risk than was non-HDL-C. This is in line with previous
studies showing that apoB100 is superior to non-HDL-
C in predicting subclinical atherosclerosis. Based on the
now disputed assumption that each LDL particle con-

tains one apoB100 molecule, these findings led Pischon
et al. to state that ‘direct measurement of the concentra-
tion of atherogenic particles is more biologically mean-
ingful than the measurement of the cholesterol
concentration contained in these particles’.151 In a
meta-analysis based on 12 published epidemiological
studies that contained estimates of the relative risks

of non-HDL-C and apoB for CVD, it was concluded
that over a 10-year period, a non-HDL-C strategy
would prevent 300,000 more events than an LDL-C
strategy, whereas an apoB100 strategy would prevent
500,000 more events than a non-HDL-C strategy.152

These findings indicate that apoB100 is superior to

LDL-C and non-HDL-C as a predictor of CVD risk.
These results are consistent with CHD risk being more

closely related to the number of atherogenic apoB100
particles than to the mass of cholesterol within them, as
previously stated (Figure 4).47

The risk of CVD is inversely proportional to HDL-
C and apoA-I concentrations, but this seems to be
mostly relative to LDL-C.153 Therefore, quantitation
of apoA-I may be most useful in conjunction with
apoB100 to assess the balance between atherogenic
and atheroprotective cholesterol transport. A higher
apoB100/apoA-I ratio likely indicates that more ath-
erogenic particles are circulating in plasma leading to
more plaque build-up in arteries, atherosclerosis and
higher risk of CVD events.154 Compared to other
lipid ratios, the apoB100/apoA-1 ratio may be more
accurate in risk prediction, particularly among high-
risk individuals, than high LDL-C and low HDL-C
concentrations.155 Concordantly, we reported recently
that the apoB/apoA-1 ratio was strongly associated
with risk of ST-segment elevation myocardial infarc-
tion (STEMI) (Figure 5(c)).156

While apoB100 is mostly associated with LDL par-
ticles, and apoA-I partially reflects HDL-C, the situa-
tion for apos associated with TRLs is more
complicated. For instance, in normolipidaemic sub-
jects, apoCII is mainly distributed in HDL, whereas
in subjects with HTG, apoCII is predominantly
found in the VLDL and LDL. TG concentrations are
generally inversely related to HDL-C, and for a long
time, it was assumed that the measurement of HDL-C
enabled calculation of CVD risk. However, there is
now ample evidence from genetic studies (Genetic evi-
dence for the role of apolipoproteins in CVD Section)
that not low HDL-C, but high concentrations of TRLs
are a causal factor for CVD.106 Therefore, interest in
TRLs and TRL-associated apos, such as CI, CII, CIII
and E,49 as markers for CVD risk has surged.

In 2002, Gerber et al. reported that increased
apoCII concentrations are associated with CHD after
adjustment for cardiovascular risk factors in a case–
control study including 352 CHD patients and 395 con-
trols.157 This evidence supports an association between
apoCII and CVD risk, but causality between apoCII
concentrations and CVD was not established.66

Interestingly, we recently identified a phenotype of rel-
atively young women with a combination of very low
apoCII (�5mg/L), normal TG concentrations, and low
concentrations of LDL-C, apoB100, and apoE who
presented with STEMI. Despite their low a priori risk
for CAD, these women presented with MI and had a
high relative risk of 10-year reinfarction or revascular-
ization.126 These finding further point towards a role
for apoCII in CVD.

In a nested case–control study in the prospective
EPIC-Norfolk study comprising 2711 apparently
healthy study participants, of whom 832 subsequently
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Figure 5. (a) ApoCII concentration in 38 patients with very premature STEMI. (b) In this group of patients with very premature
CAD, 4 patients with apoCII �5 mg/L had a high risk of reinfarction or revascularization over ten years compared to those with
apoCII >5 mg/L. (c) In the MISSION Intervention Study the serum concentrations of apoA1, apoB and the apoB/apoA1 ratio were
strongly associated with risk of STEMI.
Source: reproduced with permission from Elsevier126 and SpringerNature.156

Figure 4. Relative LDL particle size and plasma lipids/lipoprotein concentrations in three patients with identical low LDL-C (1.8
mmol/L) but with discordant non-HDL-C and apoB with regard to desirable treatment targets for very high-risk patients. Patient 1 has
all three targets at goal and normal numbers of (predominantly larger sized) LDL particles. Patient 2 with moderate HTG has
discordant non-HDL-C above target (2.6 mmol/L) because of increased remnant-cholesterol. Patient 3 also has moderate HTG and
increased remnant-cholesterol but concurrently higher apoB concentration than patient 2 because of a high number of sdLDL
particles not detected by standard LDL-C measurement.
Source: reproduced with permission from American Association for Clinical Chemistry.46

348 Annals of Clinical Biochemistry 56(3)



developed CAD, Van Capelleveen et al. demonstrated
that increased apoCIII concentrations were significant-
ly associated with incidence of CAD.158 The signifi-
cance was retained after adjustment for traditional
CAD risk factors, but it was proposed that elevated
concentrations of remnant lipoproteins, sdLDL and
low-grade inflammation could explain the association
with CAD.158

Recently, Pechlaner et al.149 used a targeted MS-
based method to evaluate the association between
apoA-I, apoA-II, apoA-IV, apoB100, apoCI, apoCII,
apoCIII, apoD, apoE, apoH, apoL-I, apoM and apoJ
with incident CVD in 688 participants of the Bruneck
Study. During 10 years follow-up, the apos that were
most significantly associated with incident CVD were
apoCII (hazard ratio (HR) per 1 SD: 1.40; 95% CI,
1.17–1.67), apoCIII (HR per 1 SD: 1.38; 95%
CI, 1.17–1.63), and apoE (HR per 1 SD: 1.31; 95%
CI, 1.13–1.52). These associations remained significant
even after adjustment for traditional risk factors, and
demonstrate the advantage of using apos to identify
dyslipidaemic states, particularly related to TRLs.149

Further evidence for the direct role of apoCIII in the
development of CVD comes from the novel anti-
APOCIII ASO therapy with volanesorsen. ApoCIII
inhibition by volanesorsen reduced plasma concentra-
tions of apoCII, apoCIII, and TG, without affecting
concentrations of apoB100.149,159,160 Whether targeting
of apoCIII in patients with elevated concentrations of
TRLs will reduce risk of CVD is subject of ongoing
studies, but a recent report on the use of volanesorsen
in individuals with familial chylomicronaemia syn-
drome, a rare genetic disorder characterized by
marked chylomicronaemia leading to pancreatitis, indi-
cated a significant reduction in disease burden.161

There is very limited evidence for a direct causal role
of apo(a) in CVD, mostly because direct measurement
of apo(a) is not performed routinely. However, a 1:1
stoichiometry of apo(a) on Lp(a) particles is assumed,
and a large body of evidence exists for the association
between Lp(a) concentrations and the risk for CAD,
regardless of other risk factors. For example Kostner
et al.162 have estimated that CAD risk is 2.3 times
higher in patients with Lp(a) concentrations
>500mg/L, while Riches and Porter have calculated
that risk was twice greater for Lp(a) concentrations
>200mg/L.163 In a meta-analysis of 40 prospective
studies with 58,000 participants, a two-fold increase
in the risk for developing CAD and cerebral vascular
accident was found in individuals with smaller apo(a)
isoforms, regardless of the Lp(a) concentration and the
classical risk factors.135

Recently, an anti-APOA ASO (IONIS-APO(a)-
LRx) therapy has been developed. On treatment, Lp
(a) concentrations fell by an average of 68%.164

Studies further evaluating the efficacy for this therapy

in lowering CVD incidence are currently ongoing.
Chronic lipoprotein apheresis is an alternative treat-

ment that was previously developed, and 154 subjects

with isolated Lp(a)-hyperlipoproteinaemia with pro-
gressive CVD who underwent apheresis showed

reduced Lp(a) concentrations by 68%, associated

with a decline of major adverse cardiac events by
78% after five years.165

Embedding apolipoprotein profiling

in cardiovascular precision

clinical care pathways

Conventional clinical care pathway

Currently, the standard procedure for patients that pre-

sent with symptoms of CVD is to monitor the patient’s

lipid profile by determining the concentrations of total
cholesterol, TG, and HDL-C, followed by calculation

of LDL-C using Friedewald’s formula.166 Several risk

assessment systems have been developed, among which
the widely applied Systemic Coronary Risk Estimation

(SCORE),167 which is recommended by the European

Guidelines on CVD prevention in clinical practice,168

because it is based on large European cohort datasets.
Quantities of total cholesterol, TG, HDL-C and

LDL-C allow us to calculate (1) non-HDL-C (¼total

cholesterol – HDL-C) which quantity includes the cho-

lesterol of all atherogenic lipoproteins (VLDL, IDL,
LDL, CM, CM-remnants and Lp(a)) and (2)

remnant-C (¼total cholesterol – HDL-C – LDL-C)

which quantity includes the cholesterol of all lipopro-
teins except LDL and HDL. Non-HDL-C is a global

measure of all atherogenic lipoproteins and has been

suggested as a predictor of CHD risk. LDL-C, a major
component of non-HDL-C, is the current target to be

treated and this is achieved with statins, ezetimibe and

PCSK9 inhibitors. Remnant-C is included in non-
HDL-C but has merit in being measured separately:

these remnants, mostly TG-rich remnant lipoproteins

(in the non-fasting state CM-remnants and IDL) con-
tribute also to risk of CHD.46

Several studies confirm that non-HDL-C is superior

to LDL-C in predicting CHD.151,169 In a prospective
study participants with high non-HDL-C concentra-

tions were at increased CHD risk, independent of

LDL-C concentrations.170 An analysis of the treating
to new targets (TNT) and Incremental Decrease in End

Points Through Aggressive Lipid Lowering (IDEAL)

trials found that on-treatment, concentrations of non-
HDL-C and apoB100 were better predictors of CVD

risk than LDL-C.171 Puri et al. reported that the

achieved concentrations of on-treatment non-HDL-C
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and TG concentrations were closely associated with

coronary atheroma progression and regression, irre-

spective of achieved concentrations of LDL-C, CRP

and DM status.172

While the current clinical care pathway does indeed

improve cardiovascular risk, considerable residual risk

remains, particularly in women and individuals with

remnant lipoprotein particles.

Proposed cardiovascular precision care pathway

The use of novel markers to improve cardiovascular

risk stratification as well as newly developed therapeu-

tics targeting apoCIII and apo(a), pose a challenge for

laboratory professionals. The use of novel markers

based on improved understanding of pathophysiology

would also help target therapy. Based on our current

understanding of lipoprotein pathophysiology and the

knowledge acquired from MRT-studies and protein-

based outcome studies, we suggest that a multiplexed

panel including apoA-I, apoB, apoCI, apoCII,

apoCIII, apoE and apo(a) might allow improved risk

stratification (see Figure 6 for a proposed clinical care

pathway). Currently, a Consensus Conference Report

from the American Diabetes Association and the

American College of Cardiology suggested that mea-

surement of apoB100 be added to measures of LDL-C

and non-HDL-C in patients at high cardiometabolic

risk, with target apoB100 concentrations set at <900

mg/L in high risk patients and <800 mg/L in highest

risk patients.154 Moreover, two studies have reported

that quantitation of Lp(a) in intermediate risk patients

could potentially reclassify 15 to 40% of individuals
into a lower or higher risk groups.134,173 It is highly
likely that similar results will be obtained using apo
(a). Guidelines from the European Atherosclerosis
Society1 and the Canadian Cardiovascular Society38

recommend screening for apo(a) in patients with a
family history of CVD in addition to quantitation of
apoB100. While these guidelines originating from 2016
do not mention apoCs, we believe the very recent com-
pelling evidence for the role of apoCs in CVD both at
the genetic and protein concentration106,174 (sections
on Genetic and Proteomic evidence for the role of apo-
lipoproteins in CVD) warrants their inclusion in risk
stratification.

Another group of patients that might benefit from a
multiplexed apo panel in conjunction with convention-
al lipid measurements are individuals with a family
history of CVD. For instance, individuals with FH typ-
ically suffer their first CVD event prior to the age
of 50.175 Given that apo concentrations are mainly
genetically defined (Figure 6) there may be a role
for apo measurement in screening family members of
young CVD patients as a first line strategy prior to
genotyping. Therefore, it is likely that measurement
of an apo panel in a single serum sample might
be sufficient to characterize a particular familial
dyslipidaemia. Indeed, recently the intra-individual
variability of serum apo(a) concentrations was shown
to be low.176

While there is substantial evidence that apos may be
better predictors for CVD, there is as yet insufficient
evidence from prospective outcome studies on the use

Figure 6. Clinical test-treatment pathways for CVD reduction according to current and new practices.
Source: reproduced with permission from Elsevier.7
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of multiplexed apo panel as compared with a conven-
tional lipoprotein panel. Therefore, we would currently
propose the use of an apo multiplex panel as an add-on
test, even though this will carry an associated addition-
al health care cost. Future studies should be directed
towards a comparison of the traditional lipoprotein
panel and a multiplexed apo panel, so that ultimately,
the apo panel could potentially replace the traditional
lipoprotein panel. Based on the evidence outlined in the
previous three sections, we believe a biology-driven
multiplexed apo panel including apoA-I, apoB100,
apoCI, apoCII, apoCIII, apoE and apo(a) will provide
better CVD risk stratification and allow for targeted
and more effective treatment (e.g., high apoCIII
could be treated directly with anti-apoCIII ASO valo-
nesorsen) than current cholesterol, TG, HDL-C and
LDL-C measurement (Figure 6).

Inclusion of such a multiplexed apo panel in the
clinical care pathway would be feasible from a techno-
logical perspective, as we previously developed an MS-
based test that allows for the simultaneous quantitation
of apos,31 and were recently able to show that this test
can be delivered with stable analytical performance
over a long period of time.36 The volume of serum
required for the test is only 25 mL. Although the current
turnaround time of 48 hours to perform the multi-
plexed apo panel is considerably slower than that of
the traditional lipid panel, this must be offset against
the possibility of more accurate risk assessment.

Conclusions and future outlook

The delivery of healthcare to the highest standard with-
out a further increase in cost, requires that clinical
practice should become more efficient. The current
clinical care pathway for cardiovascular risk assess-
ment is unsatisfactory, in that there remains consider-
able unexplained residual risk, even if LDL-C targets
are met. It is time for a paradigm shift from traditional
reactive medicine, often based on statin therapy, to
proactive ‘P4 medicine’ in which disease mechanisms
and systems biology allow for a targeted and patient-
centric approach.5,6 We believe that the use of a multi-
plexed apo panel will allow better characterization of a
patient’s dyslipidaemic status than that given by the
traditional lipid profile (total cholesterol, TG, HDL-
C, and calculated LDL-C). Apo profiling can be
performed using an MS-based strategy, since the
requirements for applying clinical proteomics, includ-
ing apo profiling, in medical laboratories can be met
using low resolution MS with applications that fulfil
desirable performance criteria and that are standard-
ized according to the calibration hierarchies outlined in
ISO 17511. Because the apo profiles provide insight in
the pathophysiology of the dyslipidaemia, it will

facilitate the refining of therapeutic targets and

will allow the use of more targeted therapies such as

ASOs which may help reduce residual cardiovascular

risk. In the near future it should be possible to

demonstrate that apo profiling should be clinically

effective and cost effective, and can be run with ade-

quate throughput.
Further developments in risk stratification and tai-

loring of therapy may emerge in the near future. It is

now clear that one gene can present itself in multiple

proteoforms due to genetic modifications, alternative

splicing and post-translational modifications.177

Because different proteoforms are likely to have dif-

ferent functionality, quantitation of proteoforms

might be of importance, specifically in light of preci-

sion medicine and targeted therapeutics.178

Proteoforms have been found for several apos.

Specifically, differential O-glycosylation of apoCIII

was initially observed using isoelectric focusing,179

and, more recently, using intact protein MS analy-

sis.180 Concentrations of sialylation on apoCIII are

associated with lipid profiles in DM2,181 and lower

concentrations of non- and mono-sialylated apoCIII

were associated with larger LDL particles after die-

tary interventions.182 Proteoforms of apos CI and CII

have also been reported,183 and an in-depth analysis

of apoA-1 recently revealed large

proteoform heterogeneity.184 Currently the clinical

relevance of the proteoforms of apos for CVD are

unknown, and more research is warranted. MS is an

excellent technique for the in-depth characterization

of an individual’s proteoform-profile,178,185 as mass-

based differences either at the intact protein or at the

peptide concentration can easily be identified.

Specifically the introduction of high resolution MS-

instruments, which can provide accurate mass infor-

mation at resolutions >60,000, would be beneficial

for the analysis of proteoforms.186 We believe that

in the future, proteoform specific analysis in an

extended apo-form panel might provide additional

benefits, but such analyses are far from clinical imple-

mentation and require further technical development

before clinical evaluation could be considered.
Overall, we believe that implementation of a multi-

plex apo panel for refined diagnosis of CVD would

fit the unmet clinical need for enhancing stratified car-

diovascular medicine. There is compelling evidence as

outlined in this review, that the use of a biology-driven

apo panel fits the concept of precision medicine, with

potential benefit for patients and society. A carefully

selected and biology-derived apo panel will likely

enable tailored treatment of individual patients rather

than standard treatment of average patients.
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