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Dissolved organic matter (DOM) is a universal part of all aquatic systems that largely orig-
inates with the decay of plant and animal tissue. Its polyelectrolytic and heterogeneous
characters make it an effective metal-complexing agent with highly diverse characteristics.
Microbes utilize DOM as a source of nutrients and energy and their enzymatic activity
may change its composition, thereby altering the bioavailability and toxicity of metals.
This study investigated the impacts of microbial inoculation upon the optical and copper-
binding properties of freshly produced leaf-litter leachate over 168 h. Copper speciation was
measured using voltammetry, and using fluorescence quenching analysis of independent
fluorophores determined using parallel factor analysis (PARAFAC).Two protein/polyphenol-
like and two fulvic/humic-like components were detected. Thirty-five percent of total
protein/polyphenol-like fluorescence was removed after 168-h of exposure to riverine
microbes.The microbial humic-like and tryptophan-like PARAFAC components retained sig-
nificantly different log K values after 168 h of incubation (p < 0.05), while their complexing
capacities were similar. Using voltammetry, a sixfold increase in copper-complexing capac-
ity (CC, from 130 to 770 μmol Cu g C−1) was observed over the exposure period, while the
conditional binding constant (log K ) decreased from 7.2 to 5.8. Overall binding parameters
determined using voltammetry and fluorescence quenching were in agreement. However,
the electrochemically based binding strength was significantly greater than that exhibited
by any of the PARAFAC components, which may be due to the impact of non-fluorescent
DOM, or differences in the concentration ranges of metals analyzed (i.e., different analyt-
ical windows). It was concluded that the microbial metabolization of maple leaf leachate
has a significant impact upon DOM composition and its copper-binding characteristics.

Keywords: biodegradation, metal binding, dissolved organic matter, dissolved organic carbon, voltammetry, parallel

factor analysis, fluorescence quenching, copper

INTRODUCTION
Dissolved organic matter (DOM) is a ubiquitous, complex, and
polymorphous mixture of molecules that originates chiefly from
the degradation of plant and animal matter. At the point of pro-
duction, this molecular soup includes proteins, carbohydrates,
polyphenols, and other vital compounds, many of which are
quickly metabolized by microbes (Sutton and Sposito, 2005).
Selective microbial metabolization of labile DOM components
changes its overall chemical character (Fellman et al., 2008), which
may affect its reactivity and environmental functioning. In partic-
ular, since DOM controls the mobility, speciation, and therefore
toxicity of metals (Guéguen and Dominik, 2003; Nogueira et al.,
2009), microbial processing may alter metal-binding properties,
and thereby change the level of toxicity.

Leaf litter is a readily available source of DOM, has an impor-
tant impact throughout freshwater systems, and serves as a key
source of nutrients and energy for microorganisms (Tank et al.,
2010). Given its abundance, importance, and the ease and repro-
ducibility of leaching DOM from leaf litter, it is an excellent

candidate for studying microbially mediated changes in the metal-
binding characteristics of DOM. Copper, an essential metal that
can also be toxic at higher concentrations, has been widely
employed as a representative for metal behavior with respect to
DOM-binding properties (Ružic, 1982; Ryan and Weber, 1982;
Perdue and Lytle, 1983; Tipping, 1998; Manceau and Matynia,
2010).

Anodic stripping voltammetry (ASV) is a very sensitive method
for determining the key metal-binding parameters involved in
copper-DOM speciation, such as the conditional equilibrium con-
stant or binding strength (log K ), and metal-complexing capacity
(CC), which may be derived from the equilibrium relationship
between bound and unbound sites:

K = [ML]

[M] · [L]
(1)

where [M] and [L] are the concentrations of free copper and lig-
and, respectively, and [ML] is the concentration of bound ligand.
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CC and K may be obtained from the linearized titration curve
(Ružic, 1982; Durán and Nieto, 2011):

[M]

[M]Total − [M]
= M + 1

K

CC
(2)

Fluorescence spectroscopy permits the three-dimensional
mapping of the DOM complex into excitation–emission matri-
ces (EEMs), revealing multiple fluorophore groups that are related
to specific classes of molecules, and therefore potentially cor-
respond to different binding sites (Ohno and Bro, 2006). Leaf
leachate is highly fluorescent in regions related to proteins and
polyphenols, and this fluorescence is quenched during the elec-
trostatic interaction involved in metal binding (Ryan and Weber,
1982). Thus, the metal-binding characteristics determined using
ASV and the single-site model (1:1 metal:DOM stoichiome-
try; Ružic, 1982) may also be determined for distinct fluo-
rescent sites. Further, the proportion of fluorescence that is
quenched by binding (% f) at each site may be determined,
which may differ according to site properties. Parallel factor
analysis (PARAFAC; Stedmon et al., 2003) of EEMs resolves fluo-
rophore groups into statistically independent components, so that
binding-site identification is more precise (Yamashita and Jaffé,
2008). Site-specific binding information also facilitates the incor-
poration of competition for metals among binding sites (Smith
and Kramer, 1998), which is a likely occurrence in the complex
mixture of molecules in leaf-litter leachate. Hence, fluorescence
quenching using PARAFAC extracts site-specific metal-binding
characteristics, and increases the information yield obtained by
ASV.

In this study, fresh DOM was leached from leaf litter, inoculated
with microbes, and analyzed for its optical and copper-binding
properties over the course of 7 days of incubation using ASV and
fluorescence quenching with PARAFAC. The unique combination
of quenching with EEM–PARAFAC and ASV conducted under
similar matrix conditions (i.e., pH and ionic strength) exploits
the strength of both methods, permitting deeper insight into the
metal-binding characteristics of DOM. This approach provides
unprecedented information about the metal-binding properties
of fluorescing DOM, as well as the bulk DOM leached directly
from leaves.

MATERIALS AND METHODS
INITIAL SAMPLING/STORAGE
Leaf litter
Sugar maple (Acer saccharum) leaves were sampled from trees
on the Trent University campus (Latitude 44.36˚N, Longitude
78.29˚W) in Peterborough, Ontario. Tree species identity was con-
firmed by a federally certified expert (Andrew McDonough, Trent
University). Samples were taken on August 26th, 2011 by shaking
the lower branches of two mature (∼70′′ height) trees and gather-
ing freshly fallen litter, and by collecting litter dislodged by wind.
Litter was air-dried, frozen, and prepared following the procedure
used previously.

Microbial inocula
Naturally occurring microbes were collected from the Oton-
abee River (Peterborough, ON, Canada) using a pre-combusted,

acid-washed, 500-mL amber-glass bottle. The sample was imme-
diately transported to the laboratory, filtered through a 5-μm
nitrocellulose filter (Millipore), and separated into 10.0-mL por-
tions. Microbes used in experiment LL1 were stored overnight in
the refrigerator (≤5˚C), while the inoculum for LL2 was frozen
to minimize adaptive disruptions to community structure over
the longer storage period (≤−5˚C; Koponen et al., 2006) in 15-
mL acid-washed polypropylene centrifuge tubes. The latter was
moved to the refrigerator 7 days prior to use to allow a return to
normal levels of respiration (Feng et al., 2007).

LEACHING, INOCULATION, SAMPLING, AND FLUORESCENCE
Leaching and organic carbon
Litter was leached by placing whole leaves in a 250-mL
Pyrex beaker and filling with 200 mL milli-Q water (MQW,
≤18 MΩ cm−1; Millipore). Two leaching experiments were con-
ducted (LL1 and LL2), using 10 and 7 leaves (5.2 and 3.7 g
wet weight, respectively). Leaf cleaning and leachate consistency
were achieved by decanting the leachate and refreshing it with
fresh MQW after 1 and 3 h of leaching, and using the com-
plete volume from the 5-h leachates for the experiment. Five-
hour leachates were consecutively filtered through Millipore pre-
combusted glass-fiber (0.7 μm) and nitrocellulose (0.22 μm) fil-
ters that were pre-rinsed with MQW and leachate (respectively)
to remove loose fibers and minimize the introduction of nitrogen.
Prior to adding microbes directly to the leachate in a 250-mL Pyrex
beaker, samples were adjusted to pH 7 using NaOH (Sigma).

Since leaching and initial biodegradation in Southern Ontario
take place mainly in the late fall and early spring when temper-
atures oscillate between −5 and 10˚C, the leaching, storage, and
inoculation conditions were completed at 5˚C to reflect natural
spring and autumn conditions in southern Ontario. Similarly,
freezing constitutes a normal stress upon the structure of the
microbial community (Koponen et al., 2006).

Inoculation and sampling
Immediately after inoculation, a sample (B0) was taken to eval-
uate the immediate effects of microbial addition. The inoculated
leachate was then stored in the dark at 5˚C. Samples (Bi) were taken
from the active leachate at i = 24, 48, 96, and 168 h after inocu-
lation. In experiment LL1, additional dissolved organic carbon
(DOC) analyses were conducted after 2.5 and 4 h, and a control
sample (i.e., non-inoculated leachate) was stored at 5˚C in a pre-
combusted, amber-glass vial for the duration of the experiment.
Biological controls (i.e., NaN3) were not added to the control, as
they have been found to affect optical properties and cause unde-
sirable reactions (Scully et al., 2004). The DOC concentration of
all samples was measured using a TOC analyzer (Shimadzu TOC-
VCPH). Samples were filtered (0.22-μm nitrocellulose; Millipore)
and stored at 5˚C in pre-combusted amber-glass vials prior to
EEM, quenching, and voltammetric analyses, all of which took
place within 7 days.

Fluorescence and PARAFAC
Fluorescence was analyzed following manual injection into the
stopped-flow cell of an on-line fluorescence detector (Agilent
1200-series model G1321A). MQW was used to clean the cell
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between injections, ensured by monitoring continuous scanning
channels at excitation/emission wavelengths (Ex/Em) of 270, 300,
355, 370/460 nm. Injections of 0.01 M NaCl (pH 6) were peri-
odically analyzed between samples to convert fluorescence to
Raman units (r.u.) using the area under the Raman water peak
at Ex = 350 nm (r.u.; Lawaetz and Stedmon, 2009). Wavelengths
of the on-line fluorescence detector were calibrated daily following
the manufacturer-recommended procedure.

Excitation–emission matrices were captured in ratio (S/R)
mode by scanning over an excitation (Ex) and emission range
(Em) of 200–450 and 280–600 nm in 1 and 5 nm increments,
respectively. Fluorescence EEMs were measured for three distinct
subsamples of each leachate for each sample Bi from both LL1
and LL2, and once for each quenched sample (LL2 only). Four-
fold dilution of all leachate samples ensured that absorbance was
low enough to avoid inner filtering effects (A254 < 0.01A.U. in a
1-cm cell, Lakowicz, 2006). Blank EEMs (0.01 M NaCl; pH = 6)
were subtracted from each sample EEM to remove background
fluorescence. PARAFAC analysis was conducted after Raman nor-
malization,blank subtraction,and removal of Raman and Rayleigh
scatter lines in MATLAB R2010a using an in-house modified EEM-
Cut algorithm and the DOMFluor toolbox (Stedmon and Bro,
2008).

SPECIATION ANALYSES
Quenching
A 2.5-mM Cu2+ copper stock solution was made in 0.001 M NaCl
solution (pH 6) using hydrated cupric nitrate (Baker), and was
diluted to 0.5 mM Cu2+ on each day immediately prior to use.
Samples were diluted fourfold with 0.001 M NaCl/0.1 M MES
(pH = 6) prior to analysis to ensure that A254 < 0.01 AU. Copper
was added to 14 individual samples for each Bi from exper-
iment LL2 with final copper concentrations ranging from 2.4
to 320 μM (Figure A1 in Appendix). Quenched samples were
stored overnight at 5˚C in the dark to ensure equilibration of the
complexation reaction.

Fluorescence quenching was described using the multi-site
Ryan-Weber model following Smith and Kramer (1998, 2000).
The Ryan-Weber model derives a non-linear regression equation
from the equilibrium equation for the formation constant of the
bound metal (Ryan and Weber, 1982), assuming a single binding
site. The Smith and Kramer model accounts for multiple sites,
incorporates competition among binding sites, and assumes that
fluorescence is a linear function of metal concentration. A 95% CI
was calculated for K and CC at each binding site and sampling
time by fitting quenching curves with the maxima and minima of
the 95% CI for each point, as determined from triplicate EEMs of
each Bi (Statistica 8; StatSoft).

Voltammetry
A 0.5-mM Cu2+ stock solution was prepared by diluting cop-
per reference standard solution (1000 ppm, >99.0%; Fisher) in
0.01 M NaNO3/0.1 M MES (SigmaUltra) adjusted to pH 6.0. Sam-
ples were diluted 10-fold to <5 ppm C with 0.01 M NaNO3/0.1 M
MES (pH = 6) prior to analysis to minimize interferences caused
by the adsorption of DOM on the electrode surface. Copper was
added to 14 individual samples for each Bi from experiment LL2

with final concentrations ranging from 0.32 to 5.2 μM (Figure A2
in Appendix).

Square wave ASV analysis of copper speciation was con-
ducted on samples from LL2 using a 663 VA polarographic stand
(Metrohm) coupled to an Eco-Chemie AutoLab PGSTAT10 run-
ning in static mercury drop mode. The analytical procedure fol-
lowed Durán and Nieto (2011), with the following instrument set-
tings: accumulation potential, −1.1 V; accumulation time, 2 min.;
equilibration time, 20 s; scan range, −1.1 to 0.2 V at 25 Hz, an
amplitude of 25 mV and a 2-mV scan increment. The automatic
stirrer was set to maximum during the purging and accumulation
steps. The peak current at a potential of 0.056 V was measured for
14 metal additions along each voltammetric curve.

The conditional stability constant K and complexation capac-
ity CC were determined for each sample Bi by fitting the linear
portion of plots of free copper concentration against the ratio
of free to bound copper, and assuming single-site Langmuirian
adsorption with a 1:1 stoichiometry (Ružic, 1982; Durán and
Nieto, 2011). The SD of the voltammetric procedure was deter-
mined using three distinct subsamples of B168. The initial copper
concentration of the leachate solution was found to be negligible
(1.13 ± 0.04 ppb; ±SD) following analysis by inductively coupled
mass spectrophotometer (XSeries II, Thermo Fisher).

RESULTS
DISSOLVED ORGANIC CARBON
A twofold difference in DOC concentration was found in the 5-
h leachates between the two experiments (2.3 mg C g−1 litter−1

vs. 1.2 mg C g−1 litter−1 for LL1 and LL2, respectively; Table 1).
No significant change in DOC concentration was observed due to
the introduction of microbes in LL2 (p > 0.05). Unfortunately, no
DOC data were available for LL1 B0. Since the DOC concentra-
tion of the leachate was not significantly different from that of the
pre-inoculated sample, it is referred to as initial.

Dissolved organic carbon losses over incubation were well-
described using the recalcitrant-labile exponential decay model
(Scully et al., 2004):

[DOC] = [DOC]R + [DOC]L•e−b•t (3)

where R and L denote the recalcitrant and labile compartments of
DOC, respectively, and b is the rate of change in h−1 (Figure 1).
DOC decreased very rapidly in both experiments, showing more
than 95% of overall losses within the first 6 h. The modeled pro-
portions of labile carbon and loss rates were 37%, 0.59 h−1, and
13%, 2.6 h−1 for LL1 and LL2, respectively. Differences in the
rates of DOC loss may have been caused by freezing the microbes
prior to experiment LL2, or by differences in the concentrations
of leachates. A 20% decrease in DOC concentration (from 65.4
to 52.4 mg L−1) was observed in the control sample over 7 days of
storage in experiment LL1.

FLUORESCENCE PROPERTIES
PARAFAC
The initial PARAFAC dataset included 189 EEMs, and one outlier
was excluded during preliminary analysis (i.e., B48 + 190 μM Cu).
Since the outlier constituted only 1 of 14 titration points at the tail
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Table 1 | DOC concentrations (ppm) and PARAFAC loadings of leachate samples over 168 h of degradation by river microbes (n = 3).

Trial Initial DOC DOC after 168 h Component

(peak)

Initial loading Loading after 168 h Control loading (168 h) Initial %

loading

% Loading

after 168 h

LL1 65.4 (1.62) 38.9 (0.31) C1 (B) 0.63 (0.014) 0.40 (0.006) 0.50 (0.004) 56 47

C2 (M) 0.28 (0.008) 0.24 (0.007) 0.30 (0.007) 25 28

C3 (T) 0.15 (0.005) 0.14 (0.002) 0.18 (0.001) 13 16

C4 (C) 0.07 (0.001) 0.07 (0.002) 0.09 (0.003) 6 8

LL2 25.5 (1.73) 22.1 (0.88) C1 (B) 0.48 (0.021) 0.33 (0.006) n/a 55 49

C2 (M) 0.19 (0.002) 0.20 (0.005) n/a 22 30

C3 (T) 0.15 (0.014) 0.11 (0.005) n/a 17 16

C4 (C) 0.05 (0.003) 0.03 (0.002) n/a 6 4

SD is shown in parentheses, and significant changes are shown in bold type. Peak designations follow Coble (1996).

FIGURE 1 | Leaching curves for LL1 (•) and LL2 (◦) and the final

concentration of the leachate control sample for LL1 (�). Error bars
show 95% CIs.

of the quenching curve, it is unlikely that the results were seriously
affected.

A six-component PARAFAC model was cross-validated, which
identified four components (Figure 2) previously associated
with DOM from fresh and marine waters (Coble, 1996; Sted-
mon and Markager, 2005), and with leaf leachates (Wickland
et al., 2007; Wong and Williams, 2010). Component 1 (C1,
Ex/Em = 220, 280/320 nm) resembled tyrosine/polyphenol-like
peak B; component 2 (C2, 210, 315/430 nm) was similar to
humic/carbohydrate-like peak M; C3 (225, 275/350 nm) was
similar to tryptophan/polyphenol-like peak T; and C4 (235,
380/465 nm) resembled fulvic-like peak C. In all EEMs, the loading
of C1 was dominant.

The two additional components had sharply defined excitation
wavelengths and emission spectra that spanned all wavelengths
(Ex/Em = 205/370 and 220/320 nm), and were associated with
the nitrate added to the quenching samples (Stewart and Wet-
zel, 1980). Samples containing nitrate-related components (42%)
were removed from the data set and a second PARAFAC analy-
sis was completed. The second analysis was cross-validated for
four components, which were identical to the non-anomalous

components from the first analysis in shape, loadings, and order
of importance. Consequently, all EEMs were included in the
PARAFAC model, and the components associated with nitrate
were ignored.

Changes after inoculation
As with DOC losses over incubation (Figure 1), changes in
PARAFAC loadings were best described using the recalcitrant-
labile exponential decay model (Figure 3). In general, the load-
ings of all PARAFAC components either decreased or remained
the same after 168 h in both experiments, with the exception
of a slight increase in C2 in experiment LL2 (Table 1). How-
ever, as a proportion of overall loading only the changes to C1
and C2 were significant in LL2 (p < 0.05). The proportions of
all components were quite similar in both experiments, both
before and after inoculation. Despite high variability in DOC
losses over the two experiments, the changes in total component
loading were similar to those of DOC, with an average (±SD)
loading reduction of 23.9 ± 1.37%, and an average DOC loss of
26.9 ± 19.2%.

To assess the reproducibility of the experiment in terms
of biodegradable DOM, component loadings were partitioned
into two groups (protein/polyphenol-like and humic/fulvic-like),
which have been respectively associated with relatively labile
and recalcitrant DOM (Stedmon and Markager, 2005; Fellman
et al., 2008, 2009). The average protein/polyphenol-like load-
ing (C1 + C3) was calculated for each sample, and fit with the
recalcitrant-labile exponential model (Eq. 3; Figure 4A). The
relatively recalcitrant fraction (i.e., that remaining after incuba-
tion; Eq. 3) of the protein/polyphenol-like fluorescence consti-
tuted 64 and 66% of total protein/polyphenol-like fluorescence for
LL1 and LL2, respectively, so that the portion lost over the incu-
bation period was considered to be more labile (p < 0.0005 for
both experiments). To assess the corresponding impact on overall
DOM quality, the combined protein/polyphenol-like (C1 + C3)
and humic/fulvic-like (C2 + C4) loadings were converted to pro-
portional loadings [e.g., (C1 + C3)/ΣC1–4], and transformed
to ensure normality of the distribution (arcsin–square root;
Figure 4B). Statistically identical linear decreases in the propor-
tion of protein-like components were found for LL1 and LL2
(p > 0.05). The corresponding loss rates (i.e., slopes) and original
protein/polyphenol concentrations (i.e., intercepts) were 0.04%
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FIGURE 2 | PARAFAC components found in this study and their associated identities following Coble (1996).

FIGURE 3 | Changes in average PARAFAC component loadings [C1 (•),

C2 (�), C3 (�), and C4 (�)] over the microbial incubation period during

experiment LL2. Error bars (± SD) that are not apparent are smaller than
their respective symbols.

h−1 and 69.9%, and 0.03% h−1 and 69.0% of DOM for LL1 and
LL2, respectively (Figure 4B).

Compared to Bo, changes in the control sample mirrored those
observed over the microbial exposure period, but were decidedly
less severe. The DOC concentration and PARAFAC loadings for
components C1–4 in the control sample were 52.4 mg L−1, and
0.50 ± 0.004, 0.30 ± 0.007, 0.18 ± 0.001, and 0.09 ± 0.003, respec-
tively. These changes correspond to percentage losses of 19.8%
DOC and 12.6% total loading, respectively (Table 1).

QUENCHING
Quenching behaviors and binding characteristics differed by
PARAFAC component and over the period of microbial exposure
for all components, generally changing from significantly differ-
ent (p < 0.05) to more similar (Figures 5A–C; Table 2). The log
K and CC values of all components were significantly different
from each other (by component) in B0, and both parameters were
significantly different for each component in B0 compared to B168

(p < 0.05; Table 2).
In the leachate, protein/polyphenol-like C1 visibly quenched

more slowly than other components and had a significantly lower
log K value (4.73 vs. 5.42–6.11). However, the differences in log K
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FIGURE 4 | Changes in (A) PARAFAC component loadings and (B)

mean proportions (arcsin-square root transformed) of grouped

protein/polyphenol- (filled) and humic/fulvic-like constituents

(open) for experiments LL1 (•) and LL2 (�) over the course of

degradation. The regression equation is for the overall mean
proportion of protein/polyphenol-like loadings for both experiments
(dotted line). Some error bars (±SD) are smaller than their respective
symbols.

FIGURE 5 | Changes in binding parameters after incubation determined by fluorescence quenching for (A–C) PARAFAC components C1 (•), C2 (�), C3

(�), and C4 (�) and (D,E) voltammetry.

were significantly reduced after inoculation, corresponding with
an increase in CC from 13.3 to 18.2 μmol Cu g C−1 (Figures 5A,B)
and a decrease in the proportion of fluorescence quenched by
binding (% f) from 47.5 to 31.6% (Figure 5C). For C2 the oppo-
site trends were apparent, with decreases observed in log K and CC
(from 5.42 to 5.15 and from 21.0 to 18.5 μmol Cu g C−1

, respec-
tively) and a 2.4-fold increase in % f (from 26.1 to 62.3%). The
patterns of change for CC and % f in C1 and C2 closely resem-
bled the exponential curves observed for DOC and fluorescence,
while only the log K of C1 underwent exponential-type change

(Figures 2, 5A). The log K values of C3 and C4 were also signifi-
cantly lower after 168 h of leaching, whereas their CC values were
significantly higher (p < 0.05). Exponential patterns of change
were observed for CC and % f. However, no significant differ-
ences in % f were observed between B0 and B168 for C3 or C4
(Table 2).

VOLTAMMETRY
Binding parameters (log K and CC) determined by voltammetry
exhibited significant, exponential change after inoculation (from
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Table 2 | Confidence ranges (95%) for conditional binding constant (log K ), complexing capacity (CC), and proportion of fluorescence quenched

(% f ) determined by the fluorescence quenching of leaf-litter leachate over 168 h of degradation by microbes.

Component

(peak)

Initial Log K Log K after 168 h Initial CC

(μmol Cu g C−1)

CC after 168 h

(μmol Cu g C−1)

Initial f (%) f after 168 h (%)

C1 (B) 4.73–4.74 5.44–5.54 13.3–13.7 18.1–21.1 45.2–49.7 26.8–36.3

C2 (M) 5.42–5.42 5.07–5.25 21.0–22.6 17.3–18.0 18.1–32.1 62.1–62.7

C3 (T) 6.11–6.11 5.83–6.01 15.9–17.7 18.0–22.3 35.4–48.6 30.8–44.0

C4 (C) 5.78–5.81 5.48–5.55 14.4–15.7 15.9–20.2 40.1–47.1 32.6–54.3

Confidence ranges were determined by modeling quenching curves in triplicate, using maxima and minima of 95% CI from triplicate fluorescence measurements of

each sample prior to metal addition. Values that changed significantly over degradation are shown in bold type.

7.2 to 5.82 and from 130 to 770 μmol Cu g C−1, respectively;
p < 0.005), and the rates of change were very similar for both
parameters (0.044 and 0.061, respectively; p > 0.05; Figures 5D,E).

DISCUSSION
BIODEGRADATION
Changes in the leaf-litter leachate occurred at an extremely rapid
rate (exponential loss rates of 0.59 and 2.6 h−1 for DOC in LL1
and LL2, respectively) and a significant difference was observed
for all PARAFAC components between both experiments, before
and after inoculation (p < 0.05). The multiple consistent sampling
points observed along the tail of exponential curves imply that the
early stages of decomposition have reached a relatively steady state.
However, only protein/polyphenol-like component C1 decreased
in its overall average proportion (from 56 to 47% of total loading).
The proportional increase in C2 (from 22 to 30%; Table 1) was
relatively high in LL2, suggesting that the net effect of microbial
action may have been the production of C2 and consumption of
C1. Although the loadings of components C3 and C4 decreased
over incubation, their proportional contribution to fluorescent
DOC did not change significantly in LL2 (p > 0.05; Figure 3;
Table 1). These changes were different from those observed in
experiment LL1, where the proportions of C3 and C4 increased
significantly (Table 1; p < 0.05). Differences in DOC processing
and component loadings observed between experiments LL1 and
LL2 may have been caused by the freezing of the microbial com-
munity in LL1, and subsequent nutrient depletion over the 7-day
recuperation period (Jansson et al., 2006). Despite this difference,
the overall effect of rapid protein/polyphenol-like consumption
(C1, C3) and carbohydrate/humic-like production (C2) was con-
sistent across experiments, and is generally considered to reflect
microbial processing (Parlanti et al., 2000; Scully et al., 2004; Wick-
land et al., 2007; Bowen et al., 2009; Fellman et al., 2009; Hur et al.,
2009).

Similar changes were observed in the DOC concentration
and component loadings of the control sample, suggesting some
microbial processing may be due to ambient microbes, or the
possibility that ambient and riverine populations effect similar
changes in leaf leachate. However, the possibility of preferential
decomposition of different DOM compartments by one microbial
community, and concomitant transformation of waste products
by other communities makes the intricacies of processing unclear
(Covert and Moran, 2001; Docherty et al., 2006). Since absolutely
abiotic conditions are practically impossible in leaf leachates,

ambient microbial populations may have contributed to some of
the observed changes. The changes in the control sample were sig-
nificantly lower than in the inoculated samples, suggesting that the
observed changes in copper-binding properties were mainly due
to the inoculum.

The observed rapidity of initial DOC decline has also been
attributed to the adsorption of relatively large components to
the surfaces of colloids and microbes introduced during inoc-
ulation (Maurice et al., 2004; Young et al., 2004). To explore
this possibility, colloid formation was investigated by observing
second-order fluorescence scattering at Ex/Em = 300/600 nm, fol-
lowing the procedure used by Guéguen et al. (2002). No substantial
increases from the level of scattering in the leachate were evi-
dent immediately after inoculation, during the observed changes
in optical properties, or in the control sample. The apparent
absence of particles, similarities between the patterns of change
in DOC and protein/polyphenol-like components, and recent
reports of extremely rapid protein and carbohydrate consump-
tion by microbes under natural and artificial conditions, together
imply that much of these losses are due to the processing of labile
constituents (Fellman et al., 2009; Huang et al., 2011).

CHANGES IN DOM COMPOSITION AND METAL-BINDING PROPERTIES
Exponential increases in the binding strength and ligand con-
centration of C1 were contrasted by an exponential decrease in
ligand concentration and a linear decrease in binding strength in
C2 (Figures 5A,B; Table 2). Further, % f decreased exponentially
for C1, and increased exponentially for C2. Overall, exponential
changes in metal-binding properties over incubation coincided
with those of component loadings for C1 and C2, and for DOC
(Figures 2 and 5). Components C3 and C4 also exhibited signifi-
cantly lower log K and increased CC after inoculation (p < 0.05),
but % f was not significantly different after 168 h of microbial
exposure for these components (p > 0.05).

The binding strength and complexing capacities of PARAFAC
components changed from being significantly different in
leachates, to being more similar in biodegraded samples (Figure 5;
Table 2). These changes may reflect the partial consumption
or transformation of protein/polyphenol-like molecules (C1 and
C3). The results of binding parameters based on fluorescence
showed a marked increase in variability after incubation (i.e.,
width of 95% CI increased substantially; Table 2). Changes in
copper-binding characteristics measured by voltammetric analy-
sis were also exponential in nature, paralleling rates of change
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for component loadings and DOC concentration (Figures 2
and 5D,E). Decreases in the binding strength of the overall
leachate measured by voltammetry reflected those observed for
components C2–4 in fluorescence quenching rather than the
increase observed for C1. However, the complexing capacity deter-
mined using voltammetry increased in harmony with changes
to C1, C3, and C4 (Figures 5B,E). Thus, voltammetric and flu-
orescence quenching measurements were found to be in gen-
eral agreement about the effects of inoculation on the copper-
binding parameters of leaf leachate. However, the cumulative
copper-binding strength of the leachate determined by voltam-
metry was significantly greater than the binding strength exhib-
ited by any of the PARAFAC components in the quenching
experiments (7.2 vs. 4.73–6.11; Figures 5A,D; Table 2), which
may be due to the impact of non-fluorescent DOM, or dif-
ferences in the concentration ranges of metals analyzed (i.e.,
different analytical windows; Buffle, 1988). Nonetheless, fluo-
rescence quenching analysis yields key information about how
the effects of changes in the character of DOM upon binding
properties, as it provides site-specific binding parameters for sev-
eral PARAFAC components that have been related to known
constituents of DOM.

Despite the similarities in fluorescence characteristics and
chemical properties attributed to protein/polyphenol-like com-
ponents C1 and C3, and to humic/fulvic-like C2 and C4, both the
individual responses of components to incubation and their bind-
ing properties were distinct. These unique responses and prop-
erties underscore the complex nature of fluorescent DOM both
in fresh leaf-litter leachate, and in leachates exposed to microbial
action.

Meaningful comparison of specific results with the findings of
other researchers is challenging, as studies of copper-binding char-
acteristics that use fresh leaf-litter leachates are scarce and research
groups tend to employ distinct methods of analysis, binding mod-
els, numbers of sites, litter conditioning, matrix characteristics,
etc. Increases in copper-complexing capacity of the same mag-
nitude as those observed using voltammetric analysis have been
observed elsewhere for extracts of wheat straw and crimson clover
following inoculation with soil microbes, which were also related
to similar changes in fluorescence (0.11–6.28 to 0.29–32.1 mmol
Cu g C−1; Merritt and Erich, 2003). The log K values found
in bulk and low-molecular-weight fractions of wheat straw and

crimson clover leachates also tended to become similar over 7 days
of exposure to soil microbes, which was attributed to increased
polymerization measured as increasing molecular weight. In gen-
eral, the copper-binding strengths of fresh litter leachates (Merritt
and Erich, 2003; Hur and Lee, 2011) are greater than those of
microbially degraded litter leachates (Merritt and Erich, 2003)
which agrees with the results of this study (Table 2). Thus, the
overall changes and general ranges in binding characteristics mea-
sured using voltammetry are on the lower end of the general range
observed by other researchers.

This study has shown that the copper-binding capability of
leachates extracted from maple leaves increased rapidly after inoc-
ulation with riverine microbes. Fresh leachates were found to have
a relatively low copper-binding capacity and a higher overall bind-
ing strength, while degraded material was capable of complexing
more material, but with a lower binding strength. Generally, metal
toxicity decreases when it is bound to organic matter (Nogueira
et al., 2009; Sánchez-Marín et al., 2010), but this is not true for
all metals, organisms, or aquatic chemistries (Meyer et al., 1999;
Sánchez-Marín et al., 2007). Based on the results of this study,
differences in toxicities may also be caused by differences in the
degree of organic matter processing, with corresponding differ-
ences in the exposure of organisms to metals that are bound to
DOM constituents with variable binding strengths. This result
underscores the potential importance of the dynamic relationship
between microbes, metals, and organic matter, where DOM serves
both as a source of nutrition and as a regulator of metal specia-
tion and its effectiveness in the latter role is partially controlled by
microbial activities.
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APPENDIX

FIGURE A1 | Quenching data and fitted models (following Smith and

Kramer, 1998) for PARAFAC components in leaf leachate after 168 h of

microbial degradation. PARAFAC component C1-circles, C2-squares,
C3-diamonds, C4-triangles.

FIGURE A2 | Voltammetric titration curve for sample B168, with

dynamic non-linear fitting of two-piece-linear curve to locate the

inflection point (xH). yi are the values of y (current) at the start and finish
of the two linear curves.
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