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Structural Insights into the Human Metapneumovirus Glycoprotein

Ectodomain
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Human metapneumovirus is a major cause of respiratory tract infections worldwide. Previous reports have shown that the viral
attachment glycoprotein (G) modulates innate and adaptive immune responses, leading to incomplete immunity and promoting
reinfection. Using bioinformatics analyses, static light scattering, and small-angle X-ray scattering, we show that the extracellu-
lar region of G behaves as a heavily glycosylated, intrinsically disordered polymer. We discuss potential implications of these

findings for the modulation of immune responses by G.

Human metapneumovirus (HMPV) is a ubiquitous patho-
gen of the Pneumovirinae subfamily of the Paramyxoviridae
and causes serious respiratory illness in infants, young children,
the elderly, and immunocompromised individuals (1-4). HMPV
has a negative-sense, nonsegmented, single-stranded RNA ge-
nome of approximately 13 kb that encodes 9 proteins. Three of
these are membrane-anchored glycoproteins, namely, the attach-
ment (G), the small hydrophobic (SH), and the fusion (F) pro-
teins. The F protein mediates fusion of the viral and cellular mem-
branes during viral entry, induces syncytium formation in
infected cells, and determines the cellular host range (5-8). While
F is highly conserved, is immunogenic, and induces protective
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antibodies (9-11), the other surface glycoproteins, G and SH, have
been shown to be only weakly immunogenic (11-14).
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FIG 1 Computational analysis of HMPV (A and C) and HRSV (B and D) G sequence conservation, order/disorder propensity, and glycosylation sites. (A and
B) The predicted disorder propensities and sequence conservation profiles are shown by black and red lines, respectively. Meta-disorder predictions were
calculated following procedures described in reference 59. Sequence conservation was calculated using AL2CO (60) by applying a sliding average on a 20-residue
window. (C and D) Location of predicted glycosylation sites along the amino acid sequence, shown as histogram bars, based on GlycoPred server output (61).
HMPV sG (strain NL-1-00 [A1]) is predicted to contain 5 N-linked and 59 O-linked glycosylation sites, constituting an average of one site for every three residues.
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FIG 2 Biophysical characterization of HMPV sG. (A) Molecular mass determination of HMPV sG using SEC-MALLS-RI. The protein was purified by size
exclusion chromatography on an S200 column equilibrated with 20 mM Tris (pH 7.5) and 150 mM NaCl prior to analysis. The black line shows the SEC elution
profile as monitored by refractometry. The red line shows the molecular mass calculated from light scattering and refractometry data. (B, C, D, and E) Small-angle
X-ray scattering (SAXS) experiments; (B) scattering curves of sG measured at concentrations of 4, 6, and 8 mg/ml are shown in green, red, and black, respectively;
(C) Kratky plots showing linear behavior in the high Q range; (D) Guinier plots showing linear behavior in the low Q range; (E) distance distribution functions

[P(r)] calculated using GNOM (62).

The G protein has been associated with binding to cellular
glycosaminoglycans (15); however, this function was shown to be
strain dependent (16). G-deleted recombinant HMPV is attenu-
ated and induces high titers of HMPV-neutralizing serum anti-
bodies, which confer protection against wild-type HMPV (14).
Immunological studies have suggested that G inhibits host cell
innate immune responses by targeting RIG-I-dependent gene
transcription (17) and Toll-like receptor 4 (TLR-4)-dependent
signaling (18, 19), although some of these findings have been mit-
igated (20, 21). Recently, deletion of the G and SH genes was
shown to reduce HMPV internalization by monocyte-derived
dendritic cells, leading to decreased activation of CD4" T cells
(22).

In order to investigate the structural properties of HMPV G, we
employed in silico predictions to compare conservation, disorder
propensity, and localization of glycosylation sites in HMPV and
the closely related human respiratory syncytial virus (HRSV) G
(Fig. 1). Both glycoproteins possess a short conserved and struc-
tured N-terminal intracellular tail, followed by a transmembrane
region (residues 31 to 53 in HMPV and residues 41 to 63 in HRSV)
and an extracellular ectodomain (sG) of 182 and 236 amino acids
in HMPV-A and in HRSV, respectively. The sG sequence is poorly
conserved (23-26), with the exception of the cysteine-rich motif,
present exclusively in HRSV (residues 160 to 190), which has been
linked with immunomodulatory functions (27-29). Interestingly,
the most variable regions are located near the C terminus and
away from the transmembrane region (Fig. 1A and B), likely re-
flecting immune pressure. sG is predicted to be disordered, con-
sistent with the large number of O-glycosylation sites (Fig. 1C and
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D) associated with a high content of serine, threonine, and proline
residues (18.5, 21.7, and 10.9%, respectively).

Next, sG (residues 54 to 236) from strain NL-1-00 (A1) was
cloned into pHLsec with an N-terminal secretion signal and a
C-terminal His tag, transiently expressed in HEK293T cells, and
purified from culture medium following standard procedures
(30). Characterization using size exclusion chromatography com-
bined with multiangle laser light scattering and refractometry
(SEC-MALLS-RI) (31) (Fig. 2A) indicates a molecular mass vary-
ing between 34 and 41 kDa (*1%). Comparison with the se-
quence-derived molecular mass (20.0 kDa) suggests that sG is a
highly glycosylated monomer, with carbohydrates accounting for
roughly 50% of the measured molecular mass, a property that may
contribute to virion stability by preventing dehydration (32).

To gain insight into the solution structure of sG, we used small-
angle X-ray scattering (SAXS) (Fig. 2B). Guinier plots were linear
and unaffected by protein concentration (Fig. 2C), with a mea-
sured radius of gyration (R,) of 5.5 nm. Kratky plots were linear at
high scattering vector Q (Q = 4 X sin(0)/\) (Fig. 2D), indicating
that sG behaves as a random polymer. The pair-distance distribu-
tion function P(r) displayed a pronounced tail with a maximal
intramolecular distance (D,,,,) of 20 nm (Fig. 2E), which is char-
acteristic for elongated or disordered proteins (33).

We then used ensemble optimization to quantify sG flexibility.
sG was modeled using an ensemble of bead models, as imple-
mented in the program RANCH, and the data were fitted using
GAJOE (34). Although these models are coarse and cannot repro-
duce the branched nature of the glycoprotein, they remain useful
in extracting the distributions of R, and D,,,, (Fig. 3A and B),
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FIG 3 Analysis of sG flexibility using the ensemble optimization method (EOM). (A and B) Calculated radius of gyration (R,) and maximal intramolecular
distance (D,,,,,) distributions of the starting (black line) and optimized ensembles (red line). (C) Fitted SAXS profile of sG measured at 8 mg/ml. The
experimental data are shown in black and the theoretical scattering from the optimized ensemble in red. (D) Variation of the goodness of fit (X.,) as a function

of the optimized ensemble size.

indicating that sG populates a broad ensemble of conformations
with R, of 3 to 8 nm and D,,,,, ranging from 10 to >25 nm. SAXS
profiles were well fitted (Fig. 3C), with the goodness of fit (X,)
decreasing smoothly from 3.3 to 2.0 when the optimized ensemble
size was varied between 1 and 50 models (Fig. 3D), consistent with
high levels of intrinsic disorder (35).

The large dimensions of sG and the reported association of F
and G at the surface of viral particles (36, 37) suggested that G may
have a shielding function and prompted us to compare the size of
the two proteins (Fig. 4). The trimeric fusion protein F, which can
exist in both pre- and postfusion conformations, possesses a large
extracellular region for which extensive structural information is
available (38—42). The ability of sG to extend up to >25 nm from
the membrane would allow the protein to tower above the smaller
F trimers, a phenomenon that might be amplified through oli-
gomerization mediated by the transmembrane region (43). Steric
hindrance by G may additionally decrease F binding to neutraliz-
ing antibodies, such as DS7 (a Fab fragment has been solved in
complex with a fragment of the HMPV F protein [42]), or host
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factors, such as the innate immune sensor TLR-4-myeloid differ-
entiation factor 2 (MD-2) complex, which is activated through
binding of HRSV F to MD-2 (44).

This “steric masking” hypothesis is supported by the hyper-
variability of the C-terminal region of sG, the increased capture
radius and binding rates associated with intrinsic disorder (45,
46), and the decreased binding affinity of soluble proteins to
membrane-anchored substrates in the presence of crowding fac-
tors (47). In addition, because of the nonprotective and cross-
protective nature of antibodies directed against G and F, respec-
tively (10-14, 48), transient immunity leading to reinfection could
be explained if G can reduce the immunological footprint associ-
ated with F. This is consistent with the increased CD4" T cell
activation observed with HMPV lacking the G and SH proteins
(22). Interestingly, an avian metapneumovirus isolate bearing a
long (585-residue) G protein was found to replicate efficiently
without signs of disease in domestic turkeys, suggesting decreased
activation of the innate immune response (49-51).

The properties of pneumovirus G proteins, such as intrinsic
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FIG 4 Comparison of the molecular dimensions of the extracellular regions of the HMPV F and G proteins, illustrating the G protein induced steric hindrance
potentially hampering host factor-F protein interactions. The extracellular region of the Toll-like receptor 4—myeloid differentiation factor 2 (TLR-4/MD-2)
complex (PDB identifier 3FXI) is represented as an example of such host factor. Homology models of the F protein trimers in the pre- and postfusion states form
protrusions of 13 and 17 nm, respectively. Models were generated in HOMER (63) and are represented as red and blue surfaces. The homodimeric TLR-4 is
shown in cyan and MD-2 in magenta, and three superimposed low-resolution models of sG are shown in orange, wheat color, and yellow. The anti-HMPV DS7
Fab bound to the prefusion model of F is shown in green based on PDB identifier 4DAG.

disorder, sequence hypervariability, and heavy O-glycosylation,
contrast with the structured attachment glycoproteins in other
paramyxoviruses (52, 53). Interestingly, the surface glycoprotein
GP from Ebola virus is dominated by a mucin-like domain of 150
amino acids, which was shown to shield viral epitopes and impair
immune recognition (54, 55). This suggests similarities between
immune evasion strategies employed by pneumoviruses and filo-
viruses, whose evolutionary relationship was recently highlighted
by structural comparison of the matrix and M2-1 transcriptional
antiterminator proteins (56-58).
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