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Abstract

Deposition of additional plasma membrane and cargoes during cytokinesis in eukaryotic

cells must be coordinated with actomyosin ring contraction, plasma membrane ingression

and extracellular matrix remodelling. The process by which the secretory pathway promotes

specific incorporation of key factors into the cytokinetic machinery is poorly understood.

Here, we show that cell polarity protein Spa2 interacts with actomyosin ring components

during cytokinesis. Spa2 directly binds to cytokinetic factors Cyk3 and Hof1. The lethal

effects of deleting the SPA2 gene in the absence of either Cyk3 or Hof1 can be suppressed

by expression of the hypermorphic allele of the essential chitin synthase II (Chs2), a trans-

membrane protein transported on secretory vesicles that makes the primary septum during

cytokinesis. Spa2 also interacts directly with the chitin synthase Chs2. Interestingly, artificial

incorporation of Chs2 into the cytokinetic machinery allows the localisation of Spa2 at the

site of division. In addition, increased Spa2 protein levels promote Chs2 incorporation at the

site of division and primary septum formation. Our data indicate that Spa2 is recruited to the

cleavage site to co-operate with the secretory vesicle system and particular actomyosin ring

components to promote the incorporation of Chs2 into the so-called ‘ingression progression

complexes’ during cytokinesis in budding yeast.

Author summary

Eukaryotic cells require division of all their cellular components before finally giving rise

to two independent cells in a process named cytokinesis. Eukaryotic cells must build a

physical barrier of plasma membrane, which is coupled with the remodelling of the extra-

cellular matrix between the dividing cells. Plasma membrane is transported as part of vesi-

cles by the secretory pathway. In addition, those vesicles carry key cargoes that need to be

incorporated into the molecular machinery that promotes cytokinesis, the so-called acto-

myosin ring. We have previously described that a few components of the actomyosin ring
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form ‘ingression progression complexes’ or IPCs that coordinate late steps during cytoki-

nesis such as the contraction of the actomyosin ring, ingression of the plasma membrane

and extracellular matrix remodelling. Our findings provide new insights into the molecu-

lar mechanism by which cells coordinate the secretory pathway, essential for cytokinesis,

with the other late cytokinetic steps mentioned above. The cell polarity protein Spa2 plays

a key role in that coordination. Spa2 promotes the incorporation into IPCs of the glycosyl-

transferase Chs2, which is transported on vesicles and essential for extracellular matrix

remodelling during cytokinesis in budding yeast. Taking into account that Spa2 protein

contains conserved domains present in higher eukaryotes, our work contributes to an

understanding of how these domains might play a key role in modulating membrane traf-

ficking and the targeting of specific cargoes to their destination in higher eukaryotes.

Introduction

Before the end of mitosis, eukaryotic cells need to redirect the secretory machinery towards

the site of division to ensure cells deposit additional plasma membrane between the two

daughter cells. In addition, secretory vesicles transport key factors to enable cells to perform

cytokinesis successfully [1–3]. Although the molecular mechanism is not understood, insertion

of membrane and cargoes needs to be highly coordinated with the assembly and contraction

of the actomyosin ring, ingression of the plasma membrane and the extracellular matrix

remodelling [4–6].

In a process conserved from yeast to mammals, secretory vesicles are transported along

actin cables by the type V myosin Myo2. Subsequently, the exocyst complex tethers secretory

vesicles to sites of active exocytosis and membrane expansion. The exocyst complex was first

identified in the budding yeast Saccharomyces cerevisiae and consists of eight subunits: Sec3,

Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84. Two of them, Sec3 and Exo70, are located to

where the secretory vesicle will be targeted and directly bind to PI(4,5)P2, which is situated at

the inner leaflet of the plasma membrane. The remaining exocyst components are associated

with secretory vesicles [7–9]. It has recently been reported that the exocyst has an open-hand

conformation, which explains how the complex tethers secretory vesicles to put them in con-

tact with the plasma membrane [10]. Finally, the association between vesicle and plasma mem-

brane proteins of the SNARE complex (soluble N-ethylmaleimide-sensitive factor attachment

protein receptor) leads to the fusion of secretory vesicles with the plasma membrane [7–9, 11,

12]

In S. cerevisiae, apart from the plasma membrane incorporation during cytokinesis, another

essential role for the growth machinery is to deliver key factors such as the chitin synthase

Chs2, which lays down a special extracellular matrix layer, the primary septum, between

mother and daughter cells. The type V myosin and the exocyst are required for Chs2 localisa-

tion to the site of division [13], suggesting a mechanism by which Chs2 is targeted to the cleav-

age site. However, there must also be a capture mechanism to ensure that Chs2-containing

vesicles are incorporated into the cytokinetic machinery while cells are assembling the actomy-

osin ring prior to the contraction.

To identify novel factors that control the activity of Chs2 at the division site during cytoki-

nesis in budding yeast, we undertook a systematic analysis of regulators of the chitin synthase

Chs2 in budding yeast [14]. We previously reported the first part of this work, in which we

identified that components of the actomyosin ring, including Chs2, form the so-called ‘ingres-

sion progression complexes’ or IPCs. We proposed that the function of these complexes is to
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coordinate contraction of the actomyosin ring, plasma membrane ingression and primary sep-

tum deposition [14]. Here, we describe the role during cytokinesis of the cell polarity protein

Spa2, whose molecular details were previously unknown. We show that Spa2 binds to actomy-

osin ring components during cytokinesis in budding yeast, by interaction between conserved

domains within Spa2 and the IPC components Cyk3 and Hof1. Localisation of Spa2 at the

cleavage site requires the presence of both IPC components and the growth machinery. We

found that Spa2 co-operates with the secretory vesicle system and specific IPC components to

promote the incorporation of Chs2 into the cytokinetic machinery.

Results

Spa2 interacts with actomyosin ring components during cytokinesis

To understand how cells control the activity of the chitin synthase Chs2 at the division site

during cytokinesis, we previously isolated proteins that were able to interact at the same time

with Chs2 and one of its regulators, the protein Inn1 [14]. Using mass spectrometry, we identi-

fied a specific set of proteins that interact with Inn1-Chs2 complexes at the cleavage site during

cell division. Initially we focused on the known core components of the budding yeast actomy-

osin ring, which we named ‘ingression progression complexes’ (IPCs). The IPCs contain,

together with Chs2, the type II myosin Myo1, the IQGAP protein Iqg1, the F-BAR protein

Hof1 and the cytokinesis regulators Inn1 and Cyk3 [14].

Targeting secretory vesicles to the cleavage site is essential for cytokinesis and occurs from

yeast to animal cells. Cells need to incorporate new plasma membrane in order to expand the

cell surface and create a physical barrier between mother and daughter cells [1, 4]. In addition,

secretory vesicles carry essential cargoes such as the protein Chs2 in budding yeast, a trans-

membrane protein that is transported to the site of division at the end of the cell cycle [4, 13].

To understand how secretory vesicles carrying Chs2 are incorporated at the site of division

and allow Chs2 to be part of the IPCs, we focused our attention on the list of specific proteins

that simultaneously interact with Chs2 and Inn1. We identified two proteins by mass spec-

trometry that could potentially help us to understand the process, since they were previously

known to be involved in polarised growth and vesicle transport. The more abundant of the

two factors was Spa2 (Fig 1A (i)), which had been suggested to have a role during cytokinesis,

although the molecular details were largely unknown. spa2 mutants show a mild defect in cell

separation, and genetic interactions have been described between SPA2 and other genes

involved in cytokinesis, including septin CDC10 and IPC components MYO1, CYK3 and

HOF1 [15–21]. In addition, we identified myosin type V Myo2 (Fig 1A (i)), which is involved

in vesicle transport and delivers essential cargoes such as the chitin synthase Chs2 to the site of

division [13]. Together with Spa2, cell polarity proteins Bud6, Pea2 and Bni1 have been

described to form the so-called ‘polarisome‘, which plays a role in cell growth [22, 23]. How-

ever, we were unable to identify any of the other polarisome components in our mass spec-

trometry analysis. To confirm that Spa2 and Myo2 were able to interact with the IPC

component Inn1, control cells and cells expressing Inn1 fused to TAP were grown at 24˚C in

the presence of glucose, and cells were synchronised in G1 phase with mating pheromone.

Subsequently, we released cells from G1 block and monitored the progression through the cell

cycle (Fig 1A (ii)). We pulled down the fusion protein Inn1-TAP from cells released from G1

block for 90 minutes to enrich for cells undergoing cytokinesis and showed that Inn1 co-puri-

fied with Spa2 and Myo2 (Fig 1A (iii)). Although the role of Myo2 as a motor protein has been

described, the function of Spa2 during cytokinesis was not understood. This prompted us to

investigate the Spa2 protein further to understand how secretory vesicles are incorporated into

the cleavage site and how the chitin synthase Chs2 is integrated into the IPCs.

Spa2 functions during cytokinesis in yeast
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To confirm that Spa2 could immunoprecipitate components of the IPCs, we grew TAP-

SPA2 and control cells as described above for Fig 1A. We immunoprecipitated TAP-Spa2 and

found that Spa2 interacted with all IPC components (Fig 1B (i) and (ii)). To determine pre-

cisely when during the cell cycle Spa2 interacts with IPCs, the protein TAP-Spa2 was pulled

down from extracts of cells that had been arrested in G1 phase, cells that were going synchro-

nously through S phase, or cells undergoing cytokinesis (Fig 1C (i)). We found that Spa2 only

interacted with IPC components at the end of the cell cycle, which suggests a role for Spa2 dur-

ing cytokinesis (Fig 1C (ii) and (iii)).

To understand the function of Spa2 at the site of division, we first constructed a strain that

expressed Spa2-GFP and in which the type II myosin, Myo1, was fused to the red fluorescent

protein tandem tomato, Myo1-Tomato. These cells were released from G1 arrest at 24˚C and

time-lapse video microscopy was then used to examine when exactly Spa2 localises at the site

of division. We found that Spa2 is recruited to the site of division a few minutes before the

actomyosin ring starts to contract (Fig 1D), which would suggest precisely the time when

CDK-associated kinase activity is inactivated and exactly when Inn1 and Chs2 localise at the

division site [24–29]. IPC components appear at the site of division as medial rings and con-

tracted dots, which shows them to be part of the contracting ring. However, Spa2 co-localised

with Myo1 at an early stage, but it seems that Spa2 did not share the same localisation with

Myo1 later, as it did not appear as a contracted dot (Fig 1D). Spa2 interacts with septins [20],

which act as a barrier to compartmentalize proteins around the cleavage site [30]. Therefore,

the septin ring might play a role to keep Spa2 at the site of division during contraction. Our

data indicate that Spa2 may share a role with IPC components before actomyosin ring contrac-

tion starts.

Spa2-homology domain interacts directly with the SH3-containing proteins

Cyk3 and Hof1

To understand the role of Spa2 during cytokinesis, we first determined which of the IPC com-

ponents were able to interact with Spa2. Although the biological significance was not found,

genome-wide screens and genetic analysis showed genetic evidence that SPA2 could share a

role with CYK3 and HOF1 [19, 31, 32]. To verify that there is a synthetic lethality between

SPA2 and CYK3 genes, the meiotic progeny of spa2Δ cyk3Δ diploid cells were analysed by

Fig 1. Spa2 interacts with IPCs during cytokinesis. (A) INN1-TAP CHS2-9MYC (YMF38) and control (YMF79) strains were grown at 24˚C in YPRaff

medium and synchronised in G1 phase with mating pheromone and then released for 105 minutes. Cell extracts were prepared before the

immunoprecipitation of Inn1-TAP (or TAP in control) on IgG-beads. The isolated material was released from the beads by cleavage with TEV

protease. Purified material was subjected to immunoprecipitation of Chs2-9MYC before analysis by mass spectrometry [59]. The protein composition

of purified fractions was analysed by mass spectrometry. Spectral count number (SpC), percentage sequence coverage (Cov.) and Fold-Change are

shown (i). INN1-TAP MYO2-5FLAG (YMF969) and control (YMF914) strains were grown at 24˚C in YPD medium and synchronised in G1 phase with

mating pheromone and then released for 90 minutes before preparing the protein extracts. DNA content was monitored by flow cytometry. The

asterisk denotes the time when the sample for making protein extracts was collected (ii) (note that the cytokinesis peak is slightly advanced because the

carbon source is different from that in Fig 1A (i)). Cell extracts were prepared and analysed by SDS-PAGE and immunoblotting (iii). (B) TAP-SPA2
CHS2-9MYC (YMF1302) (i) and TAP-SPA2 MYO1-5FLAG IQG1-6HA (YMF1176) (ii), together with the corresponding control strains, were grown at

24˚C in YPD medium and synchronised in G1 phase with mating pheromone and then released for 90 minutes. Cell extracts were prepared before

immunoprecipitation of Spa2 and detection of the indicated proteins by immunoblotting. (C) TAP-SPA2 CHS2-9MYC (YMF1302) (ii) and TAP-SPA2
MYO1-FLAG CYK1-6HA (YMF1176) (iii) strains were grown at 24˚C in YPD medium and synchronised in G1 phase with mating pheromone (G1

sample) or released from G1 block for 30 minutes (S phase sample) or 90 minutes (cytokinesis sample); DNA content was monitored by flow cytometry

(i). Cell extracts were then prepared before immunoprecipitating Spa2 on IgG-beads and detecting the indicated proteins by immunoblotting (ii) and

(iii). (D) MYO1-Tomato SPA2-GFP (YMF1256) strain was grown at 24˚C in YPD and arrested in G1 phase with mating pheromone. Cells were washed

and released from G1 arrest into fresh YPD for 30 minutes. Subsequently cells were shifted to Synthetic Complete (SC) medium before being placed on

the time-lapse slide to examine the localisation of Myo1 and Spa2 every 2 minutes as cells completed cell division at 24˚C (see Methods for details). A z-

stack of images was gathered. A two-dimensional projection of the three dimensional data is shown. Scale bar: 2 μm. The grey and black circles denote

the timing of the actomyosin ring contraction.

https://doi.org/10.1371/journal.pgen.1007299.g001
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tetrad analysis. We confirmed that deletion of the SPA2 gene in cells lacking the CYK3 gene

led to cell death (S1A (i) Fig).

To explore whether Spa2 and Cyk3 can interact physically, two different approaches were

taken. First, we used the yeast two-hybrid assay and subsequently studied whether both pro-

teins were able to interact directly in an extract of E. coli cells. Spa2 protein contains a pre-

dicted coil-coiled region and 25 time 9-amino-acid repeats. In addition, Spa2 contains five so-

called Spa2 Homology Domains (SHD-I to V), which are conserved domains with the budding

yeast Sph1 protein (Fig 2A (i)) [33]. Interestingly, it is the SHD-I that seems to be conserved in

higher eukaryotes [33, 34]. It has been reported that SHD-I, SHD-II and SHD-V are the

Fig 2. Spa2 interacts directly with multiple domains of Cyk3. (A) Diagram of protein structures and yeast two-hybrid interactions between different

fragments of Spa2 and tested fragments of Cyk3 (i). Summary of yeast two-hybrid interactions between Spa2-1-145 fragment and different truncations of

Cyk3 (ii). (B) The SH3 domain of Cyk3 interacts directly with Spa2-1-552. Pairs of E. coli cell cultures expressing Strep-tag-SH3-Cyk3 and 6His-Spa2-1-552

were mixed and used to purify putative protein complexes via Strep-Tactin Superflow resin. The final purified fractions were analysed by SDS-PAGE and the

tagged proteins were detected with anti-Strep or anti-His antibodies. His-tag was only used for protein detection, but not for purification purposes. (C)

Fragment of Cyk3 containing transglutaminase-like domain interacts directly with Spa2-1-552. Pairs of E. coli cell cultures expressing Strep-tag- Spa2-1-552

and 6His-Cyk3-475-885 were mixed and used to purify putative protein complexes via Strep-Tactin Superflow resin. The final purified fractions were

analysed by SDS-PAGE and the tagged proteins were detected with anti-Strep or anti-His antibodies. His-tag was only used for protein detection, not for

purification purposes.

https://doi.org/10.1371/journal.pgen.1007299.g002
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relevant domains for the described dynamics of Spa2 [21, 33, 35, 36]. On the other hand, Cyk3

protein comprises two domains: an N-terminal SH3 domain and a transglutaminase-like

domain located in the middle of the protein (Fig 2A (i)). Using a yeast two-hybrid assay, we

determined that full-length Cyk3 was able to interact with a fragment of Spa2 that contains the

SHD-I (Spa2-1-145) (Fig 2A (ii)). In addition, we found that protein fragments containing the

SH3 domain (Cyk3-1-74) and the rest of the protein including the transglutaminase-like

domain (Cyk3-68-885), bind to the same fragment of Spa2 (Spa2-1-145) (Fig 2A (ii)). We

determined that the Cyk3 transglutaminase-like domain (Cyk3-475-764) and the C-terminal

end of Cyk3 (Cyk3-765-885) could interact with Spa2 (Spa2-1-145) as well. Therefore, it

seemed that Cyk3 contains multiple sites that bind to Spa2. We found that both Cyk3 domains

(SH3 domain and the transglutaminase-like domain) share a function with Spa2, since inacti-

vation of both SH3 (cyk3-SH3Δ) and the transglutaminase-like domain (cyk3-2A; [14])

induced cell death in spa2Δ cells (S1A (ii) and (iii) Fig). This confirms the functional impor-

tance of both the SH3 and the transglutaminase-like domains of Cyk3 for Spa2 function.

Next, we generated an E. coli strain that expressed Strep-tagged SH3 domain of Cyk3

(Strep-tag-Cyk3-SH3) and, in parallel, another strain that produced a truncated version of

Spa2 fused to 6His (6His-Spa2-1-552; note that His-tags throughout this work were only used

for protein detection, not for purification purposes). We then mixed the cultures and gener-

ated a single cell extract containing the SH3 domain of Cyk3, Spa2-1-552 and all native E. coli
proteins. We purified Strep-tag-Cyk3-SH3 from the cell extracts and found that the N-termi-

nal half of Spa2 containing the SHD-I domain co-purified with SH3 domain of Cyk3 (Fig 2B).

In addition, using the same experimental design, we expressed a fragment of Cyk3 that con-

tained the transglutaminase-like domain fused to 6His tag (6His-Cyk3-475-885) and, in paral-

lel, a strain that produced the strep-tagged N-terminal truncated version of Spa2 as above

(Strep-tag-Spa2-1-552). We purified Strep-tag-Spa2-1-552 from the cell extracts and found

that the fragment of Cyk3 containing the transglutaminase-like domain co-purified with Spa2

(Fig 2C). Our data indicate that Cyk3 can bind directly to the N-terminus of Spa2.

We confirmed the synthetic lethality between SPA2 and HOF1 by tetrad analysis of the mei-

otic progeny of spa2Δ hof1Δ diploid cells (S1B (i) Fig) [19]. As mentioned above in relation to

Cyk3, this genetic evidence suggests that Spa2 might share a function with Hof1. In fact, it had

been previously shown that Spa2 interacts with Hof1 using fluorescent reporters, although the

role of such association was unknown [37]. Hof1 contains an N-terminal F-BAR domain fol-

lowed by an unstructured region and a C-terminal SH3 domain (Fig 3A). This same structure

is observed in other Hof1 orthologues including Cdc15 in Schizosaccharomyces pombe, which

is involved in actomyosin ring assembly and membrane dynamics [38, 39]. We performed a

yeast two-hybrid assay with three different fragments of Hof1 and the first 145 amino acids of

Spa2 containing its SHD-I domain (Fig 3A). We found that Spa2 SHD-I interacts with the

SH3 domain of Hof1 and with its F-BAR domain, which has been recently crystallised to show

that the F-BAR domain of Hof1 is formed of an elongated crescent-shaped dimer [40]. We

narrowed down the area within the F-BAR domain that binds to Spa2-1-145. Amino acids 200

to 272 of the F-BAR domain, which corresponds to the convex side of the F-BAR dimer [40],

are sufficient to enable such an interaction (Fig 3A). To determine whether Spa2 and Hof1

bind each other directly, we checked, as illustrated in Fig 2B, whether these factors were able to

interact in E. coli extracts expressing the indicated fragments of Spa2 and Hof1. We found that

the SH3 and F-BAR domains of Hof1 both bind directly to the N-terminal half of Spa2 con-

taining the SHD-I domain (Fig 3B and 3C).

To detect amino acids that may be relevant in Spa2 interactions, Psi-BLAST searches and

secondary structure analysis were performed to show that the amino terminal part of Spa2,

which contains the SHD-I, is conserved in other fungal orthologues of Spa2. In addition, it is
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Fig 3. Spa2 interacts directly with multiple domains of Hof1. (A) Summary of yeast two-hybrid interactions between the fragments of Spa2-1-145

containing SHD-I and the fragments of Hof1 containing SH3 or F-BAR domains. (B) SH3 domain of Hof1 interacts directly with Spa2-1-552. Pairs of E. coli
cell cultures expressing Strep-tag-SH3-Hof1 and 6His-Spa2-1-552 were mixed and used to purify putative protein complexes as in Fig 2B. The final purified

fractions were analysed as in Fig 2B. (C) The F-BAR domain of Hof1 interacts directly with Spa2-1-552. Pairs of E. coli cell cultures expressing Strep-tag-Hof1-

1-300 and 6His-Spa2-1-552 were mixed and we proceeded as in Fig 2B. (D) Schematic alignment and protein sequence comparison of Spa2 (S. cerevisiae) and

Spa2 functions during cytokinesis in yeast
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precisely the SHD-I domain that is conserved in higher eukaryotes [33, 34] (Fig 3D). We iden-

tified a stretch of amino acids that is well conserved between fungal and higher eukaryotic

orthologues of Spa2 comprising positively charged amino acids, which may be important for

Spa2 to bind to its partners. To examine the role of SHD-I, four consecutive conserved basic

amino acids were mutated into alanines. A fragment of 145 amino acids containing the wild-

type Spa2 SHD-I and the mutated Spa2 SHD-I (Spa2-1-145-GAGA) were used to perform a

yeast two-hybrid assay (Fig 3D). We found that the change in these amino acids blocked inter-

actions with SH3 domains of Cyk3 and Hof1, and with the fragment of Cyk3 containing the

transglutaminase-like domain of Cyk3 (Cyk3-475-764) (Fig 3D). In contrast, Spa2-1-

145-GAGA was able to interact with the C-terminal end of Cyk3 (Cyk3-765-885) and a mini-

mal protein fragment of the F-BAR domain of Hof1 (Hof1-200-272) that we found to interact

with Spa2 (Fig 3D).

Taken together, these data indicate that Cyk3 and Hof1 interact directly with Spa2. The

SH3 domains of Cyk3 and Hof1, and the transglutaminase-like domain of Cyk3 play a key role

with Spa2 SHD-I domain. Positively charged residues within Spa2 are essential for those inter-

actions. In addition, Spa2 SHD-I is able to interact with the F-BAR domain of Hof1 and the C-

terminal fragment of Cyk3, but the stretch of positively charged residues that lies within

SHD-I seems to be irrelevant for these interactions. Additionally, we found that simultaneous

deletions of the SH3 and F-BAR domains of Hof1 induced cell death in spa2Δ cells (S1C Fig

(iii)), unlike what occurs when single deletions of the SH3 or F-BAR domains of Hof1 are

combined with the lack of Spa2 (S1C Fig (i) and (ii)). This confirms the functional importance

of both Hof1 domains for Spa2 function (S1C Fig).

IPC components and the secretory vesicle system share a role in the

localisation of Spa2 at the site of division

Spa2 interacts with components of the IPCs during cytokinesis (Fig 1). To determine whether

the localisation of Spa2 is dependent on IPC components, yeast strains were generated in

which the protein Iqg1 or Myo1 was fused to the degron cassette to permit depletion of Iqg1

or Myo1 protein levels [41, 42]. Initially, we grew asynchronous cultures of iqg1-td SPA2-GFP
and control cells at 24˚C before synchronising cells in G1 phase with mating pheromone (Fig

4A; S2 Fig, ‘-td‘ denotes temperature sensitive degron). After the induction of Ubr1 E3 ligase

and a shift to 37˚C to rapidly deplete Iqg1-td protein, cells were released from G1 block at

37˚C [42]. We observed that both mutant and control cells progressed to anaphase in a similar

manner. Unlike control cells, iqg1-td SPA2-GFP accumulated as binucleate cells and contained

4C DNA content as shown by flow cytometry (Fig 4A; S2 Fig), which reflects a failure of cell

division. We found that rapid inactivation of Iqg1 prevents localisation of Spa2 at the site of

division (Fig 4A (ii)). Similarly, we showed that Myo1 protein is required for Spa2 localisation

(S3A Fig). To investigate whether Inn1 promotes Spa2 localisation at the cleavage site, we used

the mutant inn1-td in which we were able to deplete Inn1 protein levels. We grew SPA2-GFP
inn1-td and control cells in an identical fashion to that described for Fig 4A and found that

Spa2 localisation was independent of Inn1 (S3B Fig).

We determined that Spa2 binds directly to the IPC components Hof1 and Cyk3. Conse-

quently, to explore whether localisation of Spa2 at the cleavage site depends on the interaction

with Hof1 and/or Cyk3, we used strains in which we fused the temperature-sensitive degron

its orthologues from S. pombe, together with SHD domain of Caenorhabditis elegans (F14F3.2) and Homo sapiens (KIAA0148). The identical residues have

been boxed. Conserved Lys and Arg were mutated to Gly and Ala (GAGA). Summary of yeast two-hybrid interactions between a fragment of Spa2-1-

145-GAGA containing mutated residues or its wild-type version, and the corresponding fragments of Cyk3 and Hof1.

https://doi.org/10.1371/journal.pgen.1007299.g003
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cassette to the N-terminus of Hof1 or Cyk3 proteins [43]. Cultures of hof1-td SPA2-GFP or

cyk3-td SPA2-GFP strains were grown and synchronised as described for the experiment in Fig

4A. Cells were released after inactivation of Hof1-td or Cyk3-td. Next, we observed that the

localisation of Spa2 is indeed defective in hof1-td cells, in which binucleate cells accumulated

(Fig 4B). In addition, as localisation of Spa2 was only partially altered in cyk3-td cells (Fig 4B),

we confirmed that Cyk3 protein had been depleted under the restrictive conditions (S4A Fig).

To understand what other factors promote Spa2 localisation at the site of division, TAP-
SPA2 hof1-td and TAP-SPA2 control cells were grown as described for the experiment depicted

in Fig 4B. After collecting cells going through cytokinesis synchronously in the presence or

absence of Hof1, we made cell extracts and immunoprecipitated TAP-Spa2 on IgG-beads to

find that in control cells Spa2 co-purified with components of the IPCs, as described above

(Fig 1), and the type V myosin Myo2. In Hof1-depleted cells, Spa2 preserved the interaction

only with Myo2 and Chs2, however, Spa2 was unable to interact with other IPC components

(Fig 4C), which suggests that Spa2 is still able to interact with factors involved in secretory vesi-

cle transport in the absence of any interaction with the IPCs at the site of division. It also sug-

gests that Cyk3 and Inn1 interact with Spa2 through Hof1. To determine whether the Spa2

localisation defect in Hof1-depleted cells reflects a failure in secretory vesicle docking at the

site of division or whether it is specific to certain secretory vesicles, we monitored the localisa-

tion of the exocyst component Sec8. The exocyst complex drives the delivery of secretory vesi-

cles to the sites of growth during the cell cycle. Before actomyosin ring contraction starts, cells

redirect the exocyst to the cleavage site [9]. Using iqg1-td cells, we confirmed that Sec8 localisa-

tion at the site of division is entirely dependent on the presence of an actomyosin ring (S5A

Fig). Subsequently, we carried out similar experiments, inactivating Hof1 instead of Iqg1 (S5B

Fig). We found that the exocyst component Sec8 has similar dynamics and localises equally at

the site of division in the presence or absence of Hof1, which implies that Hof1 has no role in

the docking of the exocyst at the site of division, although it is involved in Spa2 localisation.

Given that motor type V myosin, Myo2, can be pulled down by Spa2 in the absence of

Hof1, we analysed the contribution of the secretory vesicle system to the localisation of Spa2 at

the site of division. We fused the temperature-sensitive degron cassette to the N-terminus of

Myo2 to permit conditional inactivation of the protein. Control and myo2-td SPA2-GFP cells

were synchronised in G1 phase and then released into S phase in the presence of 0.2 M

hydroxyurea, which inhibits ribonucleotide reductase and prevents chromosome replication.

Under these conditions, polarised growth continues and buds are able to grow, allowing us to

determine the role of Myo2 in the localisation of Spa2 at the site of division during cytokinesis,

independently of Myo2 function in bud growth. Once cells had fully grown their buds, Myo2

was depleted by shifting cells to grow at the restrictive temperature of 37˚C and expressing the

Fig 4. Spa2 protein interacts with secretory vesicle system in the absence of IPC component Hof1. (A) SPA2-GFP (YMF167) and

SPA2-GFP iqg1-td (YMF183) strains were arrested in G1 phase at 24˚C in YPRaff and then shifted to YPGal at 37˚C to deplete Iqg1-td.

Subsequently, cells were released to allow progression through the cell cycle. Samples were taken at the indicated times to determine the

proportion of binucleate cells (i) and the percentage of cells with single rings of Spa2 at the cleavage site (ii). Example of cell with Spa2-GFP

single ring at the bud-neck at 75 minutes is shown (iii). Scale bar: 2 μm. (B) SPA2-GFP hof1-td (YMF713) and SPA2-GFP cyk3-td (YMF1104)

strains were grown in YPRaff as in (A) and released from G1 arrest at 37˚C after depletion of Hof1-td or Cyk3-td. Samples were taken at the

indicated times to determine the proportion of binucleate cells (i) and the percentage of cells with Spa2 rings at the cleavage site (ii). (C)

TAP-SPA2 (YMF1301) and TAP-SPA2 hof1-td (YMF1299) strains were grown as in (A) and cell extracts were prepared 75 minutes after the

release, before the immunoprecipitation of Spa2 and detection of the indicated proteins by immunoblotting. (D) SPA2-GFP (YMF167) and

SPA2-GFP myo2-td (YMF716) strains were arrested in G1 phase at 24˚C in YPRaff. Cells were then shifted to YPRaff medium containing 0.2 M

hydroxyurea to arrested them in early S phase. Cells were allowed to fully grow their buds and were then transferred to YPGal containing 0.2 M

hydroxyurea at 37˚C in order to deplete Myo2-td. Subsequently, cells were released to allow progression through the cell cycle. Samples were

taken at the indicated times to determine the proportion of binucleate cells (i), the percentage of cells with rings of Spa2 at the cleavage site (ii)

and the percentage of cells localising Spa2 at the bud tips (iii).

https://doi.org/10.1371/journal.pgen.1007299.g004
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E3 ubiquitin ligase Ubr1. In the absence of functional Myo2, we confirmed that the chitin

synthase Chs2 was unable to be targeted to the site of division, as it was previously found using

standard temperature sensitive mutants [13] (S6 Fig). We also determined that Spa2 localisation

during cell division is only partially defective in the absence of Myo2-driven transport (Fig 4D

(i) and (ii)). Spa2 localisation at the tip of new buds in myo2-td cells was totally diminished (Fig

4D (iii)), which confirmed that Myo2 was fully inactivated under these experimental conditions.

We also confirmed that Myo2 protein levels were depleted soon after cells were transferred to

the restrictive conditions (S4B Fig). Taken together, these findings indicate that Spa2 localisation

at the site of division partially depends on Hof1 and the secretory vesicle transport, since inacti-

vation of only one of them alone is not enough to block Spa2 localisation at the site of division.

To determine whether Hof1 and Myo2 share a role in the localisation of Spa2, we grew con-

trol and hof1-td myo2-td cells under the same conditions as described for Fig 4C and found the

localisation of Spa2 to be completely dependent on both Hof1 and Myo2 proteins (Fig 5A; S7

Fig). There appear to be two populations of Spa2, one that binds to the IPCs via Hof1, and

another that interacts with the secretory vesicle transport system. We speculated that these two

populations might associate through Spa2 itself. To investigate whether Spa2 might interact

with itself, a diploid yeast strain was generated in which one SPA2 gene expressed TAP-Spa2,

while the other expressed Spa2-5FLAG. These diploid cells, together with diploid cells that

lacked the expression of TAP-SPA2 as control, were grown asynchronously. Yeast protein

extracts were made and TAP-Spa2 was subsequently pulled down on IgG beads. We showed

that TAP-Spa2 interacted with Spa2-5FLAG (Fig 5B), suggesting that Spa2 might be able to

form dimers. Using the yeast two-hybrid assay, we found that the amino-terminus of Spa2

containing the SHD-I domain was able to interact with a fragment of Spa2 comprising the

SHD-II, which would leave open such a possibility (Fig 5C (i)). Furthermore, we found that

both fragments were unable to interact if the SHD-I domain was mutated to eliminate posi-

tively charged amino acids (Fig 5C (ii)). Taken together, these experiments indicate that Hof1

and Myo2 share a role in the localisation of Spa2 and that Spa2 proteins might form dimers.

To determine whether Spa2 domains control localisation of Spa2 at the site of division in a

different manner, the chromosomal SPA2 locus was modified so that cells expressed either

Spa2-1-552-GFP (containing the SHD-I and SHD-II domains) or Spa2-553-1466-GFP (com-

prising multiple 9-aminoacid repeats and the SHD-V domain) under the control of SPA2 pro-

moter. We grew SPA2-GFP cells in parallel with cells expressing either the N-terminal (1-

552-GFP) or C-terminal fragment of Spa2 (553-1466-GFP). Cells were arrested in G1 phase and

subsequently released synchronously to monitor the localisation of each construct at the site of

division (Fig 5D; S8 Fig). We found that the localisation of the N-terminal half of Spa2 (1-

552-GFP) was clearly defective (Fig 5D (ii); S8A Fig). Expression of Spa2 truncations was con-

firmed using immunoblotting analysis (S8B Fig). This suggests that the C-terminus of Spa2 is

required for Spa2 to localise at the site of division. To investigate whether Spa2-553-1466 can

interact with Hof1 in the same manner as shown above for Spa2-1-552 (Fig 2), we used the

yeast two-hybrid analysis to show that, indeed, the fragment of Spa2 containing amino acids

553–1466 interacts with Hof1 (Fig 5E). We found that the SHD-V domain is sufficient to bind

to Hof1 (Fig 5E). Taken together, these results indicate that Spa2 domains are able to interact

with the IPC component Hof1. The C-terminal of Spa2 protein seems to be more relevant in

the recruitment of Spa2 to the site of division.

Spa2 protein interacts directly with the chitin synthase Chs2

The protein Spa2 is essential in the absence of either Cyk3 or Hof1 (S1 Fig) [19, 31, 32]. We

proposed that understanding why Spa2 becomes essential in spa2Δ cyk3Δ cells and spa2Δ
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hof1Δ cells could reveal the molecular details of Spa2 role during cytokinesis. We and others

have reported that Cyk3 and Hof1 proteins regulate the function of the chitin synthase Chs2,

which lays down the primary septum between mother and daughter cells during cytokinesis

[14, 28, 44–46]. To determine whether Spa2, together with Hof1 and/or Cyk3, has a role

related to Chs2 function, we performed genetic analyses in which we tried to rescue defects

associated with the double mutants spa2Δ cyk3Δ and spa2Δ hof1Δ. We constructed a diploid

strain lacking one copy of CYK3, one copy of SPA2 and harbouring a hypermorphic allele of

CHS2, which has enhanced chitin synthase activity [44]. The meiotic progeny was then ana-

lysed by tetrad analysis (Fig 6A). We found that hypermorphic Chs2 (CHS2-V377I) suppressed

the growth defect at 24˚C caused by the lack of the Cyk3 and Spa2 proteins (Fig 6A). Following

the same strategy we also showed that CHS2-V377I rescues defects associated with spa2Δ hof1Δ
cells at 24˚C (Fig 6B).

Therefore, we found that growth defects associated with the lack of Cyk3 and Spa2, or Hof1

and Spa2 could be rescued by the hypermorphic allele of CHS2 (Fig 6C (i)). To complete the

genetic analysis of CYK3, HOF1 and SPA2, we showed that growth defects associated with dou-

ble degron hof1-td cyk3-td strains under restrictive conditions were rescued by the hyper-

morphic allele CHS2-V377I (Fig 6C (ii)). It seems that HOF1, CYK3 and SPA2 form a network

of factors whose defects associated with the lack of function in pairs are always rescued by

CHS2-V377I (Fig 6C (i)). Finally, we determined that SPA2 becomes essential for CHS2-V377I
to rescue the absence of Hof1 and Cyk3, since spa2Δ hof1-td cyk3-td CHS2-V377I cells were

unable to grow (Fig 6C (ii) and (iii), compare strains (2) and (5)). Taken together, these genetic

analyses indicate that Spa2 plays a role related to the chitin synthase Chs2 during cytokinesis.

To look in greater detail at the Spa2-Chs2 functional relationship, we examined whether

Spa2 physically interacts with Chs2. First we used the yeast two-hybrid assay to show that a

fragment of Chs2 comprising its catalytic domain (Chs2-215-629) interacts with Spa2 trunca-

tions containing the SHD-I, SHD-II or SHD-V domains (Fig 6D). Subsequently, we used E.

coli cells to express 6His-Spa2-1-552, which contains two of the domains that we found to

interact with Chs2 in the yeast two-hybrid assay (SHD-I, SHD-II), in parallel with another

strain that expressed Strep-tag-Chs2-215-629 that comprises its catalytic domain. We found

that both proteins interacted directly (Fig 6E), which supports the hypothesis that Spa2 func-

tion during cytokinesis is related to chitin synthase Chs2.

Hof1 and Cyk3 co-ordinately promote initial incorporation of Spa2 at the

site of division

Spa2 localises at the site of division a few minutes before the actomyosin ring contraction starts

(Fig 1D). In addition, we found that inactivation of the IPC components Hof1 or Cyk3 alters

the localisation of Spa2 and that the defect is clearly more severe when Hof1 is not present

Fig 5. IPC component Hof1 and secretory vesicle transport protein Myo2 both contribute to the localisation of Spa2 at the site of division. (A)

SPA2-GFP (YMF167) and SPA2-GFP hof1-td myo2-td (YMF1418) strains were arrested in G1 phase at 24˚C in YPRaff and then synchronously shifted to

YPRaff medium containing 0.2 M hydroxyurea and arrested in early S phase. Before cells were transferred to YPGal containing 0.2 M hydroxyurea at 37˚C

in order to deplete Hof1-td and Myo2-td, they were allowed to grow their buds. Subsequently, cells were released to allow progression through the cell

cycle. Samples were taken at the indicated times to determine the proportion of binucleate cells (i) and the percentage of cells with Spa2 rings at the

cleavage site (ii). An example of a cell with Spa2-GFP ring at the bud-neck at 60 minutes is shown (iii). Scale bar: 2μm. (B) Indicated diploid strains

TAP-SPA2/SPA2-5FLAG (YMF1448) and SPA2/SPA-5FLAG (YMF1449) were grown asynchronously at 24˚C in YPD medium and cell extracts were

prepared before immunoprecipitation of TAP-Spa2 and detection of the indicated proteins by immunoblotting. (C) Summary of yeast two-hybrid

interactions between the different fragments of Spa2, one containing SHD-I region (Spa2-1-145) and another one containing SHD-II (Spa2-421-552). (D)

SPA2-GFP (YMF117), ΔC-SPA2-GFP (YMF967, Spa2-1-552-GFP) and ΔN-SPA2-GFP (YMF1023, Spa2-553-1466-GFP) strains were arrested in G1 phase at

24˚C in YPD and then released from G1 arrest to allow progression through the cell cycle. Samples were taken at the indicated times to determine the

proportion of binucleate cells (i) and the percentage of cells with rings of Spa2 or its truncations at the cleavage site (ii). (E) Summary of yeast two-hybrid

interactions between the C-terminal fragments of Spa2 and Hof1.

https://doi.org/10.1371/journal.pgen.1007299.g005
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(Fig 4B). Furthermore, our genetic analysis showed that growth defects associated with the

lack of Hof1/Spa2, Cyk3/Spa2 and Hof1/Cyk3 are rescued by the expression of a hyper-

morphic allele of CHS2. Finally, we found that Spa2 directly binds to Hof1, Cyk3 and, indepen-

dently of Hof1, to Chs2 when it is being transported via motor protein Myo2. Therefore, we

hypothesised that Hof1 and Cyk3 contribute to the docking of Chs2-containing vesicles at the

site of division, for which Spa2 could play a role.

To test this hypothesis we first determined whether both Hof1 and Cyk3 shared a coordi-

nated role in the localisation of Spa2 at the cleavage site. Cultures of SPA2-GFP and hof1-td
cyk3-td SPA2-GFP cells were grown at 24˚C and cells were synchronised in G1 phase with mat-

ing pheromone, before rapidly inactivating Hof1 and Cyk3 at 37˚C. Upon release from G1

arrest at 37˚C, hof1-td cyk3-td cells completed mitosis but were unable to divide in the same

way as control cells (Fig 7A (i)). Localisation of Spa2 at the site of division was not observed in

the absence of Hof1 and Cyk3 (Fig 7A (ii)), despite the presence of Spa2 protein in mutant

cells (S9A Fig).

Since we have previously described that Chs2 localisation is defective in Hof1-depleted cells

[14], and Hof1, Cyk3 and Spa2 seem functionally connected to Chs2, we aimed to confirm

whether the localisation of Chs2 at the site of division was co-ordinately dependent on both

Hof1 and Cyk3. We grew hof1-td cyk3-td CHS2-GFP and control cells as described above for

Fig 7A. Chs2 protein levels were confirmed in control and mutant cells (S9B Fig). Interest-

ingly, we found that localisation of Chs2 was completely defective if Hof1 and Cyk3 had been

previously depleted (Fig 7B and S9C Fig). This was unexpected since the hypermorphic allele

CHS2-V377I rescues hof1-td cyk3-td cells (Fig 6C (ii)).

On the other hand, we have previously shown that Chs2-V377I is constitutively active in
vitro [44]. We anticipated that Chs2-V377I should localise at the site of division in order to res-

cue any defects associated with hof1-td cyk3-td cells. We investigated this by growing hof1-td
cyk3-td CHS2-V377I-GFP and hof1-td cyk3-td CHS2-GFP cells as described for Fig 7B. Indeed,

Chs2-V377I partially recovered Chs2 localisation at the site of division (Fig 7C (ii) and (iii)), as

was reflected by the partial rescue of the cell division defect associated with hof1-td cyk3-td
cells (Fig 7C (i)). Therefore, we concluded that structural changes promoted by the change in

amino acid V377 were enough to drive Chs2 localisation during cytokinesis.

Artificial recruitment of the chitin synthase Chs2 to the actomyosin ring

promotes the localisation of Spa2 at the site of division

We have previously described that the Inn1 protein contributes to the localisation of Chs2 at

the actomyosin ring [14] and that the hypermorphic allele CHS2-V377I rescues the defect in

Inn1-depleted cells [44] (Fig 8A, compare (1) and (2)). To determine whether Inn1 is a key

protein in the rescue of hof1-td cyk3-td cells by CHS2-V377I, we generated a strain that con-

tained Hof1, Cyk3 and Inn1 fused to the temperature-sensitive degron cassette in order to

Fig 6. Spa2 interacts directly with the chitin synthase Chs2. (A) Tetrad analysis of the meiotic progeny from the indicated diploid strain (YMF741) shows

that CHS2-V377I allows spa2Δ cyk3Δ cells to grow. Spores of the indicated genotypes were grown for 20 hours on YPD plates at 24˚C. Scale bar: 20 μm. (B)

Tetrad analysis of the meiotic progeny from the indicated diploid strain (YMF866) shows that CHS2-V377I allows spa2Δ hof1Δ cells to grow. Spores of the

indicated genotypes were grown for 20 hours on YPD plates at 24˚C. Scale bar: 20 μm. (C) Scheme representing the genetical relationship between Cyk3,

Hof1, Spa2 and Chs2-V377I proteins (i). Serial dilutions of strains YMF140 (1) and YMF1307 (2) were plated on YPD medium or YPGal medium and

incubated as indicated (ii). Serial dilutions of strains YMF759 (3), YMF1401 (4) and YMF1399 (5) were plated on YPD medium or YPGal medium and

incubated as indicated (iii). (D) Summary of yeast two-hybrid interactions between the different fragments of Spa2 and the Chs2. Truncated allele of Chs2

containing the catalytic domain (Chs2-215-629) was used to show that this region of Chs2 (Chs2-215-629) interacts in a yeast two-hybrid assay with Spa2 via

different SHD-containing fragments. (E) Pairs of E. coli cell cultures expressing Strep-tag-Chs2-215-629 and 6His-Spa2-1-552 were mixed and used to purify

putative protein complexes via Strep-Tactin Superflow resin. The final purified fractions were analysed by SDS-PAGE and the tagged proteins were detected

with anti-Strep or anti-His antibodies. His-tag was only used for protein detection, not for purification purposes.

https://doi.org/10.1371/journal.pgen.1007299.g006
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deplete levels of all three proteins. We performed a growth assay and found that CHS2-V377I
was no longer able to rescue hof1-td cyk3-td cells in the absence of Inn1 (Fig 8A, compare (4)

and (6)). Our data would suggest that the three key factors that enable Chs2-V377I to dock at

the actomyosin ring are Hof1, Cyk3 and Inn1.

Therefore, Inn1 might explain why CHS2-V377I localises at the site of division and rescues

hof1-td cyk3-td cells. Inn1 directly binds to Chs2 [14]. We hypothesised that the association

between Chs2-V377I and Inn1 might be stronger than between the wild-type Chs2 and Inn1,

which would explain why CHS2-V377I rescues the defect in these cells. We generated E. coli
strains that produced Strep-tag-Chs2-215-629, Strep-tag-Chs2-V377I-215-629 and 6His-

tagged-Inn1. We then mixed the cultures in pairs (Strep-tag-Chs2-215-629/6His-tagged-Inn1,

Strep-tag-Chs2-V377I-215-629/6His-tagged-Inn1 and empty vector control/6His-tagged-

Inn1) and generated a single cell extract containing Chs2/Inn1, Chs2-V377I/Inn1 or no tagged

protein/Inn1, together with all native bacterial proteins (Fig 8B). Next we purified the same

amount of Strep-tag-Chs2 or Strep-tag-Chs2-V377I from the cell extracts, and subsequently

determined that the amount of Inn1 protein purified with Strep-tag-Chs2-V377I was almost

three times that of the Inn1 protein isolated from the cell extract with Strep-tag-Chs2 (Fig 8B).

These findings suggest that Chs2-V377I interacts more strongly with Inn1, which must be

enough to be incorporated in the IPCs in the absence of Hof1 and Cyk3.

The proposed model for Spa2 localisation at the cleavage site suggests dual mechanisms:

Spa2 interacts with IPC components and with members of the secretory vesicle transport. To

test whether Spa2 localisation at the site of division is recovered in cells in which Hof1 and

Cyk3 proteins had been depleted, we investigated whether artificial recruitment of Chs2 (via

Chs2-V377I) to the actomyosin ring was sufficient to induce Spa2 localisation. We grew

SPA2-GFP CHS2 hof1-td cyk3-td cells and SPA2-GFP CHS2-V377I hof1-td cyk3-td cells as

described above for Fig 7C. We observed that Spa2 protein can partially localise at the site of

division when cells are expressing the hypermorphic allele of CHS2 in the absence of Hof1 and

Cyk3 (Fig 8C). Our findings would suggest that part of the Spa2 protein population might

require the arrival of Chs2-containing vesicles at the site of division in order to finally localise

before the actomyosin ring contraction starts and successful cytokinesis takes place.

Increased Spa2 protein levels promote Chs2 incorporation at the site of

division

To investigate whether overexpression of Spa2 might increase Chs2 incorporation at the site of

division, strains overexpressing SPA2, together with control, were grown at 24˚C and cells

were synchronised in G1 phase. Cells were then released from G1 arrest into medium contain-

ing galactose to allow overexpression of Spa2. Subsequently, samples were used to examine the

incorporation of Chs2-GFP at the division site by fluorescence microscopy (Fig 9A). Cells

overexpressing Spa2 increased the number of Chs2-GFP rings (Fig 9A (ii)), mainly due to the

increase of rings with a fainter fluorescent signal associated with Chs2-GFP (Fig 9A (iii)).

Fig 7. Spa2 localisation at the site of division requires the presence of Hof1 and Cyk3. (A) SPA2-GFP (YMF167) and SPA2-GFP hof1-td cyk3-td
(YMF1088) strains were arrested in G1 phase at 24˚C in YPRaff and then shifted to YPGal at 37˚C to deplete Hof1-td and Cyk3-td simultaneously.

Subsequently, cells were released to allow progression through the cell cycle. Samples were taken at the indicated times to determine the proportion

of binucleate cells (i) and the percentage of cells with rings of Spa2 at the cleavage site (ii). Example of cell with Spa2-GFP ring at the bud-neck is

shown for the 75 minute time-point (iii). Scale bar: 2 μm. (B) CHS2-GFP (YMF330) and CHS2-GFP hof1-td cyk3-td (YMF1076) strains were grown

in YPRaff as in (A). Samples were taken at the indicated times to determine the proportion of binucleate cells (i) and the percentage of cells with

rings of Chs2 at the cleavage site (ii). Example of cell with Chs2-GFP ring at the bud-neck at 75 minutes (iii). Scale bar: 2 μm. (C) CHS2-GFP hof1-td
cyk3-td (YMF1076) and CHS2-V377I-GFP hof1-td cyk3-td (YMF1329) strains were grown in YPRaff as in (A). Samples were taken at the indicated

times to determine the proportion of binucleate cells (i) and the percentage of cells with rings of Chs2 or Chs2-V377I at the cleavage site (ii).

Example of cell with Chs2-V377I-GFP ring at the bud-neck at 60 minutes (iii). Scale bar: 2μm.

https://doi.org/10.1371/journal.pgen.1007299.g007
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Normally, Chs2-GFP signal at the site of division initiates as a faint ring that turns into a ring

with a stronger fluorescent signal before actomyosin ring contraction starts. As cell cycle

Fig 8. Higher-affinity binding of Chs2-V377I to Inn1 promotes recruitment of Spa2 at the site of division in the absence of Hof1 and Cyk3.

(A) Serial dilutions of strains YASD522 (1), YMF1375 (2), YMF1394 (3), YMF1370 (4), YMF140 (5) and YMF1307 (6) were plated on YPD medium

or YPGal medium and incubated as indicated. (B) Chs2-V377I has a higher affinity for binding to Inn1. Pairs of E. coli cell cultures expressing either

Strep-tag-Chs2-215-629 or Strep-tag-Chs2-215-629-V377I were mixed with cultures expressing 6His-Inn1 and used to purify putative protein

complexes via Strep-Tactin Superflow resin. The final purified fractions were analysed by SDS-PAGE and the tagged proteins were detected with

anti-Strep or anti-His antibodies. His-tag was only used for protein detection, but not for purification purposes. (C) SPA2-GFP CHS2 hof1-td cyk3-td
(YMF1088) and SPA2-GFP CHS2-V377I hof1-td cyk3-td (YMF1403) strains were arrested in G1 phase at 24˚C in YPRaff and then shifted to YPGal at

37˚C to deplete Hof1-td and Cyk3-td simultaneously. Subsequently, cells were released to allow progression through the cell cycle. Samples were

taken at the indicated times to determine the proportion of binucleate cells (i) and the percentage of cells with rings of Spa2 at the cleavage site (ii).

Example of cell with Spa2-GFP ring at the bud-neck at 60 minutes (iii). Scale bar: 2 μm.

https://doi.org/10.1371/journal.pgen.1007299.g008
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progression seemed to be similar in control and GAL-SPA2 cells (Fig 9A (i)), we hypothe-

sised that those faint rings might indicate that there is slightly more Chs2 protein at the site

of division in cells overexpressing Spa2, and Chs2-GFP signal passed the threshold of detec-

tion under fluorescent light. To confirm our hypothesis, time-lapse video microscopy was

used to examine Chs2-GFP localisation (Fig 9B). Cells were grown in the same way as

described above for Fig 9A. 75 minutes after the release from G1 block, cells were shifted to

Synthetic Complete (SC) medium and subsequently placed in a time-lapse slide to examine

the localisation of Chs2 at 24˚C every 2 minutes (see Methods). Both control and GAL-SPA2
cells were treated in an identical fashion, since the cultures were mixed before the cells were

transferred to the time-lapse slide (the control cells expressed Spc42-eQFP and could there-

fore be distinguished from GAL-SPA2 cells). Twenty movies each were examined for control

and GAL-SPA2 CHS2-GFP cells. We were able to detect Chs2-GFP signal 2 minutes earlier

in 16 out of 20 cells that overexpressed Spa2 (Fig 9B). The kinetics of actomyosin ring con-

traction were similar in control and cells overproducing Spa2. The average period of con-

traction was similar in both types of cells (a mean value of 6 min in control compared with

6.15 min in the GAL-SPA2 cells). This finding would suggest that Spa2 promotes Chs2

incorporation at the site of division.

Since chitin synthase Chs2 promotes primary septum formation during cytokinesis, we

investigated whether increased Spa2 protein can also induce higher levels of primary septum.

Chs2 chitin synthase activity assays require the use of chs3Δ cells, as most of the chitin content

is synthesised by chitin synthase Chs3 in budding yeast cells [47]. Cells were grown at 24˚C

and were synchronised in the G1 phase of the cell cycle. Then, we released cells from G1 block

into medium containing calcofluor to stain primary septa and galactose to allow overexpres-

sion of Spa2. Progression through cytokinesis was similar in control and GAL-SPA2 cells (Fig

9C (i)). To observe calcofluor-stained chitin in cells completing mitosis, cells were collected

135 minutes after release from G1 block when the percentage of cells containing primary septa

peaks [14]. We showed that the relative signal intensity of primary septa was more than twice

as strong in cells overexpressing Spa2 (Fig 9C (ii) (iii)), which support that Spa2 induces Chs2

incorporation. Taken together, these findings suggest that Spa2 has a direct role in recruiting

the chitin synthase Chs2 to the site of division in budding yeast.

Discussion

Our data highlight a key role for the cell polarity protein Spa2 during cytokinesis in budding

yeast, and provide the first evidence of how specific factors contained within secretory vesicles,

such as the protein Chs2, are incorporated into the cytokinetic machinery. Spa2 has previously

been reported to form the so-called polarisome complex, which includes Pea2, Bud6, and the

formin Bni1 [22, 23]. The polarisome functions in actin cytoskeletal organisation during polar-

ised cell growth, which is important for numerous cellular functions including differentiation,

proliferation, and morphogenesis [22, 23]. However, we found none of the other polarisome

components in our purified material associated with Chs2-Inn1, suggesting an independent

function during cytokinesis for Spa2.

Spa2 directly interacts with IPC components during cytokinesis (Fig 10). Spa2 localisation

requires the presence of an actomyosin ring and a functional secretory pathway contributes to

Spa2 targeting at the division site. As has recently been described for the orthologue of Spa2 in

Candida albicans [48], it seems very likely that kinase activity associated with mitotic CDK/

Cyclin blocks Spa2 translocation to the cleavage site before chromosome segregation is

resolved in S. cerevisiae, in a similar manner to that described for the assembly of the exocyst

[49].
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In Xenopus cells, disruption of the actomyosin ring blocks cleavage furrow formation, however

the addition of membrane proceeds. This suggests that the actomyosin ring is important for

restricting new membrane incorporation at the site of division [50–52]. Therefore, there must be

a capture mechanism that allows the incorporation of transmembrane proteins transported on

secretory vesicles into the actomyosin ring (Fig 10). We showed that the Spa2 protein might play

such a role since it directly interacts with IPC components, Hof1 and Cyk3, and the chitin

synthase Chs2. Spa2 could function as a bridge to allow specific Chs2 incorporation and mem-

brane fusion of Chs2-containing vesicles at the site of division. It is of particular note that we

found that increased levels of Spa2 promote Chs2 incorporation and primary septum formation.

We have also previously shown that Inn1 regulates function and localisation of Chs2 [14, 44] and

found that Inn1 plays a fundamental role in the incorporation of Chs2 at the cleavage site in the

absence of Hof1 and Cyk3 (Fig 10). In addition, the C2 domain of Inn1 might also influence the

fusion of Chs2-containing vesicles since the C2 domain of the human protein synaptotagmin is

thought to contribute to the fusion of target membranes with synaptic vesicles [53].

The role of Spa2 protein during cytokinesis may well be conserved since S. pombe Spa2 was

found to interact with Cdc15 [54], a Hof1 orthologue in fission yeast. Super-resolution micros-

copy and FRET techniques have recently revealed the nanoscale spatial organisation of fission

yeast actomyosin ring components relative to the plasma membrane [55]. Spa2 is present in

the same layer as proteins like Cyk3 and Fic1, the orthologue of budding yeast Inn1 [55]. Con-

sistent with our results, Gould and colleagues were unable to find any association between

other polarisome components and the cytokinetic machinery [54]. They found that Spa2

pulled down the Chs2 counterpart in fission yeast, the glycosyltransferase Bgs1 ((1,3)beta-D-

glucan synthase catalytic subunit), which is required for primary septum formation [54, 56],

although no molecular significance was noted. The Spa2-homology domain (SHD) is present

in the mammalian GIT protein family, which is involved in cytoskeletal dynamics and mem-

brane trafficking [34]. Thus, it seems that the role of the Spa2-homology domains in coordi-

nating the assembly of larger complexes may be fundamental to modulating membrane

trafficking and the targeting of specific cargoes to their intracellular destination.

Methods

Growth of yeast strains

The budding yeast S. cerevisiae strains used in this study were all based on W303 and are listed

in S1 Table. Cells were grown in rich medium containing 1% yeast extract, 2% peptone and

supplemented with 2% glucose (YPD), or 2% raffinose (YPRaff), or 2% galactose (YPGal). For

all synchronisation experiments, asynchronous cultures of cells were grown overnight. The fol-

lowing morning cells were counted and diluted to a concentration of 4 x 106 cells per ml before

allowing them to grow to a density of 7 x 106 cells per ml. To achieve synchrony of the yeast

Fig 9. Spa2 coordinates delivery of Chs2 to the site of division. (A) CHS2-GFP (YASD819) and CHS2-GFPGAL-SPA2 (YMF1660) strains were

arrested in G1 phase at 24˚C in YPRaff and then shifted to YPGal at 24˚C to induce expression of Spa2. Subsequently, cells were released from G1 block

to allow progression through the cell cycle. Samples were taken at the indicated times to determine the proportion of binucleate cells (i) and the

percentage of cells with Chs2 rings at the cleavage site (ii) and (iii). (B) CHS2-GFP SPC42-EQFP (YAD380) strain together with CHS2-GFPGAL-SPA2
(YMF1660) were grown as in Fig 8A. 75 minutes after the release from G1 block cells were shifted to SC medium before being placed on the time-lapse

slide to examine the localisation of Chs2 every 2 minutes as cells completed cell division at 24˚C (see Methods for details). A z-stack of images was

gathered. A two-dimensional projection of the three-dimensional data is shown. Scale bar: 2 μm. The grey and black circles denote the timing of the

actomyosin ring contraction. (C) chs3Δ control (YMF505) and chs3ΔGAL-SPA2 (YMF1534) cells were grown in YPRaff medium at 24˚C and

synchronised in G1 with alpha factor. Subsequently, cells were released in YPGal for 135 minutes from G1 block in the presence of calcofluor to visualise

primary septum deposition. Samples were taken at the indicated times to determine the proportion of binucleate cells (i) and 100 cells with primary

septum for each sample were examined. Examples of live cells grown with calcofluor are shown in (ii). Scale bar: 2 μm. The relative signal intensity of

primary septum was measured for 100 cells and compared with control cells, whose signal intensity was set to 100% (iii).

https://doi.org/10.1371/journal.pgen.1007299.g009
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Fig 10. Spa2 protein coordinates specific delivery of secretory vesicles to the site of division during cytokinesis.

Secretory vesicles are driven to the cleavage site by type V myosin-based transport. Spa2 interacts with the secretory

vesicle system and IPC components Hof1 and Cyk3. We suggest that the three proteins coordinate the incorporation

of chitin synthase Chs2 into the IPCs before the start of actomyosin ring contraction.

https://doi.org/10.1371/journal.pgen.1007299.g010
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cultures we followed the previously described protocol [57]. To arrest cells in the G1 phase of

the cell cycle, the mating pheromone α-factor (Pepceuticals Ltd) was added to a final concen-

tration of 7.5 μg per ml. After 2 hours, additional 2.5 μg per ml aliquots of α-factor were added

every 20 minutes and cells were checked using phase contrast microscopy until at least 90% of

cells were unbudded. To release cells synchronously from G1 arrest, cells were pelleted, washed

twice and released into fresh medium. Cells performing cytokinesis synchronously were col-

lected 90 minutes after the release from alpha factor arrest when cells were grown in YPD

medium at 24˚C or 105 minutes when cells were grown in YPRaf at 24˚C. On the other hand,

cells were collected 75 minutes after the release from alpha factor arrest when cells were grown

in YPGal medium at 37˚C. Temperature and carbon source determine progression through

the cell cycle. We arrested cells in the G2/M phase of the cell cycle by adding nocodazole to the

medium at a final concentration of 5 μg per ml.

To stain primary septa of living cells, calcofluor was added 30 minutes after release from G1

block to a final concentration of 0.05 mg per ml and culture was incubated further for at least

60 minutes [58].

For time-lapse video microscopy in Fig 1D, cells were grown in YPD at 24˚C, arrested in the

G1 phase of the cell cycle. Cells were then released into YPD for 30 minutes before switching to

Synthetic Complete (SC) medium to perform the time-lapse video microscopy. For time-lapse

video microscopy depicted in Fig 8B, cells were grown in YPRaff at 24˚C and arrested in G1

phase. Cells were then released into YPGal medium containing mating pheromone for 30 min-

utes before releasing cells from G1 block in YPGal medium for 75 minutes. Afterwards, cells

were switched to SC medium in order to perform the time-lapse video microscopy.

In all experiments with temperature-sensitive degron strains (td), 0.1mM CuSO4 was

included in the growth medium of exponential cultures before changing the carbon source to

galactose to induce degradation [42]. To degrade proteins fused to the degron cassette, cells

were transferred to YPGal medium at 24˚C for 35 minutes to induce expression of GAL-UBR1,

and then transferred to 37˚C for 1 hour before release from the arrest [42]. For time-lapse

video microscopy in S9C Fig, cells were grown in YPRaff at 24˚C, arrested in G1 phase and

degron protein depletion was achieved as described above. Subsequently, cells were released

from G1 block into YPGal medium at 37˚C for 30 minutes before switching to SC medium

and placing them on the time-lapse slide to perform the time-lapse video microscopy. Cell cul-

tures were maintained to monitor progression through the cell cycle for both strains under the

same circumstances as time-lapse microscopy.

For experiments with myo2-td allele, cells were initially arrested in G1 phase using the mat-

ing pheromone α-factor. Subsequently, cells were released and blocked in early S phase of the

cell cycle using hydroxyurea (Molekula Limited), which was added to a final concentration of

0.2 M. Cells were checked using phase contrast microscopy until at least 90% of cells contained

a fully grown bud. At this point, Myo2-td inactivation was induced for 50 minutes, after which

cells were released from hydroxyurea arrest.

Analysis of cell growth on solid medium

Tenfold serial dilutions of fresh colonies of yeast cells were made and spots of cells containing

between 50,000 and 50 cells were plated on the appropriate media. Plates were incubated for

2–3 days at the indicated temperature before the scan.

Two-hybrid analysis

Two-hybrid analysis was performed using the vectors pGADT7 and pGBKT7 (Clontech).

Cells were grown at 30˚C on SC medium lacking leucine and tryptophan (non-selective) or
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lacking leucine, tryptophan and histidine (selective). They were scanned after 3–4 days of

growth, as indicated.

Expression and purification of recombinant proteins in E. coli
The plasmids to express recombinant proteins in E. coli used in this study were based on the

‘pET’ series (Novagen) and are listed in S2 Table. Recombinant proteins were expressed in

Rosetta cell line at 37˚C for 2 hours after induction with 1mM IPTG. Subsequently, pairs of

cultures with induced proteins of choice were mixed so that each cell extract would contain

two recombinant proteins. As control, a culture with an empty vector was mixed with the cor-

responding cultures expressing recombinant proteins. In all cases, after mixing, cell pellets

were frozen at -20˚C. To study the interaction between proteins, the strep-tagged fusions were

isolated from a cell extract on 1 ml of Strep-Tactin Superflow resin (2-1206-025, IBA GmbH)

before eluting with 2.5mM d-Desthiobiotin (D1411 Sigma). We detected the indicated pro-

teins by immunoblotting with the previously described anti-StrepMAB Classic (2-1507-001,

IBA GmbH) and Penta-His (34660, QIAGEN) antibodies.

Immunoprecipitation of protein complexes from yeast cell extracts

To monitor the association of proteins in yeast cell extracts, we used 1000 ml samples (1010

cells). Frozen cell pellets were ground in the presence of liquid nitrogen, using a SPEX Sample-

Prep LLC 6850 freezer/mill as described previously [59]. We isolated tagged proteins by immu-

noprecipitating with magnetic Dynabeads M-270 Epoxy (Invitrogen) coupled at 4˚C to rabbit

anti-sheep IgGs (Sigma S-1265). We detected the indicated proteins by immunoblotting with

the previously described polyclonal antibodies to Inn1, Chs2, Cyk3 and Hof1 [14], or by using

polyclonal, anti-Spa2-yC-16 (Santa Cruz sc-15578), anti-FLAG antibody (Sigma F-7425), M2

anti-FLAG monoclonal antibody (Sigma F3165), peroxidase-antiperoxidase (PAP) (Sigma

P1291), monoclonal 9E10 (anti-MYC) or 12CA5 (anti-HA).

Mass spectrometry analysis

For mass spectrometry analysis of protein content, the digested peptides were analysed by

nano LC/MS/MS with an ‘Orbitrap Velos’ (ThermoFisher). Data were processed as described

previously (MS Bioworks) [14, 60, 61]. The total identification list was filtered at 1% FDR.

Flow cytometry and binucleate cell analysis

We prepared samples to measure the DNA content or to determine the proportion of binucle-

ate cells by fixing cells with 70% ethanol and staining with propidium iodide as described pre-

viously [57, 62]. Flow cytometry was performed with a Becton Dickinson FACSCanto II. For

binucleate cell analysis, samples were then processed and images acquired with an upright

fluorescence microscope (Axio Imager M1; Carl Zeiss, Inc.) using a 63x 0.95NA objective, an

HRm camera, a Rhodamine specific filter set (em:546/12, exc: 608/65) and Axiovision soft-

ware. We examined at least 100 cells at each time-point.

Microscopy

Pictures of colonies on agar were taken after 24 hours (YPD medium) or 30 hours (YPGal

medium) with a Nikon CoolPix 995 camera attached to a Nikon Eclipse E400 microscope. To

observe GFP-tagged proteins cells were fixed with 8% formaldehyde for 10 minutes and subse-

quently washed twice with ice-cold PBS. Phase contrast and fluorescence microscopy images

of cells grown in liquid culture were performed with a Nikon A1R Microscope and an Orca R2
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camera (Hamamatsu) with objective lens Plan Apo TIRF 100x oil DIC 1.49NA, and LightLine

single-band filter set FITC Semrock. The illumination source was a Nikon Intensilight

C-HGFIE (ultrahigh presure 130W mercury lamp). We used NIS elements software. We ana-

lysed eleven z-sections with a spacing of 0.375 μm to facilitate the examination of whole cells

for all experiments. Exposure time, sensor gain and digital adjustments were the same for con-

trol and experimental samples. We examined 100 cells for each time-point. Each experiment

was carried out at least three times.

For time-lapse video microscopy cells were grown in an IBIDI cells in focus 15 μ -slide (8

well glass bottom; 80827) after their release from G1 arrest. The base of each well is formed of a

glass coverslip that we coated with a 5 mg per ml solution of the lectin Concanavalin A (Sigma

L7647), and then washed with water and dried for 30 minutes. A suspension of cells was then

placed on the glass coverslip and incubated for 5 min in order to allow cells to attach. The cover-

slip was then washed with pre-warmed SC medium. Finally 300 μl pre-warmed SC medium was

added. Time-lapse video microscopy illustrated in Fig 1D was performed using the DeltaVision

system with an Olympus IX-71 microscope and a CoolSNAP HQ2 Monochrome camera. A

Plapon 60X0 1.42 NA objective lens was used. The 300W xenon system with liquid light guide

was used for illumination. Images were captured with Softworx Resolve 3D acquisition soft-

ware. We analysed 8 z-sections with a spacing of 0.4 μm. For time-lapse video microscopy

shown in Fig 9B and S9C Fig, 9 z-sections with a spacing of 0.4 μm were acquired with a wide-

field epifluorescence microscope (Nikon Eclipse Ti2) equipped with an APO TIRF x100/1.49

objective and an sCMOS camera (Hamamatsu Orca-Flash4.0). Brightfield and fluorescence

images were sequentially acquired every 2 minutes for 1 hour at 24ºC or 37ºC. Focus drift was

avoided with the help of a hardware-based focusing system (Nikon´s Perfect Focus System).

The microscopy data were deconvolved using Huygens (SVI) according to the “Quick Max-

imum Likelihood Estimation” method and a measured point spread function. The decon-

volved data set was viewed with “ImageJ” software (National Institute of Health, USA) [63]

Supporting information

S1 Fig. (A) Tetrad analysis of the meiotic progeny from the indicated diploid strain

(YMF708) shows the synthetic lethality of spa2Δ cyk3Δ cells. Spores of the indicated genotypes

were grown for 20 hours on YPD plates at 24˚C. Scale bar: 20 μm (i). Tetrad analysis of the

meiotic progeny from the indicated diploid strains (YMF1664) (ii) and YMF1667 (iii)) shows

the synthetic lethality between spa2Δ and cyk3-2A-ΔSH3 cells. ‘UG‘ denotes ungerminated
spore. (B) Tetrad analysis of the meiotic progeny from the indicated diploid strain (YMF168)

shows the synthetic lethality of spa2Δ hof1Δ cells. Spores of the indicated genotypes were

grown for 20 hours on YPD plates at 24˚C. Scale bar: 20 μm (i). (C) Tetrad analysis of the mei-

otic progeny from the indicated diploid strains: (i) YMF837, (ii) YMF824 and (iii) YMF1261

shows the synthetic lethality of spa2Δ hof1-ΔFBAR-ΔSH3 cells.

(EPS)

S2 Fig. SPA2-GFP (YMF167) and SPA2-GFP iqg1-td (YMF183) strains were arrested in G1

phase at 24˚C in YPRaff and then shifted to YPGal at 37˚C to deplete Iqg1-td. Subsequently,

cells were released to allow progression through the cell cycle and DNA content was mea-

sured by flow cytometry. Examples of cells are shown for specific time-points. Scale bar:

10 μm.

(EPS)

S3 Fig. (A) SPA2-GFP (YMF167) and SPA2-GFP myo1-td (YMF185) strains were arrested in

G1 phase at 24˚C in YPRaff and then shifted to YPGal at 37˚C to deplete Myo1-td.
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Subsequently, cells were released to allow progression through the cell cycle. Samples were

taken at the indicated times to determine the proportion of binucleate cells (i) and the percent-

age of cells with single Spa2 rings at the cleavage site (ii). (B) SPA2-GFP (YMF167) and

SPA2-GFP inn1-td (YMF164) strains were grown as in (A). Subsequently, cells were released to

allow progression through the cell cycle. Samples were taken at the indicated times to deter-

mine the proportion of binucleate cells (i) and the percentage of cells with single Spa2 rings at

the cleavage site (ii).

(EPS)

S4 Fig. (A) SPA2-GFP cyk3-td strain (YMF1104) was grown in YPRaff at 24˚C in YPRaff and

then shifted to YPGal at 37˚C to determine Cyk3 protein stability. Samples were taken as indi-

cated and protein extracts prepared before immunoblotting with anti-Cyk3 antibodies. (B)

SPA2-GFP myo2-td (YMF716) strain was grown in YPRaff at 24˚C in YPRaff and then shifted

to YPGal at 37˚C to study Myo2 protein levels at restrictive conditions. Samples were taken as

indicated and protein extracts prepared before immunoblotting with anti-DHFR antibodies.

(EPS)

S5 Fig. (A) SEC8-GFP (YMF872) and SEC8-GFP iqg1-td (YMF1432) strains were arrested in

G1 phase at 24˚C in YPRaff and then shifted to YPGal at 37˚C to deplete Iqg1-td. Subse-

quently, cells were released to allow progression through the cell cycle. Samples were taken at

the indicated times to determine the proportion of binucleate cells (i) and the percentage of

cells with single Sec8 rings at the cleavage site (ii). (B) SEC8-GFP (YMF872) and SEC8-GFP
hof1-td (YMF909) strains were grown in YPRaff as in (A) and cells were then released to allow

progression through the cell cycle. Samples were taken at the indicated times to determine the

proportion of binucleate cells (i) and the percentage of cells with Sec8 rings at the cleavage site

(ii).

(EPS)

S6 Fig. CHS2-GFP (YMF330) and CHS2-GFP myo2-td (YMF869) strains were arrested in G1

phase at 24˚C in YPRaff and then synchronously shifted to YPRaff medium containing 0.2 M

hydroxyurea. Therefore cells were arrested at the early S phase, but bud growth continued.

Cells were then transferred to YPGal containing 0.2 M hydroxyurea at 37˚C in order to deplete

Myo2-td. Subsequently, cells were released to allow progression through the cell cycle. Samples

were taken at the indicated times to determine the proportion of binucleate cells (i) and the

percentage of cells with Chs2 rings at the cleavage site (ii).

(EPS)

S7 Fig. SPA2-GFP (YMF167) and SPA2-GFP hof1-td myo2-td (YMF1418) strains were arrested

in G1 phase at 24˚C in YPRaff and then synchronously shifted to YPRaff medium containing

0.2 M hydroxyurea and arrested in early S phase. Before cells were transferred to YPGal con-

taining 0.2 M hydroxyurea at 37˚C in order to deplete Hof1-td and Myo2-td, they were

allowed to grow their buds. Subsequently, cells were released to allow progression through the

cell cycle and DNA content was measured by flow cytometry. Examples of cells are shown for

specific time-point. Scale bar: 10 μm.

(EPS)

S8 Fig. (A) Examples of cells depicted in Fig 5D are shown with Spa2-GFP single ring at the

bud-neck at 90 minutes for Spa2-GFP and 105 minutes for Spa2-1-552-GFP and Spa2-553-

1466-GFP. Scale bar: 2 μm. (B) SPA2-GFP (YMF117), SPA2-1-552-GFP (YMF967) and SPA2-
553-1466-GFP (YMF1023) strains were grown asynchronously at 24˚C in YPD. Samples to

monitor the level of corresponding proteins expressed under the control of SPA2 promoter
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were collected. Protein extracts were prepared before immunoblotting with anti-GFP antibod-

ies. As protein levels varied, two different exposure times are presented.

(EPS)

S9 Fig. (A) SPA2-GFP (YMF167) and SPA2-GFP hof1-td cyk3-td (YMF1088) strains were

arrested in G1 phase at 24˚C in YPRaff and then shifted to YPGal at 37˚C to deplete Hof1-td

and Cyk3-td simultaneously. Subsequently, cells were released to allow progression through

the cell cycle and samples were taken and protein extracts prepared before immunoblotting

with anti-GFP antibodies to detect Spa2 protein level. (B) CHS2-GFP (YMF330) and

CHS2-GFP hof1-td cyk3-td (YMF1076) strains were grown in YPRaff as in (A). Samples were

taken at the indicated times to determine the level of Chs2 protein using anti-Chs2 antibodies.

(C) CHS2-GFP SPC42-EQFP (YAD380) and CHS2-GFP hof1-td cyk3-td (YMF1076) strains

were arrested in G1 phase at 24˚C in YPRaff and then shifted to YPGal at 37˚C to deplete

Hof1-td and Cyk3-td proteins simultaneously. Subsequently, cells were released for 30 minutes

in YPGal at 37˚C to allow progression through the cell cycle. An aliquot of cells was then trans-

ferred to SC medium and placed on the time-lapse slide to examine the localisation of Chs2

every 2 minutes as cells completed cell division at 37˚C (see Methods for details). A z-stack of

images was gathered. A two-dimensional projection of the three-dimensional data is shown.

Scale bar: 2 μm. The grey and black circles denote the timing of the actomyosin ring contrac-

tion for control cells (i). To confirm cell cycle progression, cell cultures from which aliquots

were taken to perform time-lapse microscopy were kept growing under the same experimental

conditions. The proportion of binucleate cells is shown in (ii).

(EPS)

S1 Table. Strains used in this study (all based on W303).

(DOC)

S2 Table. Plasmids used to express recombinant proteins in E. coli.
(DOC)

Acknowledgments

We are grateful to Gislene Pereira and Karim Labib for strains and antibodies. We thank Fidel

Madrazo and Victor Campa for assistance with the microscopy, and Natalia Cobo for technical

support. In addition we thank Ben Hodgson, Pilar Perez and Cesar Roncero for valuable com-

ments on the manuscript, and Ben Hodgson and Phil Mason for revising the English version

of this manuscript. We are grateful to Pilar Perez for useful discussions.

Author Contributions

Conceptualization: Alberto Sanchez-Diaz.

Formal analysis: Magdalena Foltman, Alberto Sanchez-Diaz.

Funding acquisition: Damaso Crespo, Alberto Sanchez-Diaz.

Investigation: Magdalena Foltman, Yasmina Filali-Mouncef, Alberto Sanchez-Diaz.

Methodology: Alberto Sanchez-Diaz.

Project administration: Alberto Sanchez-Diaz.

Supervision: Alberto Sanchez-Diaz.

Writing – original draft: Magdalena Foltman, Alberto Sanchez-Diaz.

Spa2 functions during cytokinesis in yeast

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007299 March 30, 2018 28 / 32

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007299.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007299.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007299.s011
https://doi.org/10.1371/journal.pgen.1007299


References
1. Strickland LI, Burgess DR. Pathways for membrane trafficking during cytokinesis. Trends Cell Biol.

2004; 14(3):115–8. PMID: 15055200.

2. Xu H, Boulianne GL, Trimble WS. Membrane trafficking in cytokinesis. Semin Cell Dev Biol. 2002; 13

(2):77–82. Epub 2002/07/20. PMID: 12127139.

3. Finger FP, White JG. Fusion and fission: membrane trafficking in animal cytokinesis. Cell. 2002; 108

(6):727–30. Epub 2002/04/17. PMID: 11955425.

4. Wloka C, Bi E. Mechanisms of cytokinesis in budding yeast. Cytoskeleton (Hoboken). 2012; 69

(10):710–26. Epub 2012/06/28. https://doi.org/10.1002/cm.21046 PMID: 22736599.

5. Balasubramanian MK, Bi E, Glotzer M. Comparative analysis of cytokinesis in budding yeast, fission

yeast and animal cells. Curr Biol. 2004; 14(18):R806–18. https://doi.org/10.1016/j.cub.2004.09.022

PMID: 15380095.

6. Barr FA, Gruneberg U. Cytokinesis: placing and making the final cut. Cell. 2007; 131(5):847–60. https://

doi.org/10.1016/j.cell.2007.11.011 PMID: 18045532.

7. Wu B, Guo W. The Exocyst at a Glance. Journal of cell science. 2015; 128(16):2957–64. Epub 2015/

08/05. https://doi.org/10.1242/jcs.156398 PMID: 26240175; PubMed Central PMCID: PMC4541039.

8. Polgar N, Fogelgren B. Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Cold Spring Harb

Perspect Biol. 2017. Epub 2017/03/08. https://doi.org/10.1101/cshperspect.a031401 PMID: 28264817.

9. Hsu SC, TerBush D, Abraham M, Guo W. The exocyst complex in polarized exocytosis. Int Rev Cytol.

2004; 233:243–65. Epub 2004/03/24. https://doi.org/10.1016/S0074-7696(04)33006-8 PMID:

15037366.

10. Picco A, Irastorza-Azcarate I, Specht T, Boke D, Pazos I, Rivier-Cordey AS, et al. The In Vivo Architec-

ture of the Exocyst Provides Structural Basis for Exocytosis. Cell. 2017; 168(3):400–12 e18. Epub

2017/01/28. https://doi.org/10.1016/j.cell.2017.01.004 PMID: 28129539.

11. Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nature reviews Molecular cell biology.

2001; 2(2):98–106. Epub 2001/03/17. https://doi.org/10.1038/35052017 PMID: 11252968.

12. Hong W, Lev S. Tethering the assembly of SNARE complexes. Trends in cell biology. 2014; 24(1):35–

43. Epub 2013/10/15. https://doi.org/10.1016/j.tcb.2013.09.006 PMID: 24119662.

13. VerPlank L, Li R. Cell cycle-regulated trafficking of Chs2 controls actomyosin ring stability during cytoki-

nesis. Mol Biol Cell. 2005; 16(5):2529–43. https://doi.org/10.1091/mbc.E04-12-1090 PMID: 15772160.

14. Foltman M, Molist I, Arcones I, Sacristan C, Filali-Mouncef Y, Roncero C, et al. Ingression Progression

Complexes Control Extracellular Matrix Remodelling during Cytokinesis in Budding Yeast. PLoS Genet.

2016; 12(2):e1005864. Epub 2016/02/20. https://doi.org/10.1371/journal.pgen.1005864 PMID:

26891268; PubMed Central PMCID: PMC4758748.

15. Snyder M. The SPA2 protein of yeast localizes to sites of cell growth. The Journal of cell biology. 1989;

108(4):1419–29. Epub 1989/04/01. PMID: 2647769; PubMed Central PMCID: PMC2115524.

16. Snyder M, Gehrung S, Page BD. Studies concerning the temporal and genetic control of cell polarity in

Saccharomyces cerevisiae. The Journal of cell biology. 1991; 114(3):515–32. Epub 1991/08/01. PMID:

1860883; PubMed Central PMCID: PMC2289092.

17. Flescher EG, Madden K, Snyder M. Components required for cytokinesis are important for bud site

selection in yeast. The Journal of cell biology. 1993; 122(2):373–86. Epub 1993/07/01. PMID: 8320260;

PubMed Central PMCID: PMC2119637.

18. Shih JL, Reck-Peterson SL, Newitt R, Mooseker MS, Aebersold R, Herskowitz I. Cell polarity protein

Spa2P associates with proteins involved in actin function in Saccharomyces cerevisiae. Molecular biol-

ogy of the cell. 2005; 16(10):4595–608. Epub 2005/07/21. https://doi.org/10.1091/mbc.E05-02-0108

PMID: 16030260; PubMed Central PMCID: PMC1237067.

19. Tessarz P, Schwarz M, Mogk A, Bukau B. The yeast AAA+ chaperone Hsp104 is part of a network that

links the actin cytoskeleton with the inheritance of damaged proteins. Molecular and cellular biology.

2009; 29(13):3738–45. Epub 2009/04/29. https://doi.org/10.1128/MCB.00201-09 PMID: 19398583;

PubMed Central PMCID: PMC2698747.

20. Mino A, Tanaka K, Kamei T, Umikawa M, Fujiwara T, Takai Y. Shs1p: a novel member of septin that

interacts with spa2p, involved in polarized growth in saccharomyces cerevisiae. Biochemical and bio-

physical research communications. 1998; 251(3):732–6. Epub 1998/10/29. https://doi.org/10.1006/

bbrc.1998.9541 PMID: 9790978.

21. Arkowitz RA, Lowe N. A small conserved domain in the yeast Spa2p is necessary and sufficient for its

polarized localization. The Journal of cell biology. 1997; 138(1):17–36. Epub 1997/07/14. PMID:

9214378; PubMed Central PMCID: PMC2139937.

Spa2 functions during cytokinesis in yeast

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007299 March 30, 2018 29 / 32

http://www.ncbi.nlm.nih.gov/pubmed/15055200
http://www.ncbi.nlm.nih.gov/pubmed/12127139
http://www.ncbi.nlm.nih.gov/pubmed/11955425
https://doi.org/10.1002/cm.21046
http://www.ncbi.nlm.nih.gov/pubmed/22736599
https://doi.org/10.1016/j.cub.2004.09.022
http://www.ncbi.nlm.nih.gov/pubmed/15380095
https://doi.org/10.1016/j.cell.2007.11.011
https://doi.org/10.1016/j.cell.2007.11.011
http://www.ncbi.nlm.nih.gov/pubmed/18045532
https://doi.org/10.1242/jcs.156398
http://www.ncbi.nlm.nih.gov/pubmed/26240175
https://doi.org/10.1101/cshperspect.a031401
http://www.ncbi.nlm.nih.gov/pubmed/28264817
https://doi.org/10.1016/S0074-7696(04)33006-8
http://www.ncbi.nlm.nih.gov/pubmed/15037366
https://doi.org/10.1016/j.cell.2017.01.004
http://www.ncbi.nlm.nih.gov/pubmed/28129539
https://doi.org/10.1038/35052017
http://www.ncbi.nlm.nih.gov/pubmed/11252968
https://doi.org/10.1016/j.tcb.2013.09.006
http://www.ncbi.nlm.nih.gov/pubmed/24119662
https://doi.org/10.1091/mbc.E04-12-1090
http://www.ncbi.nlm.nih.gov/pubmed/15772160
https://doi.org/10.1371/journal.pgen.1005864
http://www.ncbi.nlm.nih.gov/pubmed/26891268
http://www.ncbi.nlm.nih.gov/pubmed/2647769
http://www.ncbi.nlm.nih.gov/pubmed/1860883
http://www.ncbi.nlm.nih.gov/pubmed/8320260
https://doi.org/10.1091/mbc.E05-02-0108
http://www.ncbi.nlm.nih.gov/pubmed/16030260
https://doi.org/10.1128/MCB.00201-09
http://www.ncbi.nlm.nih.gov/pubmed/19398583
https://doi.org/10.1006/bbrc.1998.9541
https://doi.org/10.1006/bbrc.1998.9541
http://www.ncbi.nlm.nih.gov/pubmed/9790978
http://www.ncbi.nlm.nih.gov/pubmed/9214378
https://doi.org/10.1371/journal.pgen.1007299


22. Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics. 2012; 191(2):347–87. Epub

2012/06/16. https://doi.org/10.1534/genetics.111.132886 PMID: 22701052; PubMed Central PMCID:

PMC3374305.

23. Juanes MA, Piatti S. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cell

Mol Life Sci. 2016. Epub 2016/04/18. https://doi.org/10.1007/s00018-016-2220-3 PMID: 27085703.

24. Chin CF, Bennett AM, Ma WK, Hall MC, Yeong FM. Dependence of Chs2 ER export on dephosphoryla-

tion by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Molecular biology of the cell.

2012; 23(1):45–58. Epub 2011/11/11. https://doi.org/10.1091/mbc.E11-05-0434 PMID: 22072794;

PubMed Central PMCID: PMC3248903.

25. Zhang G, Kashimshetty R, Ng KE, Tan HB, Yeong FM. Exit from mitosis triggers Chs2p transport from

the endoplasmic reticulum to mother-daughter neck via the secretory pathway in budding yeast. J Cell

Biol. 2006; 174(2):207–20. https://doi.org/10.1083/jcb.200604094 PMID: 16847101.

26. Teh EM, Chai CC, Yeong FM. Retention of Chs2p in the ER requires N-terminal CDK1-phosphorylation

sites. Cell cycle. 2009; 8(18):2964–74. Epub 2009/08/29. PMID: 19713768.

27. Sanchez-Diaz A, Nkosi PJ, Murray S, Labib K. The Mitotic Exit Network and Cdc14 phosphatase initiate

cytokinesis by counteracting CDK phosphorylations and blocking polarised growth. The EMBO journal.

2012; 31(17):3620–34. Epub 2012/08/09. https://doi.org/10.1038/emboj.2012.224 PMID: 22872148;

PubMed Central PMCID: PMC3433788.

28. Meitinger F, Petrova B, Lombardi IM, Bertazzi DT, Hub B, Zentgraf H, et al. Targeted localization of

Inn1, Cyk3 and Chs2 by the mitotic-exit network regulates cytokinesis in budding yeast. Journal of cell

science. 2010; 123(Pt 11):1851–61. Epub 2010/05/06. https://doi.org/10.1242/jcs.063891 PMID:

20442249.

29. Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F. Identification of Cdk targets

that control cytokinesis. The EMBO journal. 2015; 34(1):81–96. Epub 2014/11/06. https://doi.org/10.

15252/embj.201488958 PMID: 25371407; PubMed Central PMCID: PMC4291482.

30. Dobbelaere J, Barral Y. Spatial coordination of cytokinetic events by compartmentalization of the cell

cortex. Science. 2004; 305(5682):393–6. https://doi.org/10.1126/science.1099892 PMID: 15256669.

31. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, et al. A global genetic interac-

tion network maps a wiring diagram of cellular function. Science. 2016;353(6306). Epub 2016/10/07.

https://doi.org/10.1126/science.aaf1420 PMID: 27708008.

32. Dixon SJ, Fedyshyn Y, Koh JL, Prasad TS, Chahwan C, Chua G, et al. Significant conservation of syn-

thetic lethal genetic interaction networks between distantly related eukaryotes. Proceedings of the

National Academy of Sciences of the United States of America. 2008; 105(43):16653–8. Epub 2008/10/

22. https://doi.org/10.1073/pnas.0806261105 PMID: 18931302; PubMed Central PMCID:

PMC2575475.

33. Roemer T, Vallier L, Sheu YJ, Snyder M. The Spa2-related protein, Sph1p, is important for polarized

growth in yeast. Journal of cell science. 1998; 111 (Pt 4):479–94. Epub 1998/04/04. PMID: 9443897.

34. Hoefen RJ, Berk BC. The multifunctional GIT family of proteins. Journal of cell science. 2006; 119(Pt

8):1469–75. Epub 2006/04/07. https://doi.org/10.1242/jcs.02925 PMID: 16598076.

35. Gehrung S, Snyder M. The SPA2 gene of Saccharomyces cerevisiae is important for pheromone-

induced morphogenesis and efficient mating. The Journal of cell biology. 1990; 111(4):1451–64. Epub

1990/10/01. PMID: 2211820; PubMed Central PMCID: PMC2116254.

36. Sheu YJ, Santos B, Fortin N, Costigan C, Snyder M. Spa2p interacts with cell polarity proteins and sig-

naling components involved in yeast cell morphogenesis. Molecular and cellular biology. 1998; 18

(7):4053–69. Epub 1998/06/25. PMID: 9632790; PubMed Central PMCID: PMC108990.

37. Moreno D, Neller J, Kestler HA, Kraus J, Dunkler A, Johnsson N. A fluorescent reporter for mapping cel-

lular protein-protein interactions in time and space. Mol Syst Biol. 2013; 9:647. Epub 2013/03/21.

https://doi.org/10.1038/msb.2013.3 PMID: 23511205; PubMed Central PMCID: PMC3619943.

38. Aspenstrom P, Fransson A, Richnau N. Pombe Cdc15 homology proteins: regulators of membrane

dynamics and the actin cytoskeleton. Trends Biochem Sci. 2006; 31(12):670–9. https://doi.org/10.

1016/j.tibs.2006.10.001 PMID: 17074490.

39. Roberts-Galbraith RH, Gould KL. Setting the F-BAR: functions and regulation of the F-BAR protein fam-

ily. Cell Cycle. 2010; 9(20):4091–7. Epub 2010/10/16. https://doi.org/10.4161/cc.9.20.13587 PMID:

20948299.

40. Moravcevic K, Alvarado D, Schmitz KR, Kenniston JA, Mendrola JM, Ferguson KM, et al. Comparison

of Saccharomyces cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding

site. Structure. 2015; 23(2):352–63. Epub 2015/01/27. https://doi.org/10.1016/j.str.2014.12.009 PMID:

25620000; PubMed Central PMCID: PMC4319572.

Spa2 functions during cytokinesis in yeast

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007299 March 30, 2018 30 / 32

https://doi.org/10.1534/genetics.111.132886
http://www.ncbi.nlm.nih.gov/pubmed/22701052
https://doi.org/10.1007/s00018-016-2220-3
http://www.ncbi.nlm.nih.gov/pubmed/27085703
https://doi.org/10.1091/mbc.E11-05-0434
http://www.ncbi.nlm.nih.gov/pubmed/22072794
https://doi.org/10.1083/jcb.200604094
http://www.ncbi.nlm.nih.gov/pubmed/16847101
http://www.ncbi.nlm.nih.gov/pubmed/19713768
https://doi.org/10.1038/emboj.2012.224
http://www.ncbi.nlm.nih.gov/pubmed/22872148
https://doi.org/10.1242/jcs.063891
http://www.ncbi.nlm.nih.gov/pubmed/20442249
https://doi.org/10.15252/embj.201488958
https://doi.org/10.15252/embj.201488958
http://www.ncbi.nlm.nih.gov/pubmed/25371407
https://doi.org/10.1126/science.1099892
http://www.ncbi.nlm.nih.gov/pubmed/15256669
https://doi.org/10.1126/science.aaf1420
http://www.ncbi.nlm.nih.gov/pubmed/27708008
https://doi.org/10.1073/pnas.0806261105
http://www.ncbi.nlm.nih.gov/pubmed/18931302
http://www.ncbi.nlm.nih.gov/pubmed/9443897
https://doi.org/10.1242/jcs.02925
http://www.ncbi.nlm.nih.gov/pubmed/16598076
http://www.ncbi.nlm.nih.gov/pubmed/2211820
http://www.ncbi.nlm.nih.gov/pubmed/9632790
https://doi.org/10.1038/msb.2013.3
http://www.ncbi.nlm.nih.gov/pubmed/23511205
https://doi.org/10.1016/j.tibs.2006.10.001
https://doi.org/10.1016/j.tibs.2006.10.001
http://www.ncbi.nlm.nih.gov/pubmed/17074490
https://doi.org/10.4161/cc.9.20.13587
http://www.ncbi.nlm.nih.gov/pubmed/20948299
https://doi.org/10.1016/j.str.2014.12.009
http://www.ncbi.nlm.nih.gov/pubmed/25620000
https://doi.org/10.1371/journal.pgen.1007299


41. Sanchez-Diaz A, Marchesi V, Murray S, Jones R, Pereira G, Edmondson R, et al. Inn1 couples contrac-

tion of the actomyosin ring to membrane ingression during cytokinesis in budding yeast. Nature cell biol-

ogy. 2008; 10(4):395–406. Epub 2008/03/18. https://doi.org/10.1038/ncb1701 PMID: 18344988.

42. Sanchez-Diaz A, Kanemaki M, Marchesi V, Labib K. Rapid depletion of budding yeast proteins by fusion

to a heat-inducible degron. Sci STKE. 2004; 2004(223):PL8. https://doi.org/10.1126/stke.2232004pl8

PMID: 15010550.

43. Nkosi PJ, Targosz BS, Labib K, Sanchez-Diaz A. Hof1 and Rvs167 have redundant roles in actomyosin

ring function during cytokinesis in budding yeast. PLoS One. 2013; 8(2):e57846. Epub 2013/03/08.

https://doi.org/10.1371/journal.pone.0057846 PMID: 23469085; PubMed Central PMCID:

PMC3585203.

44. Devrekanli A, Foltman M, Roncero C, Sanchez-Diaz A, Labib K. Inn1 and Cyk3 regulate chitin synthase

during cytokinesis in budding yeasts. Journal of cell science. 2012; 125(Pt 22):5453–66. Epub 2012/09/

08. https://doi.org/10.1242/jcs.109157 PMID: 22956544.

45. Oh Y, Chang KJ, Orlean P, Wloka C, Deshaies R, Bi E. Mitotic exit kinase Dbf2 directly phosphorylates

chitin synthase Chs2 to regulate cytokinesis in budding yeast. Molecular biology of the cell. 2012; 23

(13):2445–56. Epub 2012/05/11. https://doi.org/10.1091/mbc.E12-01-0033 PMID: 22573892; PubMed

Central PMCID: PMC3386209.

46. Nishihama R, Schreiter JH, Onishi M, Vallen EA, Hanna J, Moravcevic K, et al. Role of Inn1 and its inter-

actions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae. J Cell

Biol. 2009; 185(6):995–1012. Epub 2009/06/17. doi: jcb.200903125 [pii] https://doi.org/10.1083/jcb.

200903125 PMID: 19528296.

47. Roncero C. The genetic complexity of chitin synthesis in fungi. Current genetics. 2002; 41(6):367–78.

Epub 2002/09/14. https://doi.org/10.1007/s00294-002-0318-7 PMID: 12228806.

48. Wang H, Huang ZX, Au Yong JY, Zou H, Zeng G, Gao J, et al. CDK phosphorylates the polarisome

scaffold Spa2 to maintain its localization at the site of cell growth. Molecular microbiology. 2016; 101

(2):250–64. Epub 2016/04/12. https://doi.org/10.1111/mmi.13386 PMID: 27061942.

49. Luo G, Zhang J, Luca FC, Guo W. Mitotic phosphorylation of Exo84 disrupts exocyst assembly and

arrests cell growth. The Journal of cell biology. 2013; 202(1):97–111. Epub 2013/07/10. https://doi.org/

10.1083/jcb.201211093 PMID: 23836930; PubMed Central PMCID: PMC3704991.

50. Bluemink JG, de Laat SW. New membrane formation during cytokinesis in normal and cytochalasin B-

treated eggs of Xenopus laevis. I. Electron microscope observations. The Journal of cell biology. 1973;

59(1):89–108. Epub 1973/10/01. PMID: 4356573; PubMed Central PMCID: PMC2110905.

51. Drechsel DN, Hyman AA, Hall A, Glotzer M. A requirement for Rho and Cdc42 during cytokinesis in

Xenopus embryos. Current biology: CB. 1997; 7(1):12–23. Epub 1997/01/01. PMID: 8999996.

52. Danilchik MV, Funk WC, Brown EE, Larkin K. Requirement for microtubules in new membrane forma-

tion during cytokinesis of Xenopus embryos. Dev Biol. 1998; 194(1):47–60. Epub 1998/03/14. https://

doi.org/10.1006/dbio.1997.8815 PMID: 9473331.

53. Martens S, Kozlov MM, McMahon HT. How Synaptotagmin Promotes Membrane Fusion. Science.

2007; 316:1205–8. https://doi.org/10.1126/science.1142614 PMID: 17478680

54. Ren L, Willet AH, Roberts-Galbraith RH, McDonald NA, Feoktistova A, Chen JS, et al. The Cdc15 and

Imp2 SH3 domains cooperatively scaffold a network of proteins that redundantly ensure efficient cell

division in fission yeast. Molecular biology of the cell. 2015; 26(2):256–69. Epub 2014/11/28. https://doi.

org/10.1091/mbc.E14-10-1451 PMID: 25428987; PubMed Central PMCID: PMC4294673.

55. McDonald NA, Lind AL, Smith SE, Li R, Gould KL. Nanoscale architecture of the Schizosaccharomyces

pombe contractile ring. Elife. 2017;6. Epub 2017/09/16. https://doi.org/10.7554/eLife.28865 PMID:

28914606.

56. Cortes JC, Konomi M, Martins IM, Munoz J, Moreno MB, Osumi M, et al. The (1,3)beta-D-glucan

synthase subunit Bgs1p is responsible for the fission yeast primary septum formation. Molecular micro-

biology. 2007; 65(1):201–17. Epub 2007/06/22. https://doi.org/10.1111/j.1365-2958.2007.05784.x

PMID: 17581129.

57. Foltman M, Molist I, Sanchez-Diaz A. Synchronization of the Budding Yeast Saccharomyces cerevi-

siae. Methods Mol Biol. 2016; 1369:279–91. Epub 2015/11/01. https://doi.org/10.1007/978-1-4939-

3145-3_19 PMID: 26519319.

58. Arcones I, Roncero C. Monitoring Chitin Deposition During Septum Assembly in Budding Yeast. Meth-

ods Mol Biol. 2016; 1369:59–72. Epub 2015/11/01. https://doi.org/10.1007/978-1-4939-3145-3_5

PMID: 26519305.

59. Foltman M, Sanchez-Diaz A. Studying Protein-Protein Interactions in Budding Yeast Using Co-immuno-

precipitation. Methods Mol Biol. 2016; 1369:239–56. Epub 2015/11/01. https://doi.org/10.1007/978-1-

4939-3145-3_17 PMID: 26519317.

Spa2 functions during cytokinesis in yeast

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007299 March 30, 2018 31 / 32

https://doi.org/10.1038/ncb1701
http://www.ncbi.nlm.nih.gov/pubmed/18344988
https://doi.org/10.1126/stke.2232004pl8
http://www.ncbi.nlm.nih.gov/pubmed/15010550
https://doi.org/10.1371/journal.pone.0057846
http://www.ncbi.nlm.nih.gov/pubmed/23469085
https://doi.org/10.1242/jcs.109157
http://www.ncbi.nlm.nih.gov/pubmed/22956544
https://doi.org/10.1091/mbc.E12-01-0033
http://www.ncbi.nlm.nih.gov/pubmed/22573892
https://doi.org/10.1083/jcb.200903125
https://doi.org/10.1083/jcb.200903125
http://www.ncbi.nlm.nih.gov/pubmed/19528296
https://doi.org/10.1007/s00294-002-0318-7
http://www.ncbi.nlm.nih.gov/pubmed/12228806
https://doi.org/10.1111/mmi.13386
http://www.ncbi.nlm.nih.gov/pubmed/27061942
https://doi.org/10.1083/jcb.201211093
https://doi.org/10.1083/jcb.201211093
http://www.ncbi.nlm.nih.gov/pubmed/23836930
http://www.ncbi.nlm.nih.gov/pubmed/4356573
http://www.ncbi.nlm.nih.gov/pubmed/8999996
https://doi.org/10.1006/dbio.1997.8815
https://doi.org/10.1006/dbio.1997.8815
http://www.ncbi.nlm.nih.gov/pubmed/9473331
https://doi.org/10.1126/science.1142614
http://www.ncbi.nlm.nih.gov/pubmed/17478680
https://doi.org/10.1091/mbc.E14-10-1451
https://doi.org/10.1091/mbc.E14-10-1451
http://www.ncbi.nlm.nih.gov/pubmed/25428987
https://doi.org/10.7554/eLife.28865
http://www.ncbi.nlm.nih.gov/pubmed/28914606
https://doi.org/10.1111/j.1365-2958.2007.05784.x
http://www.ncbi.nlm.nih.gov/pubmed/17581129
https://doi.org/10.1007/978-1-4939-3145-3_19
https://doi.org/10.1007/978-1-4939-3145-3_19
http://www.ncbi.nlm.nih.gov/pubmed/26519319
https://doi.org/10.1007/978-1-4939-3145-3_5
http://www.ncbi.nlm.nih.gov/pubmed/26519305
https://doi.org/10.1007/978-1-4939-3145-3_17
https://doi.org/10.1007/978-1-4939-3145-3_17
http://www.ncbi.nlm.nih.gov/pubmed/26519317
https://doi.org/10.1371/journal.pgen.1007299


60. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, et al. GINS

maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA repli-

cation forks. Nat Cell Biol. 2006; 8(4):358–66. https://doi.org/10.1038/ncb1382 PMID: 16531994.

61. Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, et al. Eukaryotic replisome com-

ponents cooperate to process histones during chromosome replication. Cell Rep. 2013; 3(3):892–904.

Epub 2013/03/19. https://doi.org/10.1016/j.celrep.2013.02.028 PMID: 23499444.

62. Kanemaki M, Sanchez-Diaz A, Gambus A, Labib K. Functional proteomic identification of DNA replica-

tion proteins by induced proteolysis in vivo. Nature. 2003; 423(6941):720–5. https://doi.org/10.1038/

nature01692 PMID: 12768207.

63. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth-

ods. 2012; 9(7):671–5. Epub 2012/08/30. PMID: 22930834.

Spa2 functions during cytokinesis in yeast

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007299 March 30, 2018 32 / 32

https://doi.org/10.1038/ncb1382
http://www.ncbi.nlm.nih.gov/pubmed/16531994
https://doi.org/10.1016/j.celrep.2013.02.028
http://www.ncbi.nlm.nih.gov/pubmed/23499444
https://doi.org/10.1038/nature01692
https://doi.org/10.1038/nature01692
http://www.ncbi.nlm.nih.gov/pubmed/12768207
http://www.ncbi.nlm.nih.gov/pubmed/22930834
https://doi.org/10.1371/journal.pgen.1007299

