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Abstract: With the development of high-resolution optical sensors, the classification of ground
objects combined with multivariate optical sensors is a hot topic at present. Deep learning
methods, such as convolutional neural networks, are applied to feature extraction and classification.
In this work, a novel deep belief network (DBN) hyperspectral image classification method
based on multivariate optical sensors and stacked by restricted Boltzmann machines is proposed.
We introduced the DBN framework to classify spatial hyperspectral sensor data on the basis of
DBN. Then, the improved method (combination of spectral and spatial information) was verified.
After unsupervised pretraining and supervised fine-tuning, the DBN model could successfully learn
features. Additionally, we added a logistic regression layer that could classify the hyperspectral
images. Moreover, the proposed training method, which fuses spectral and spatial information, was
tested over the Indian Pines and Pavia University datasets. The advantages of this method over
traditional methods are as follows: (1) the network has deep structure and the ability of feature
extraction is stronger than traditional classifiers; (2) experimental results indicate that our method
outperforms traditional classification and other deep learning approaches.

Keywords: hyperspectral image; deep learning; feature extraction; classification; remote sensors;
multi-sensor fusion

1. Introduction

With the development of high-resolution optical sensors, hyperspectral remote sensing images
are achieved, which consist of hundreds of different spectral bands of the same remote sensing scene.
Hyperspectral remote images are essential tools for tasks such as target detection and classification
because of these images’ advantage in describing ground truth information. Their applications vary
and include agriculture, military, geology, and environmental science. Different land covers have
various spectral curves due to the complexity of the composition of the earth’s surface. Hyperspectral
images are rich in spectral information. Each pixel can produce a high-resolution curve. Traditional
multispectral remote images use only a few bands to represent a complete spectral curve. However,
dealing with hundreds of bands is also challenging [1]. Due to the large amount of hyperspectral
remote sensing image data, the classification speed is slow. At the same time, the high spectral
dimension of hyperspectral remote sensing images leads to the appearance of Hughes phenomenon.

Hyperspectral remote sensing images are collected by high-resolution optical sensors; the datasets
used in this experiment were obtained by an airborne visible/infrared imaging spectrometer (AVIRIS)
sensor and reflective optics system imaging spectrometer (ROSIS) sensor, respectively.
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Classifying hyperspectral images is a common technique in discovering information in
hyperspectral sensor data. Prior to image classification, dimension reduction is necessary because
hyperspectral images contain a large amount of information. Neural networks and support vector
machines (SVMs) [2] are extensively used in hyperspectral classification because of their potential
in handling high-dimension data. They can manage most of the classification but cannot provide
enriched information. This problem renders these algorithms limited in several areas.

In recent years, research on deep learning received considerable attention due to breakthroughs in
many fields. The use of deep learning in classifying hyperspectral images can result in high accuracy [3].
There are several common models in deep learning, such as the deep neural network model and
recurrent neural network model. They have their own representative networks, convolution neural
network and recursive neural network, respectively, referred to as CNN and RNN. CNN effectively
reduces the problem of a large number of parameters. The convolution core is used as the intermediary.
After image convolution, the original position relationship still exists, while the parameters of the
hidden layer of the image input layer are reduced by geometric multiples. The basic operation units of
CNN are convolution, pooling, full connection, and recognition. The recursive neural network can
also be called a forward neural network. Sample processing time is independent. In RNN, the output
of neurons can act on themselves at the next time. The recursive neural network can be regarded as a
neural network that transmits in time. To improve the accuracy of classification, this work proposes
the application of a deep belief network (DBN) model to hyperspectral images. DBN is an algorithm
proposed by Hilton in 2006 [4]. It is based on a neural network and developed using the hierarchical
learning method, which learns input data layer by layer in an unsupervised manner. Each layer is
created using a restricted Boltzmann machine (RBM). The features learned are regarded as the input of
the subsequent layer. Finally, a softmax classifier used in the last layer fine-tunes the parameters of
the network in a supervised manner and labels each pixel and the result of the classification. In other
words, DBNs are obtained by stacking RBMs on one another so that the input to one layer is given by
the hidden units of the adjacent layer, as if they were data, and adding a last discriminative layer [5].

A Boltzmann machine is powerful in unsupervised learning and can locate information hidden
among data. Thus, it is suitable for data mining. A Boltzmann machine is a fully connected network.
This structure extends the training time, thereby restricting the application of the network. An RBM
and its learning algorithm can address the problems of deep neural networks, such as classification,
regression, image feature extraction, and collaborative filtering.

Many variants of the RBM were developed since the machine was created. The convolutional RBM
created by Reference [6] can extract large-scale features and exhibit good performance. An effective
method using the TLCNN-RBM (convolutional neural network mixed restricted Boltzmann machine
based on transfer learning) model for a small sample of voiceprint recognition was provided by
Reference [7]. In Reference [8], a Gaussian RBM was proposed to learn multiple layers of features from
small images, whereas, in Reference [9], a conditional RBM learned to represent spatial transformations
using factored high-order Boltzmann machines.

The main contribution of this work is the development of the stacks of an RBM, hereafter called
the DBN model. We modified the standard RBM and its learning algorithm. The processes can be
regarded as pretraining and fine-tuning, wherein data are trained in mini-batches to optimize the
loss function of the validation dataset. The framework learns deep features that model different
ground-truth classes in hyperspectral images. We experimentally demonstrate that this generative
feature learning for a spatial classifier (SC) or joint spectral–SC (JSSC) becomes effective, using the
learned features to exhibit state-of-the-art performance on hyperspectral image classification.

The rest of this paper is organized as follows: in Section 2, the main ideas and the structure of
the DBN are discussed in detail, and the proposed hyperspectral sensor data classification method is
presented in combination with spectral information and the spatial context. In Section 3, experimental
results are elaborated. Finally, the study is summarized in Section 4.
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2. Methods

This section introduces the composition of RBM and the common DBN model, and then introduces
the DBN classification model based on spatial information and joint spatial–spectral information.

2.1. RBM

An RBM is a random generative neural network composed of two layers. One layer comprises
binary visible units, and the other comprises binary hidden units. An energy function was introduced
to identify the state of the RBM, which was developed from the energy function of the Hopfield network
in a nonlinear dynamic system. Therefore, the objective function of the system was transformed into
an extreme value problem, and the RBM model could be easily analyzed [10].

An RBM is regarded as an Ising model; hence, its energy function is expressed as

E(v, h; θ) = −∑
ij

Wijvihj −∑
i

bivi −∑
j

ajhj, (1)

where θ = (w, a, b) is the parameter of the RBM; wij represents the value of the connection between
the visible units v and the hidden units h; and bi and aj are bias terms of the visible and hidden units,
respectively.

The conditional distributions of the hidden units h and the visible units v are expressed as

P(hj = 1|v) = 1
1 + exp(−∑

i
Wijvi − aj)

, (2)

P(vi = 1|h) = 1
1 + exp(−∑

j
Wijhj − bi)

. (3)

The target function of the RBM focuses on the solution of the distribution of h and v and renders
them as equal as possible. Thus, we calculated the K–L (Kullback-Leibler) distance of their distribution
and then reduced it.

In determining the expectation of the joint probability, obtaining the normalization factor Z(θ)
is difficult, and the time complexity will be O(2m+n). Hence, Gibbs sampling was introduced to
approximately reconstructed data. The learning of weights is expressed as

∆wij = Edata(vihj)− Emodel(vihj). (4)

The subtracted value was equal to the expectation of the energy function of the input data and
could be obtained. This value was equal to the expectation of the energy function of the model, which
was obtained from Gibbs sampling.

Training the RBM through Gibbs sampling is time consuming. We commonly use the contrastive
divergence (CD-k) algorithm, where k is equal to 1; thus, the training time of the RBM network
improves [10].

The average sum of the gradients was approximated using the samples obtained from the
conditional distributions, and Gibbs sampling was performed only once.

2.2. DBN

A DBN is a probability generation model that is opposite the traditional discriminative model.
This network is a deep learning model that is stacked by RBM and trained in a greedy manner.
The output of the previous layer was used as the input of the subsequent layer. Finally, a DBN network
was formed.

DBN hierarchical learning was inspired by the structure of the human brain. Each layer of the
deep network can be regarded as a logistic regression (LR) model.
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The joint distribution function of x and hk in Layer l is

p(x, h1, h2, . . . , hl) = (
l−2

∏
k=0

P(hk
∣∣∣hk+1) )P(hl−1, hl). (5)

The input data of the DBN model comprise the two-dimensional (2D) vector obtained during
preprocessing. The RBM layers were trained one by one in pretraining. The succeeding visible variable
was the duplicate of the hidden variable in the previous layer. The parameters transferred in layer-wise
manner, and the features were learned from the previous layer. The LR in the highest layer was trained
by fine-tuning, where the cost function was revised via back propagation to optimize the weights
w [11].

The DBN architecture is shown in Figure 1.
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Figure 1. Architecture of a deep belief network (DBN).

Two steps are involved in the process of training a DBN model. Each RBM layer is unsupervisedly
trained, the input should be mapped into different feature spaces, and information should be kept as
much as possible. Subsequently, the LR layer is added on top of the DBN as a supervised classifier [12].

2.3. Proposed Method

Features are the raw materials for training and influence the performance of the final model.
Theoretically, the more hidden layers are present, the more features the deep neural network (DNN)
can extract, and the more complex the function learned. Accordingly, the DNN model can be described
in detail. However, the DNN is gradually replaced by a shallow learning model, such as SVM and
boosting, due to problems that occur when the weights w are initialized with a random number in a
multi-layer network.

If the weights are set to be too large, then the training process will result in the local optimum.
When the weights are set too small, gradient dispersion will occur, and the weights change gradually
due to the small gradient. Obtaining the optimal solution is also difficult.

To address these problems, a layer-by-layer initialization of the deep neural network can obtain
initial weights that are close to the optimal solution [13]. Layer-by-layer initialization is obtained
through unsupervised learning, which can be conducted automatically.
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On the basis of the DBN model, this work proposes a new method of classifying hyperspectral
images. The basic DBN classification model involves preprocessing of data, pretraining, and
fine-tuning. The difference between DBN and a neural network is the introduction of pretraining.
The initial weight value can be close to the global optimization in the DBN model. Therefore, the greedy
layer-wise supervised learning has better accuracy than does a neural network. In the supervised
fine-tuning procedure, the mini-batch DBN model validates the learned features and the loss function
to update the weights w. Parameters are trained in mini-batches every training epoch.

Hyperspectral sensor data comprise a spectral image cube that combines spectral and spatial
information. Therefore, we compared the effect of two DBN structures, namely SC–DBN and
JSSC–DBN. For SC–DBN, input data were the spatial information. Meanwhile, for JSSC–DBN, the input
data comprised a new vector that combined the spectral and spatial information [14]. The entire process
is presented in Figure 2.
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Figure 2. Process of hyperspectral classification based on DBN.

2.3.1. Spatial Classification

Spatial information plays an important role in classification when we attempt to improve accuracy.
Before the spatial data are obtained, dimension reduction must be conducted on the hyperspectral
remote images. Unlike spectral classification, which extracts spectral information from each pixel, SC
cuts an image by window size, as shown in Figure 2a. Firstly, principal component analysis (PCA)
dimension reduction was carried out to extract n main components of spectral information. Then,
the neighborhood pixel blocks of m×m were extracted with the labeled pixels as the center, so that
each pixel block contained spatial structure information, and the size of the pixel block was m×m× N.
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After that, the block of pixels was transformed into a 2D feature vector with the size of m2 × N. Finally,
the 2D feature vector was stretched to a one-dimensional (1D) vector with the size of m2N × 1.

Then, the 1D vector with spatial information was fed into the DBN model. We constructed each
RBM layer that shared weighs with each sigmoidal layer. In each layer, CD-k was used in pretraining,
so that weights could be updated by errors between the predicted classification results and the true
land cover labels. Finally, spatial feature was learned layer by layer. Stochastic gradient descent was
used to update the cost function in finetuning. In every epoch, the SC–DBN model calculated the cost
on the validation set to make the loss as close as possible to the best validation loss. At the end, we
tested it on the test set to obtain accuracy and kappa coefficient.

2.3.2. Joint Spectral–Spatial Classification

Joint spectral and spatial classification (JSSC) was long applied in hyperspectral sensor data
classification [15,16]. In our proposed work, a spectral–spatial classifier was introduced in the deep
learning method. To fully use the spectral–spatial information, joint spectral–spatial classification
places the spectral and spatial features together in a DBN classifier. Generally speaking, the pixels in
the same spatial neighborhood have the same or similar spectral characteristics as the central pixels.
Therefore, the neighborhood pixel blocks of m×m are extracted with the labeled pixels as the center,
and each pixel block contains spatial structure information. Then, the pixel blocks are transformed
into 2D feature vectors, and the 2D feature vectors are transformed into 1D vectors. Meanwhile,
the 1D vector containing spectral information is extracted, whose length is equal to the number
of spectral bands. The 1D vector with spatial information and the 1D vector containing spectral
information are stitched together into a vector, which is the input of JSSC–DBN.

The spatial information of hyperspectral images has the correlation that the same object will
occupy a certain space. Thus, the size of the window should be selected properly. We selected m×m
data and placed an m×m×N neighbor region to feed a m2×N vector into the input layer. We merged
spatial data and spectral data into one input vector. Later on, regularization was used in principal
component analysis (PCA) when we trained the parameters of the JSSC–DBN model. PCA was
conducted to reduce the dimension of the hyperspectral image, while regularization could overcome
overfit problem in training. The difference between JSSC and SC is that the former concatenates spatial
and spectral vectors to form a new vector, which is then passed to the input layer.

The processing of the multi-layer RBM network in JSSC is discussed above. For the target dataset,
the model analysis determined the accuracy of each class and the classification map at the end.

3. Experiments and Analysis

3.1. Dataset and Set-Up

We used common remote images to verify the effectiveness of the proposed method. One image
came from the Pavia University dataset, which was captured by the ROSIS sensor. The ROSIS sensor
is a compact, programmable imaging spectrometer based on a CCD (charge-coupied device) matrix
detector array. The instrument is specially designed for monitoring water color and natural chlorophyll
fluorescence, with the purpose of quantitatively extracting the distribution of pigments, suspended
substances, and yellow substances in the marine environment [17]. The scene is sized 610 × 340 pixels
and has 103 bands (after noisy bands are removed). The geometric resolution is 1.3 m with nine
classes, namely asphalt, bitumen, gravel, sheet, bricks, shadows, meadows, soil, and trees, as shown
in Figure 3. The total number of samples, training sets, validation sets, and test sets for each class is
detailed in Table 1.

Another example was the Indian Pines dataset, which is sized of 145 × 145 pixels and has
224 bands. The image was captured by the AVIRIS sensor. The AVIRIS sensor was flown for the first
time in 1986 (first airborne images), and captured first science data in 1987; its data can provide a
spatial resolution of 20 m and 224 spectral bands, covering a spectral range of 0.2–2.4 phenotypes, with
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a spectral resolution of 10 nm [18]. After de-noising of the original images, the remaining 200 bands
were kept without water absorption for the experiments. Figure 4 shows the ground-truth objects.
The total number of samples, training sets, validation sets, and test sets for the 16 ground-truth objects
of Indian Pines are shown in Table 2.
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Table 2. Land cover classes and numbers in Indian Pines.

# Class Samples Training Validation Test

1 Alfalfa 46 28 9 9
2 Corn-notill 1428 856 286 286
3 Corn-mintill 830 498 166 166
4 Corn 237 143 47 47
5 Grass-pasture 483 289 97 97
6 Grass-trees 730 438 146 146
7 Grass-pasture-mowed 28 16 6 6
8 Hay-windrowed 478 286 96 96
9 Oats 20 12 4 4
10 Soybean-notill 972 584 194 194
11 Soybean-mintill 2455 1473 491 491
12 Soybean-clean 593 355 119 119
13 Wheat 205 123 41 41
14 Woods 1265 759 253 253
15 Buildings-grass-trees-drives 386 232 77 77
16 Stone-steel-towers 93 55 19 19

Total 10,249 6147 2051 2051

In our experiment, we trained the proposed methods to investigate the influence of the parameters
in the DBN network and to improve accuracy. To compare the results of SC and JSSC on the two
datasets, we investigated the overall accuracy (OA), average accuracy (AA), and kappa coefficient.
The program was run by Python libraries.

The preprocessing step included conducting PCA on the entire data and transforming the spectral
and spatial information into a 2D vector. This step rendered the three-dimensional (3D) matrix into the
vector, which could be the input of the DBN model.

To avoid potential autocorrelation issues, a validation dataset was added to the training and test
data. The ratio of the training, validation, and testing was 6:2:2, as shown in Tables 1 and 2. The original
data were in matrix form but also needed to be normalized. The parameters of the proposed DBN
network are shown in Table 3, and the window size of both datasets was 7 × 7. The parameters of the
SVM were determined using the grid-search algorithm, and we set c to 10,000 and g to 10 [19].

Table 3. The deep belief network (DBN) network parameters.

Dataset Number of
Hidden Layers

Number of Hidden
Layer Nodes

Pretrain Learning
Rates

Fine-Tune
Learning Rates

Indian Pines 3 310 × 100 × 100 0.01 0.001

Pavia 3 280 × 100 × 100 0.05 0.003

We performed the experiments 100 times with the original randomized training samples to obtain
the experimental results of SVM and the DBN classifier.

3.2. SC

In this part of the experiment, we began by classifying the hyperspectral sensor data using the
SC–DBN method. We focused on the effect of the number of principals. The number of principal
components was selected from 1 to 5. The pretraining epochs were set to 1000 for Indian Pines and 800
for Pavia University. The result is shown in Figure 5. Evidently, the optimal component was 5 for both
datasets. Meanwhile, we investigated the influence of the number of hidden layers, which are also
called “depths”. Similar experiments were performed on depths not exceeding 5.
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Figure 5. Effect of principal components (SC–DBN classifier).

The detailed classification accuracies and corresponding kappa coefficients of the DBN are shown
in Table 4.

Table 4. Overall accuracy (OA), average accuracy (AA), and kappa coefficients of Indian Pines
and Pavia University. SC—spatial classifier; JSSC—joint spectral–spatial classifier; SVM—support
vector machine.

Dataset Measurements SC–DBN n = 3 JSSC–DBN n = 3 SVM

Indian Pines
OA (%) 95.81 96.29 85.71
AA (%) 94.50 95.18 82.93

Kappa (%) 95.22 95.78 83.26

Pavia
OA (%) 95.83 97.67 85.45
AA (%) 94.67 96.79 80.33

Kappa (%) 94.54 96.95 80.94

In SC–DBN, feature extraction is difficult. We selected the number of principals in range 5 and
overall accuracy was considered as the measurement. According to Figure 5, the number of principal
components influenced the accuracy of classification. For Indian Pines, The SC–DBN model performed
best when n was 5. For Pavia University, the best number of principal components was 3.

The entire image classification result of SC–DBN is shown in Figure 6. From the classification
map, different classes are shown in several colors. For SC, the experiments could achieve accuracy of
about 97.7% in Indian and 95.8% in Pavia. In summary, the classification results indicate that the DBN
models performed well on the hyperspectral images. The edge of each class was not notably straight
when compared with the ground truth.

3.3. JSSC

In this section, we investigated the influence of the number of principal components and hidden
layers on spectral–spatial information. Similarly, the number of principal components was researched
for JSSC. The testing results of Indian Pines and Pavia datasets are shown in Figure 7. It shows
the effect of the number of principal components when using the JSSC–DBN method to classify the
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hyperspectral sensor data. The best numbers of principal components for Indian Pines and Pavia
University were 4 and 3, respectively.
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For JSSC, the experiments could achieve overall accuracy of about 97.7% in Indian and 95.8% in
Pavia. Therefore, the DBN model is a promising method for classifying hyperspectral images, whether
using SC or JSSC.

The joint-dominated classification maps on Pavia University and Indian Pines are shown in
Figure 8.
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In terms of the SVM-based method, spatial and spectral classification could also obtain high
accuracy. The origin data were split into two parts for the verification of the classification results and
calculation of the AA, thus comparing the SVM-based method and the proposed technique.

Detailed classification accuracies and corresponding kappa coefficients of each class are shown in
Table 5. As the JSSC can extract more information than SC and SVM, it is unsurprising to find that
JSSC performed the best among the three classifiers.

Table 5. Classification result on Indian Pines.

Class SC–DBN (n = 4) JSSC–DBN (n = 4) SVM

Alfalfa 100 100 33.33
Corn-notill 92.71 96.87 94.44

Corn-mintill 86.93 94.01 77.84
Corn 95.56 100 88.89

Grass-pasture 97.03 100 91.09
Grass-trees 96.53 98.26 91.33

Grass-pasture-mowed 85.71 100 28.57
Hay-windrowed 100 100 97.94

Oats 100 100 33.33
Soybean-notill 86.01 98.93 84.46

Soybean-mintill 97.59 97.73 100
Soybean-clean 85.59 92.03 66.95

Wheat 95.83 97.91 91.67
Woods 99.21 98.41 91.67

Buildings-grass-trees-drives 80.25 89.23 27.16
Stone-steel-towers 100 100 0.00

Kappa (%) 92.82 96.88 83.26
Overall accuracy (%) 93.71 97.26 85.71
Average accuracy (%) 93.68 96.28 83.08

4. Conclusions and Discussion

In this work, we proposed a new hyperspectral image classification model based on DBN.
The proposed model learns deep features during hyperspectral image classification. The framework of
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a DBN was introduced to classify spatial hyperspectral sensor image data on the basis of the DBN.
Then, the improved method, which combines spectral and spatial information, was verified. After
unsupervised pretraining and supervised fine-tuning, the DBN model could successfully learn the
features. We added an LR layer on top for classifying the hyperspectral images. In comparison with
the SVM-based method, the DBN model performed better in terms of accuracy and kappa coefficient.
In addition, JSSC–DBN was proven to be the best classifier.

Therefore, the deep learning method improves the accuracy of hyperspectral classification.
According to our results, we suggest that the DBN model be designed with 3–5 hidden layers, with
each having no more than 100 hidden units.

In our future work, we will improve the DBN model regarding its accuracy and time consumption.
Given the irreplaceable role of spectral–spatial feature extraction in the DBN model, further
investigation should be devoted to parameter optimization of the deep learning framework. The DBN
model runs slowly; thus, the PCA algorithm was selected to reduce the dimension of hyperspectral
data, before being input into the DBN model designed in this paper for classification. However,
the performance of the PCA algorithm in classification tasks is not ideal. In the future, we will continue
improving the model in combination with the latest achievements in the field of dimensionality
reduction algorithms.
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