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Abstract

Glucocorticoids (GCs) are key mediators of stress response and are widely used as pharmacological agents to treat immune
diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC
receptor (GR), which interacts with other transcription factors to regulate gene expression. Here, we combined different
functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the
transcriptional response to GC over time in 4 Yoruba (YRI) and 4 Tuscans (TSI) lymphoblastoid cell lines (LCLs), we suggest
that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative) depending on
the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-kB in two
YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-
regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more
likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that
genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest
to the power of combining different functional genomic approaches.
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Introduction

Glucocorticoids (GCs) are steroid hormones that mediate the

response to stress. Because of their anti-inflammatory action, GCs

are also widely prescribed as pharmacological agents to treat

immunological disorders such as asthma and inflammatory bowel

disease [1,2]. Thanks to their pro-apoptotic action in lymphocytes,

they are also an effective treatment for different types of lymphoid

malignancies [3,4].

GC action is largely mediated by the GC receptor (GR,

encoded by the gene NR3C1), a ligand-dependent transcription

factor (TF). In the absence of GCs, the GR is part of an inactive

cytosolic complex. Upon GC binding, the activated GR

translocates to the nucleus where it interacts with other TFs to

regulate the expression of target genes (referred to as positive and

negative regulation of gene expression, depending on whether the

genes are up- or down-regulated, respectively). Even though the

mechanisms of gene regulation by the GR are quite complex and

may also involve displacement of other nuclear receptors [5], two

main models have been proposed: trans-activation and trans-

repression (reviewed in [6]). In the trans-activation model, the GR

directly binds the DNA and interacts positively with other TFs

leading to up-regulation of gene expression. Conversely, in the

trans-repression model, the GR down-regulates the expression of

target genes by interfering with the activity of other TFs, such as

AP1 and NF-kB. Trans-repression has been widely described as

the mechanism by which GCs exert their anti-inflammatory action

[7–9].

The NF-kB complex belongs to a family of TFs that are

localized in the cytoplasm as dimers (e.g. p50-p65 complex) in

their inactive form, and can be activated by a variety of stimuli

including LPS and TNF [10–12]. Activated NF-kB translocates to

the nucleus, where it binds response elements on the DNA and

induces the expression of a variety of pro-inflammatory genes such

as cytokines and chemokines [13–16]. Therefore, NF-kB is a key

mediator of immune and inflammatory responses. Many mechan-

isms of interaction between GR and NF-kB have been proposed

[6]. The two main models differ in whether GR interaction affects

NF-kB binding affinity to the DNA. However, most single gene

studies, and a recent genome-wide survey, of GR and NF-kB
interactions support a model where GR counteracts the action of

NF-kB through protein-protein interaction without reducing NF-

kB binding to the DNA ([6,17] and references therein).

Inter-individual variation in the response to GCs has been

documented (see, for example, [18]). More recently, we have

identified genetic variants associated with cellular response to GC
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[19]. More specifically, we identified cis eQTLs (expression

quantitative trait loci) in lymphoblastoid cell lines (LCLs) treated

in parallel with an artificial GC, dexamethasone (Dex), and with

a control (the vehicle for Dex, EtOH) [19]. Using a recently

developed Bayesian approach [19], we distinguished among three

different categories of eQTLs: no-interaction eQTLs, GC-only

eQTLs and control-only eQTLs. In the case of no-interaction

eQTLs, the genotype has a significant, but equal effect on

variation in expression in the presence and absence of GC. At GC-

only eQTLs, the genotype is associated with the expression

phenotype in GC-treated samples, but not in control-treated

samples. In control-only eQTLs, the genotype is associated with

the expression phenotype in control-treated samples, but not in

GC-treated samples. These categories likely reflect different

molecular mechanisms. More specifically, we hypothesized that

GC-only eQTLs influence the binding of TF complexes that are

only active in the presence of GC treatment (e.g. the GR and

positively interacting TFs). Although control-only eQTLs may be

compatible with a variety of mechanisms, we hypothesized that

a subset of control-only eQTLs are polymorphisms that disrupt the

binding of regulatory complexes, like NF-kB, that are counter-

acted by the GR.

Here, we combined different functional genomic approaches to

characterize molecular aspects of the transcriptome-wide response

to GCs and to assess the functional relevance of polymorphisms in

GR binding sites. To this end, we generated and integrated three

different datasets. First, we performed ChIP-seq experiments for

the GR and NF-kB (p65) in LCLs treated with GC or with

control, allowing us to characterize binding patterns in response to

GC treatment. We then profiled the transcriptional response to

GCs over a 24 hrs time course in LCLs. By overlaying the ChIP-

seq on the time-course data, we show that up- and down-regulated

genes have distinct response profiles. Finally, to identify functional

polymorphisms within each interaction eQTL, we used data from

the 1000 Genomes Project and the expression data from our

previous study [19] to perform cis-eQTL mapping with greater

genetic resolution. By overlaying the eQTL mapping on the ChIP-

seq data, we find that GC-only eQTLs are more likely to occur in

GR binding sites compared to control-only eQTLs. Overall our

results demonstrate the power of integrating several functional

genomics approaches to understand molecular and genetic aspects

of gene-environment interactions.

Results and Discussion

Identification of GR and NF-kB Binding Sites in LCLs
To identify the genomic regions where GR binds in the

presence of GC, we performed GR ChIP-seq in two YRI LCLs

treated with 1026 M Dex for 1 hr. We used the software MACS

[20] to identify peaks enriched in the immunoprecipitated samples

compared to non-immunoprecipitated samples (input). In the

presence of Dex, we identified 1,350 and 5,668 GR binding

regions at 5% and 15% FDR thresholds, respectively. To confirm

that GR binding is ligand-dependent, we also performed ChIP-seq

in the same LCLs treated with ethanol (the vehicle for Dex, as

a control) for 1 hr and compared the results across treatment

conditions. Only 3.8% of the regions bound by the GR in the

presence of Dex (15% FDR) are also bound in the control.

Furthermore, the binding regions identified in the absence of Dex

are an almost perfect subset (213 out of 244) of the binding regions

identified in the presence of Dex; these binding regions may be

due to residual GC present in the culturing media or to ligand-

independent receptor occupancy (Figure S1 in File S1). Ligand-

dependent GR binding has also been observed in ChIP-seq studies

performed in lung epithelial carcinoma and breast cancer cell lines

[21,22].

To investigate the effect of GC treatment on NF-kB binding, we

performed NF-kB ChIP-seq in the same LCLs and under the same

conditions described above for GR ChIP-seq. Previous studies

have detected NF-kB binding sites in unstimulated LCLs [23],

suggesting that EBV transformation results in some degree of

activation of NF-kB. Based on these findings, we have decided to

analyze the effect of GC on NF-kB binding without further

stimulating the cells. We should note however that the level of NF-

kB activity in LCLs might be lower than what could be achieved

by directly stimulating these cells with LPS. In the absence of Dex

(i.e. in the control aliquots), we identified 372 and 558 binding sites

at 5% and 15% FDR thresholds. Upon Dex treatment, we

identified 466 and 657 NF-kB binding sites at the same FDR

thresholds, respectively. Interaction between GR and NF-kB was

previously proposed to occur through protein-protein interaction

without reduction of NF-kB binding to the DNA [6,17]. Our

ChIP-seq results extend this model to the genome-wide level, as we

did not see a decrease in the number of NF-kB binding sites in the

presence of Dex. Indeed, we found slightly more binding events in

the Dex-treated versus control-treated samples, raising the

possibility that some NF-kB binding sites are gained through the

interaction between the GR and NF-kB. These findings are

consistent with similar results in HeLa B2 cells [17], which were

stably transfected to express the GR and treated with TNF (to

activate NF-kB) and triamcinolone acetonide (a GR ligand), and

they extend this observation to immune cells endogenously

expressing both TFs. To test more quantitatively the hypothesis

of increased NFkB binding upon GR activation, we took

advantage of transcriptional response data that we previously

obtained in 114 LCLs following 8 hrs treatment with Dex or

control, leading to the identification of a comprehensive set of

4,568 differentially expressed genes [19]. These data allowed us to

select binding regions that are more likely to be functional, i.e. lie

near (within 100 Kb) differentially expressed genes. We focused on

GR binding sites and asked whether we could detect any

difference in NF-kB binding at these sites upon GC treatment.

We observed a significant increase in the number of sequencing

tags in the NF-kB sample upon GC treatment (16% increase,

MWU p-value = 0.0007), thus supporting a scenario where GR

occupancy on the chromatin results in an increase in NF-kB
binding.

A Dynamic Profile of the Positive and Negative
Transcriptional Response to GC
Previous studies have suggested that the transcriptional response

to GC treatment is multi-layered, with primary GR targets acting

as transcriptional regulators that mediate differential expression at

a set of secondary (relative to GR) GC target genes [24]. As the

temporal response profile has not been characterized at the

transcriptome-wide level, key features of the dynamic response to

GCs remain unknown (e.g. number of layers, genes that compose

each layer, shape of response over time). Here, we investigated the

transcriptome-wide profile of the GC response over time to learn

about the dynamic response for positively and negatively regulated

genes. To this end, we performed a time course experiment in 8

LCLs samples treated for 2, 4, 8, 12, 16 and 24 hrs with 1026 M

Dex or control. We identified a total of 1,202 genes that were

differentially expressed (FDR=5%) at one or more time points.

To identify general patterns of transcriptional response over time,

we then clustered the differentially expressed genes based on the

change in log2 fold change over time using k-means clustering

(k = 8, see Methods, Figure 1).

GR Binding Features
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To learn about the temporal profile of primary GR targets, we

mapped the GR binding sites identified by ChIP-seq relative to the

differentially expressed genes in the time course experiment. One

might expect that GR, being the first responder, directly binds and

regulates (either positively or negatively) the early responding

genes, and the TFs among them regulate the next wave of

regulation. Consistent with the idea of a transcriptional cascade,

the clusters containing early and strongly responsive genes are

significantly enriched for genes involved in the regulation of

transcription (cluster 1, p = 0.026 and cluster 8, p = 0.0001),

raising the possibility that the late responsive genes are targets of

these transcriptional regulators. Surprisingly, we observed that

a substantial fraction of differentially expressed genes in all clusters

are primary GR targets (here identified as differentially expressed

genes with GR binding sites within 100 Kb of the transcription

start site (TSS)) (see Table 1). Therefore, primary GR targets

include genes with peak response at early or late time points after

GC treatment. In particular, we observed a modest, but significant

enrichment for primary GR targets in clusters comprising weakly

and late down-regulated genes (peaking at 8 or 12 hours) (cluster 5,

13% enrichment, p = 0.009, cluster 6, 15% enrichment, p = 0.01).

These results suggests that, even though GR may bind early, its

regulatory effects on different genes may occur at different times,

as a result of variation in RNA degradation and transcription rates

and depending on the activation or inactivation of interacting TFs.

Furthermore, GR regulatory effect may be variable not only in

time but also in direction (positive or negative) depending upon the

presence of specific interacting TFs.

Distinct Features of Positive and Negative GR Binding
Regions
As described above, GR activation may result in positive or

negative regulation of gene expression. Here, we define as positive

a GR binding region that contributes to up-regulation of GR

target genes. A negative GR binding region, conversely, is a region

that contributes to down-regulation of target genes.

To better characterize the molecular features that predict the

functional role of positive and negative GR binding regions, we

overlapped the ChIP-seq data with our published data on

transcriptional response at 8 hrs after treatment [19]. The larger

sample size in this data set (n = 114), compared to the time

course experiment (n = 8), affords greater power to detect

predictive features of functional binding regions. To address

the question of whether positive and negative GR binding

regions have different molecular characteristics, we performed

multiple regression using a logistic model to identify variables

that were predictive of the direction of transcriptional response

(see methods for details on the model). We found that greater

distance from the TSS is associated with a lower probability

that a differentially expressed gene is up-regulated (Table 2 and

Figure S2 in File S1). Moreover, consistent with the trans-

activation mechanism, where the GR directly binds its canonical

motif, we found that the presence of a canonical motif is

significantly more likely to coincide with a positive GR binding

region (p= 0.016; table 1). This is also consistent with the

notion that GR down-regulates gene expression by either

interacting negatively with other TFs or by directly binding to

negative GREs, which were shown not to contain the canonical

motif [21,25]. Interestingly, we also found that genes were

significantly more likely to be up-regulated if there was a CTCF

motif between the GR binding region and the TSS. While

CTCF insulator was discovered as blocking an enhancer [26], it

was subsequently shown that it may also have an activating

effect depending on the context [27]. Accordingly, previous

studies have shown that the enhancer blocking activity of CTCF

can be altered and modulated by interaction with other TFs,

some of which belong to the nuclear receptor super-family ([28]

and references therein). Therefore, our findings raise the

possibility that alteration of CTCF enhancer blocking activity

Figure 1. A dynamic profile of the positive and negative transcriptional response to GC. A. Heat map of differentially expressed genes
over a 24 hrs GC treatment time course. Genes are sorted according to the cluster they fall in. Each horizontal line represents the average log2 fold
change for a gene across the eight samples. Time of treatment is reported on the horizontal axis. Clusters 1–4 correspond to up-regulated genes,
while clusters 5–8 correspond to down-regulated genes. B. Temporal profile for the centers of each of the 8 clusters of differentially expressed genes.
Each cluster profile corresponds to a different dynamic response to GC treatment, thus reflecting both the timing and intensity of the response. For
example, clusters 1 and 2 correspond to strongly and early up-regulated genes, while clusters 7 and 8 correspond to strongly and early down-
regulated genes. While several clusters corresponded to genes that showed a rapid up- or down-regulation without major subsequent changes in
transcript levels, most genes’ response peaked at one of the later time points (post 2 h) and then declined.
doi:10.1371/journal.pone.0061654.g001

GR Binding Features
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is one of the events that, concomitantly with (or in response to)

GR binding to the DNA, is required for up-regulation of genes

in response to GC.

A Molecular Interpretation for Interaction eQTLs
To characterize the functional significance of SNPs in GR

binding regions, we used the data on GR and NF-kB binding

to investigate the molecular mechanisms underlying regulatory

polymorphisms that interact with GC treatment. In our previous

study [19], we used only the HapMap SNPs to map GC-

interaction eQTLs, which implies that for many eQTLs the

causative SNP was not tested. As we sought to compare eQTLs

and binding events based on their proximity, it was important

to identify the causative variant. To this end, we used whole-

genome resequencing data for 57 YRI individuals (www.

1000genomes.org) and the expression data from [19] to map

GC-interaction eQTLs using BRIdGE, which applies a Bayesian

statistical framework for identifying and classifying gene-

environment interactions (described in [19]). To test the

hypothesis that GC-only eQTLs alter GR binding to the

chromatin, we overlapped eQTL mapping results with GR

binding regions identified through ChIP-seq. We focused on

interaction eQTLs located within 100 bp of any GR binding

region (average size for a GR binding region, as estimated by

MACS, is 157 bp) and compared the number of GC- and

control-only eQTLs, as these two classes of SNPs are likely to

have similar ascertainment properties (e.g. allele frequency,

background LD). Our results show that genetic variants that

affect gene expression only in the presence of GCs are 1.9-fold

more likely to occur in or near GR binding regions than genetic

variants that affect gene expression only in the absence of GCs

(30 GC-only versus 16 control-only eQTLs, p= 0.02, calculated

from 1000 re-sampling) (table S1 in File S1). These results show

that genetic variants in GR binding sites are associated with

transcriptional changes in response to GC and suggest that

a portion of GC-only eQTLs represent polymorphisms that

alter GR binding to the DNA. Generally, these results suggest

a model for GC-only eQTLs where SNP genotype alters GR

binding in the presence of GC, with consequent effects on the

level of gene expression.

Because in control-only eQTLs the effect of a polymorphism on

expression is erased by GC treatment, we hypothesized that some

of these eQTLs may reflect polymorphisms that alter the binding

of NF-kB, a TF counteracted by the GR. As expected, we

observed that control-only eQTLs tend to be enriched near

binding sites for NF-kB, compared to GC-only eQTLs (2.3-fold

enrichment, 7 control-only vs 3 GC-only) (Figure 2B and table S2

in File S1). However, this pattern is not significant (p.0.05). Given

the limited number of interaction eQTLs located near NF-kB
binding sites and the presence of GC-dependent gained NF-kB
binding sites, additional data on TFs that are counter-acted by the

GR are needed to provide a more extensive characterization of

control-only eQTLs.

Conclusions
Here, we provide insights into the mechanisms regulating the

transcriptional response to GC. By combining genome-wide

transcriptional and binding data, we show that the transcrip-

tional response to GC does not follow a simple ‘‘cascade

model’’. Specifically, we find that GR primary targets are

diverse in terms of the timing (early, mid, or late) and direction

(activated or inhibited) of the response. Therefore, even though

GR does bind early, its regulatory effects on different genes may

be modulated by appropriate partners that are activated or

deactivated at different times. Similarly, the direction of the

response may also depend upon the presence or absence of

these GR partners. Consistent with this model, we showed that

the binding sites for up- and down-regulated genes are

associated with different molecular features, which in turn

may indicate diverse underlying regulatory mechanisms, e.g.

mediated by non-canonical interacting factors, such as CTCF.

To investigate the interplay between GR and its partners, we

Table 1. Features of the k-means clusters from the time course experiment.

Cluster Response peak time (hrs)
number of
genes primary target genes genes involved in transcription

% p* % p*

1 Up 4 28 75 0.251 38 0.026

2 Up 4 85 71 0.289 20 0.509

3 Up 4 255 64 0.909 17 0.845

4 Up 8 216 67 0.609 17 0.831

5 Down 12 210 74 0.009 14 0.973

6 Down 8 152 76 0.010 20 0.440

7 Down 4 213 57 0.100 20 0.399

8 Down 2 43 63 0.789 46 1024

*p-value from enrichment analysis.
doi:10.1371/journal.pone.0061654.t001

Table 2. Features of the GR binding regions.

effect size P

Distance 26.35E-06 0.002

Direction 1.29E-01 0.191

Closest 24.13E-02 0.716

Tags 1.61E-04 0.956

CTCF 3.32E-01 0.006

DNase 3.35E-01 0.190

Motif 2.88E-01 0.016

doi:10.1371/journal.pone.0061654.t002

GR Binding Features
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focused on NF-kB, a TF counteracted by the GR. The

interaction between GR and NF-kB is particularly relevant in

the context of the regulation of inflammation, where GR and

NF-kB have antagonizing functions. By characterizing NF-kB
binding in the presence of GC in immune cells, we provide

support for a model of protein-protein interaction between these

two TFs. Moreover, we present suggestive evidence that GR

occupancy on the chromatin results in an increase in NF-kB
binding.

Finally, we provide the first genome-wide evidence for the

functional relevance of genetic variants in GR binding sites.

Previous functional genomics studies have shown that regulatory

variation can alter chromatin state and TF binding affinity in basal

conditions [23,27,29–35]. Here, we show that genetic variation in

TFs binding sites (GR and NF-kB) can also explain the eQTLs

that interact with GC treatment. Even though only a small

number of interaction eQTLs are available for analysis, the

patterns of association between different classes of interaction

eQTLs and GR and NF-kB binding sites are consistent with

existing models of GC-dependent gene regulation. Our results

attest to the importance of considering multiple components of the

regulatory machinery in the characterization of the functional and

molecular features of interaction eQTLs. Given the large number

of TFs known to interact with the GR [6,17], more comprehensive

studies including inducible as well as non-inducible TFs are likely

to provide greater insights into the role of genetic variation in this

pathway.

Materials and Methods

Cell Culturing and Treatment
Ten LCLs (4 TSI and 6 YRI) were purchased from the Coriell

Cell repository. Cell culturing conditions and Dex treatment were

as previously described [19]. Specifically, cells were cultured in

RPMI supplemented with 15% charcoal stripped FBS and 0.1%

Gentamycin. For the ChIP-seq experiments, 36107 cells were

treated in paired aliquots with 1026 M Dex or the control ethanol

for 1 hr. For the time course experiment, paired aliquots of cells

were subjected to the same treatments over a time course for 2, 4,

8, 12, 16, 24 hr.

ChIP-seq
We performed GR and NF-kB ChIP-seq on two YRI LCLs

from the HapMap panel (GM19138 and GM19171). The ChIP

experiments were performed following the protocol described in

[36]. The anti-GR (sc-E20) and anti-p65 (sc-372X) rabbit

polyclonal antibodies were purchased from Santa Cruz Bio-

technology. Illumina sequencing libraries were prepared following

the standard ChIP-seq Illumina protocol. Each IPed DNA sample

was sequenced on one lane of the Illumina GAII.

Figure 2. Examples of interaction eQTLs in GR and NF-kB binding regions. A. GC-dependent GR binding in the region containing the GC-
only eQTL for TNIP1. B. The control-only eQTL for the gene HMGN2P46 is located in a region where both GR and NF-kB bind.
doi:10.1371/journal.pone.0061654.g002

GR Binding Features
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The raw sequencing results were aligned against the human

reference sequence (Build 36) using the software MAQ [37]. The

uniquely aligned reads were then analyzed with the software

MACS [20] using the default parameters, to identify regions of

enrichment in the IPed sample relative to the input. ChIP-seq data

from these experiments has been deposited in the Gene Expression

Omnibus (GEO) under accession number (GSE45640).

Expression Microarrays
Total RNA was extracted from each cell culture sample using

the QIAgen RNeasy Plus mini kit. Total RNA was then reverse

transcribed into cDNA, labeled, hybridized to Illumina Hu-

manHT-12 v3 Expression BeadChips and scanned at the

Southern California Genotyping Consortium (SCGC: http://

scgc.genetics.ucla.edu/) at the University of California at Los

Angeles. Summary data (e.g. mean intensity of each probe across

within-array replicates) were obtained using the BeadStudio

software (Illumina) at the SCGC. Expression data from these

microarray experiments has been deposited in the Gene

Expression Omnibus (GEO) under accession number

(GSE45640).

Identification of Differentially Expressed Genes
Low-level microarray analysis was performed using the

Bioconductor software package LUMI in R (http://www.r-

project.org), as previously described [19]. Evidence of differential

expression between GC-treated and control-treated samples at

each time point was assessed for each gene with a hierarchical

linear model applied using the R Bioconductor software package

limma [38]. A moderated t-test was used to contrast the mean

expression across individuals between Dex- and control-treated

samples at each time point. To correct for multiple tests, an

appropriate p value threshold was chosen to control the overall

false discovery rate (FDR) using the method of Storey and

Tibshirani [39]. The FDR here represents the expected pro-

portion of genes deemed differentially expressed that are false

positives (i.e. that are truly not differentially expressed). For

example, a FDR of 5% means that among all features called

significant, we expected 5% of these to be false positives.

Analysis of the time-course data. We used k-means

clustering to cluster genes according to temporal response profiles.

Specifically, we summarized the response using the log2 fold

change, or log2 ratio of expression in GC-treated over control-

treated samples. For each gene, we took the median log2 fold

change across the 8 LCLs at each time point (fg2,fg4,fg8,fg12,fg16,fg24)

as a summary of the response following that duration of treatment.

Given the relatively small differences in time between these

measurements, each of these values is likely to reflect both

transcriptional activity at the previous time point as well as activity

that occurred since the previous time point. For example, a gene

could show a sharp and early up-regulation in response to GCs,

with a large amount of transcript produced between in the first 2

hours of treatment. Without rapid degradation, log2 fold change at

4 hours would likely also be very high, even if no additional

transcription occurred between 2 and 4 hours due to the large

amount of transcript ‘left over’ from the early response. To group

genes based on the dynamics of response over time, as opposed to

the overall intensity of response, we calculated the change in log2
fold change from each time point to the next (dfg), beginning at

time 0 which has a log2 fold change of 0, which we calculated as:

dfg~fgt{fg(t{1)

We then used the k-means algorithm to assign genes to one of k

sets of response profiles based on their profile dfg. We used

increasing values of k and we selected k= 8 as for larger k values

clusters were redundant (assessed by visual inspection, see figure

S3 in File S1).

We performed a multinomial probabilistic test to assess whether

genes with GR binding sites were randomly distributed across

clusters of differentially expressed genes. The expected probability

of a GR primary target to fall into each cluster was calculated as

the proportion of differentially expressed genes in each cluster.

One-tailed hypergeometric probabilities were computed to assess

the significance of the enrichment of GR primary targets in each

cluster. The expected probability was assumed to be the pro-

portion of all differentially expressed genes that are GR primary

targets (67%).

The Regression Model
We built a multiple regression using a logistic model that

considers a dependent binary variable indicating whether a gene is

up-regulated in response to GC treatment. We restricted our

analysis to GR binding regions within 100 Kb of any expressed

gene.

Logit(Plfcw0)*DzdzCzTzczDhzM

We considered the following explanatory variables the proba-

bility that the log2 fold change in expression was greater than

0 (Plfc.0) at each gene: distance (D) and direction (d) of the closest

GR binding region relative to the transcription start site (TSS);

a binary variable defining whether the closest binding region to

a given gene is closer to any other gene (C); number of sequencing

tags at the binding region closest to the TSS (T); a binary variable

indicating whether a CTCF binding region is present between the

TSS and its closest binding region (c); a binary variable indicating

whether the binding region closest to the TSS is in a DNase I

hypersensitive region (Dh); a binary variable indicating whether

the closest binding region to the TSS contains the canonical GR

binding motif (M).

Data on CTCF binding and DNase I hypersensitive regions for

the YRI sample GM19239 were downloaded from the ENCODE

database (http://genome.ucsc.edu/ENCODE/). Regions with a p-

value,1025 were used. Significant (p,0.01) GR binding motif

were identified in the ChIP-seq binding regions with the software

Clover [40], using the sequence of chromosome 20 as genomic

background.

1000Genomes eQTL Mapping
Genotype data for 40 YRI individuals were downloaded from

the 1000Genomes website (May2011 interim phase 1 release). For

the 17 individuals not included in the 1000Genomes project,

genotype data were obtained from HapMap (Release28; Octo-

ber2010) and the remaining SNP genotypes were imputed using

BIMBAM [41].

For each SNP and gene combination, we used the software

BRIdGE [19] to calculate Bayes factors (BFs) representing the

evidence for an eQTL under each of the following models of

interaction with GC treatment: 1) no interaction, 2) GC-only, 3)

GR Binding Features
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control-only and 4) general interaction. For each gene, we tested

all SNPs within 100 Kb, for a total of 4,948,047 SNPs.

In order to investigate the relationship between TF binding and

eQTL interaction with GCs, we first evaluated the evidence for an

eQTL of a particular interaction model at each SNP. To this end,

we estimated a posterior probability for five models (GC-only,

control-only, general, no-interaction, null). For the null model, we

assumed a conservative prior probability of 0.999. For each of the

other four models, we used objective priors of 0.001/4.

Alternatively, prior probabilities could be estimated using a hier-

archical model, as implemented in BRIdGE. However, BRIdGE

estimates priors across all genes in the genome, without

considering each SNP’s functional annotation (e.g. position

relative to TF binding sites). Here, instead, we performed a post

hoc analysis of interaction eQTLs relative to GR (or NF-kB)
binding sites. Specifically, we considered for each SNP the

posterior probability of being an eQTL of a given model and its

physical location relative to binding sites estimated using ChIP-

seq.

Supporting Information

File S1 Tables S1, S2 & Figure S1, S3 & S3. Table S1 in File

S1. GC interaction eQTLs within 100 bp of a GR binding region.

Table S2 in File S1. GC interaction eQTLs within 1 Kb of a NF-

kB binding region. Figure S1 in file S1. GR binding profiles near

differentially expressed genes in the absence of GC (control) and,

for the same sites, in the presence of GC. Color intensity is

proportional to the number of sequence reads in 2 Kb windows

centered on the peak of each binding region. Each row

corresponds to a different binding region. Regions are sorted by

decreasing p-values. Figure S2 in file S1. Distribution of GR

binding sites relative to the TSS of differentially expressed genes.

GR binding events upstream of up-regulated genes (A) tend to be

closer to the TSS, compared to down-regulated genes (B). Figure

S3 in file S1. Heat maps of differentially expressed genes over

a 24 hrs GC treatment time course (left panels). Genes are sorted

according to the cluster they fall in. Clusters have been identified

by k-means clustering 1,k,20. The right panels represent the

temporal profiles for the centers of each of the k clusters of

differentially expressed genes.

(PDF)
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