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Epstein-Barr virus (EBV) is an ubiquitous herpesvirus with a tropism for epithelial cells

(where lytic replication occurs) and B-cells (where latency is maintained). EBV persists

throughout life and chronic infection is asymptomatic in most individuals. However,

immunocompromised patients may be unable to control EBV infection and are at

increased risk of EBV-related malignancies, such as diffuse large B-cell lymphomas or

Hodgkin’s lymphomas. Ataxia telangiectasia (AT) is a primary immunodeficiency caused

by mutations in the ATM gene and associated with an increased incidence of cancers,

particularly EBV-associated lymphomas. However, the immune deficiency present in

AT patients is often too modest to explain the increased incidence of EBV-related

malignancies. The ATM defect in these patients could therefore impair the normal

regulation of EBV latency in B-cells, thus promoting lymphomagenesis. This suggests

that ATM plays a role in the normal regulation of EBV latency. ATM is a serine/threonine

kinase involved in multiple cell functions such as DNA damage repair, cell cycle regulation,

oxidative stress, and gene expression. ATM is implicated in the lytic cycle of EBV,

where EBV uses the activation of DNA damage repair pathway to promote its own

replication. ATM regulates the latent cycle of the EBV-related herpesvirus KSHV and

MHV68. However, the contribution of ATM in the control of the latent cycle of EBV is not

yet known. A better understanding of the regulation of EBV latency could be harnessed

in the conception of novel therapeutic strategies in AT and more generally in all ATM

deficient EBV-related malignancies.

Keywords: ataxia telangiectasia, Epstein Barr virus, latency, B-cell, primary immune deficiency,

lymphomagenesis, hodgkin lymphoma, non-hodgkin lymphoma

INTRODUCTION

Epstein-Barr virus (EBV) is a γ-herpesvirus that infects 95% of adults worldwide. EBV targets
epithelial cells where lytic replication occurs, and B-cells where latent infection is established. The
distinct phases of EBV infection are carefully controlled throughout the infected host’s life, and
chronic infection in immunocompetent individuals is mostly asymptomatic (1). Control of chronic
EBV infection in immunocompromised patients may fail, leading to lymphoproliferative disorders
as well as bona fide lymphomas (hereafter referred to as EBV-LPD) (2).
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Several primary immune deficiencies (PID) are associated
with poor responses to EBV and are also associated with a high
risk of EBV-LPD (3). Inherited genetic abnormalities causing PID
are often associated with poor or absent EBV-specific cytotoxic T-
cell response and studies on PID and their underlying molecular
mechanisms have led to a better understanding of immunological
and cellular processes that control herpesvirus infection.

EBV infects B-cells both in vivo and in vitro and can lead
to their immortalization. EBV latent genes drive the activation
and differentiation of B-cells (4). Deregulation of this complex
and dynamic interaction of viral gene expression and cellular
activation may lead to cell transformation.

Ataxia telangiectasia (AT) is a rare PID caused by mutations
in the ATM gene. AT patients are at increased risk of cancer,
including EBV-LPD (5). However, the extent of immune
compromise in AT is variable, and many patients have only
minor immunological alterations (6). ATM is involved in many
functions ranging from DNA repair to gene expression. Based
on the paradoxical observation that EBV-LPD frequency is
increased in ATM patients while they do not exhibit major
T-cell deficiency, we raise the hypothesis that the defect of
ATM in EBV-infected cells could play a role per se in the
control of EBV latency, favoring a latent program more prone to
lymphomagenesis. We review here the characteristics of AT and
discuss the immunological and cellular abnormalities that may
confer susceptibility to EBV-related malignancies.

CLINICAL AND IMMUNOLOGICAL
FEATURES OF AT

AT is an autosomal recessive disorder caused by biallelic
mutations in the Ataxia-telangiectasia mutated (ATM) gene.
Its estimated incidence is about 1/300.000 live births (7). AT
was first reported by Syllaba and Henner in 1926 (8), further
characterized by Denise Louis-Bar (9), and finally named by
Boder and Sedgwick (10).

AT is characterized by progressive neurodegeneration leading
to ataxia, oculo-cutaneous telangiectasia, variable degrees of
immune deficiency, and susceptibility to cancer. AT is clinically
heterogeneous, the classic form starts typically around 4 years
of age, most patients becoming wheelchair-bound by the age of
10. Milder forms of AT may appear later and develop slowly. AT
patients have a reduced life expectancy with a median survival of
19 to 25 years (11, 12). Mortality is mostly due to respiratory tract
infections and cancers (6).

AT patients have a variable immunodeficiency, rarely
progressive, with some patients not affected at all. Complete
loss of ATM kinase activity leads to a more severe immunologic
phenotype. B-cell and T-cell lymphopenia may be present in
∼70% of AT patients (6, 13). Over 60% of patients also
have abnormal serum immunoglobulin levels, most notably a
deficiency of IgG4 (65%), IgA (63%), and IgG2 (48%) (6).

GENETIC AND MOLECULAR BASIS OF AT

The ATM gene (∼160kB) was cloned in 1995 (14). Over 400
mutations of ATM have been reported, spanning all 66 exons

of the gene (Leiden Open Variation database). Most of these
mutations lead to complete loss of ATM protein expression, but
missense, and splice mutations can lead to the expression of a
protein with residual kinase activity (15).

The ATM gene encodes a 350 kDa serine/threonine kinase
belonging to the phosphatidylinositol 3-kinase-related kinase
(PIKK) family (16). ATM is mostly located in the nucleus,
but ∼20% are found in the cytoplasm, mainly in peroxisomes,
endosomes, and as soluble proteins (17). ATM is involved
in many cellular functions, including cell cycle checkpoint,
apoptosis, oxidative stress, mitochondrial metabolism, gene
regulation, and telomeres maintenance, but one of its major
roles is its involvement in double strand break (DSB) repair
(18). DSB can occur by endogenous processes, during replication
fork collapse, V-(D)-J recombination or class switching, and
can be induced by exogenous factors such as chemotherapy.
In the canonical pathway, ATM is partially activated few
seconds after DSB, probably after the relaxation of chromatin
adjacent to the break. The MRN complex (Mre11/Rad50/Nbs1)
recognizes the site of DNA break and in turn recruits ATM
(Figure 1). Autophosphorylation of the ATM dimer occurs
after its association with the MRN complex and precedes the
formation of the fully active monomer forms (17).

ATM then phosphorylates H2AX, a variant of the histone
H2A family, forming γH2AX foci that serve as a scaffold
for the recruitment of DNA repair proteins such as MDC1,
53BP1, and BRCA1. Several other important partners are
phosphorylated by ATM, such as ChK2 and p53, which initiate
the downstream events of DNA repair and induce cell cycle arrest
or apoptosis if DNA repair fails (18). The repair mechanism
involves non-homologous end joining, an error-prone process
occurring in G1/S phase (19), or homologous recombination,
a faithful process in G2/M when sister chromatid is
available (20).

As a result, defective DSB repair in AT patients elicit
genomic instability that leads to B-cell and T-cell lymphopenia,
premature senescence, and cancer. ATM plays a key role
in the development of lymphocytes, allowing DSB repair
occurring during B-cell, and T-cell differentiation. However,
DSB repair may be possible via the alternative end-joining,
an error prone, and poorly understood ATM independent
pathway, which could explain the modest degree of lymphopenia
in AT patients (21). Some lymphoid malignancies, such as
mantle cell lymphoma, diffuse large B-cell lymphomas, and
Hodgkin lymphomas, are also associated with acquired ATM
mutations (22).

Patients with AT are at increased risk of cancer, especially
lymphoid malignancies (23). To estimate precisely the risk
of cancers in patients with AT, we conducted a retrospective
study of cancers of 279 AT patients from the registry of
the French National Reference Center for Primary Immune
Deficiencies (CEREDIH) (5) and found that 25% of AT
patients develop malignancies, the most common of which
were aggressive non-Hodgkin’s lymphomas (55% of all cancers),
followed by Hodgkin’s lymphoma (17%), leukemia (16%), and
various solid tumors (12%). EBV was associated with 100%
of Hodgkin’s lymphomas and 50% of B-cell non-Hodgkin’s
lymphomas.
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FIGURE 1 | ATM activation and downstream signaling in response to DSB. DSB induces a rapid activation of the ATM dimer and the MRN complex, which in turn

induces the autophosphorylation and monomerization of ATM protein. ATM becomes fully active and phosphorylates a large subset of downstream proteins including

γH2AX which serves as a scaffold for the recruitment of repair proteins, MDC1, BP53, and BRCA1 involved in DNA repair, CHK2 involved in cell cycle arrest and p53

involved apoptosis induction. CHK2 also phosphorylates P53 to promote cell-cycle arrest or apoptosis.

EPSTEIN-BARR VIRUS

EBV belongs to the herpesviridae family of large enveloped
double-stranded DNA viruses, and was first identified in Burkitt’s
lymphoma in the 1960s (24). All herpeviruses have 2 distinct
phases of infection, lytic, and latent. The lytic EBV infection
occurs in oropharyngeal epithelial cells and leads to viral
replication and production of multiple virions that spread into
the underlying lymphoid tissues and infect naive B-cells (25).
In the latter, EBV enters latency, a phase during which the viral
genome is maintained as a nuclear episome, and only a few viral
genes are transcribed (26).

Expression of the latency genes is tightly controlled by cellular

and viral factors. Cellular immunity is also strongly induced

during EBV infection and contributes to the elimination of

infected cells expressing immunogenic lytic and latent antigens
(27). Analysis of viral gene expression in EBV-associated cancers

has led to a model in which EBV transitions through several
latency gene expression programs (latency III, II, I) (28).
Depending on the stage of latency, cells can express nuclear
proteins (EBNA-1,−2,−3a,−3b,−3c, and -LP), latent membrane
proteins (LMP-1,−2A, and−2B), non-coding RNAs (EBER-1
and−2), and several microRNAs (4). According to this model,
EBV uses different latency programs to exploit B cell maturations
pathways in the germinal center, leading the infected B-cell to the
long-lived memory B-cell pool (28). The viral proteins LMP1 and
LMP2 replicate the signals induced in B cells during the germinal
center reaction and cause their proliferation. LMP1 mimics the
signal of the activated CD40 (29) and induces EBV-LPD in
transgenic mice (30), and LMP2 mimics the signal of the antigen
activated B-cell receptor (31) and allow B-cell development even
in the absence of normal B-cell receptor signaling (32).

EBV latency genes and non-coding RNAsmay have oncogenic
properties or interfere with cellular activation pathways leading
to proliferation of B-cells as immunoblasts (33). Indeed, in vitro
EBV infection of naïve B-cells leads to immortalized and fully
transformed lymphoblastoïd cell lines in latency III that can
induce tumors in nude mice (34). During latency III, EBNA-
2 interacts with the target of the Notch pathway RBP-Jκ (35)
and recruits co-activators, allowing the transcription of many
genes involved in proliferation including MYC (36). EBNA-
2 also promotes the transcription of all other latency genes,
including the EBNA-3 family which gradually replaces EBNA-
2 in its association with RBP-Jκ (37). The EBNA-3 family
recruits co-repressors and inhibits the transcription of EBNA-
2 induced genes. Indeed, prolonged expression of MYC could
induce early senescence and be harmful to the virus (38). Infected
B-cells migrate to the germinal center and progressively lose
the expression of EBNA-2 and EBNA-3, escaping the immune
control (latency II). During their transit through the germinal
center to finally reach the memory B-cell pool, infected B-cells
further restrict the expression of latency genes to express only
EBNA1, a viral protein involved in the tethering of the viral
episome to the nuclear chromatin (latency I) (39). EBV persists
then indefinitely in memory B-cells (40). When these infected
cells differentiate into plasma cell following an encounter with
their cognate antigen, the transcription factor XBP-1 induced
during plasma cell differentiation activates the expression of
BZLF1, a viral protein sufficient to induce the lytic cycle (41).
Virions are then released into the bloodstream and can re-infect
the oropharynx epithelium to perpetuate the infectious cycle.

Occasional lytic replication occurs in the oropharynx of
healthy individuals, and evidence shows that the majority of
these cells do not complete the full lytic cycle despite BZLF1
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expression (42–44). Abortive cycles have also been described
in EBV-LPD such as Burkitt lymphomas (45), or diffuse large
B-cell lymphomas (46).Several BZLF1-induced viral genes have
anti-apoptotic or immunomodulatory properties, allowing the
lytic cell to avoid cell-death (47). These genes are also activated
during the abortive cycle and growing evidences suggests that
these genes may contribute to lymphomagenesis. Indeed, the rate
of EBV-LPD induced by EBV infection of humanized mice is
severely reduced when BZLF1-deficient virus is used (48).

MECHANISMS UNDERLYING AT
SUSCEPTIBILITY TO EBV

AT Immune Dysfunction
Cytotoxic T-cells (CTL) play a major role in controlling the
expansion of EBV infected B-cells. Primary EBV infection in
young adults leads to infectious mononucleosis associated with
a massive CTL expansion (49). The viral EBNA-3 proteins and,
to a lesser extent, EBNA-2 induce a potent CTL response (27),
which eliminates most infected cells.

Thymic hypoplasia has been described in AT (13), and may be
the cause of the various degree of T-cell lymphopenia, especially
of the naïve T-cell population (CD3+ CD4+ CD45RA+ and
CD3+CD8+CD45RA+), found in these patients (50). Similarly,
TCR excision circles (TRECs) as a measure of thymic output,
can be useful for early diagnosis of AT (51). The naïve T-cell
defect may also contribute to the described defect in IFNγ (52)
which is important for defense against viruses and bacteria, and
immunosurveillance of cancers.

However, severe viral or opportunistic infections are not
frequent (6) and most AT patients seem to have an intact T-cell
response (53, 54). The vaccine response is also functional, with a
totally normal response for some patients and a reduced response
for others (6).

Nonetheless, AT patients have recurrent sinopulmonary
bacterial infections that seems to increase with age (55). This
could be explained by the IgA deficiency associated with an
increased risk of chronic rhinosinusitis (56), the IFNγ production
deficiency (52), but also by the progressive neurodegeneration;
AT patients may have mastication and swallowing difficulties
that worsen with age leading to an unintentional inhalation of
food (6, 57).

Several observations suggest that γδ T-cells play a role in the
control of viral infections. γδ T-cells represent 1–10% of the
total T-cells and recognize a distinct range of antigenic targets
(58). Infusion of pamidronate (known to activate γδ T-cells) in
humanized mice significantly reduced EBV-LPD. AT patients
seem to have an increase in the γδ T-cell population (59).

A humoral response is also generated but plays a limited role
in the control of EBV infection (60). The NK-cells response is
also important in the control of primary infection (61) but the
number of NK-cells and their function in AT patients seems
normal (62), despite an expansion of the CD56 bright population
(CD3- CD16+ CD56+). This population is important for
cytokines production but is not sufficient to overcome the IFNγ

production defect (52). In summary, these immunological defects

in AT patients do not seem sufficient to explain the increased
incidence of EBV-LPD.

Some studies have also suggested a role for invariant NK-T
cells (iNKT) in EBV control. These cells are restricted by CD1d, a
class I MHC-like molecule exposing lipid antigens. Patients with
mutations in SH2D1A (encoding SAP) or in BIRC4 (encoding
XIAP) have little or no iNKT and are very sensitive to EBV.
However, these mutations also affect normal T-cells function,
making it unclear if the iNKT defect is responsible for the disease
(63, 64). Infused iNKT in immunodeficient mice injected with
EBV transformed cells show reduced tumor formation (65).
Similarly, a study on EBV-infected peripheral bloodmononuclear
cells in vitro showed higher transformation efficiency when iNKT
were previously depleted (66). There has been to date no full
exploration of iNKT levels in AT patients, but a small study of 3
patients suggests that AT patients do have iNKT deficiency (67).

While most PID patients with EBV sensitivity have an
anti-EBV CTL defect, other PID patients have a specific EBV
sensitivity by other mechanisms, such as XMEN (mutations in
MAGT1) (68), or patients withmutations inCTPS1 (69). MAGT1
allows a TCR-induced influx of magnesium that activates T-cells
(70) and CTPS1 allows CTP synthesis involved in nucleic acids
anabolism (69). T-cells from these patients can respond to a
standard stimulation of the immune system, but the ability of
their T-cells to cope with the overwhelming proliferative stress
induced by EBV infection is severely impaired, leading to an EBV
specific immune deficiency.

Evidence for a Role of ATM During EBV
Infection
As mentioned above there is evidence pointing to an abnormal
control of EBV infection in AT patients without unequivocal
evidence for an associated cellular immune defect leading to
EBV-LPD. In the face of this apparent paradox, a cell intrinsic
defect leading to impaired control of EBV latency in B-cells
from AT patients, thereby promoting the oncogenic properties of
the virus, may be hypothesized. There is indeed some evidence
demonstrating the implication of ATM in the lytic and latent
cycle of EBV as discussed below.

During the Lytic Cycle
ATM operates in the regulation of the lytic cycle of many
viruses including EBV. During this cycle, viral replication
generates a large amount of double-stranded linear DNA in
the nucleus that are recognized as double strand breaks and
thus activate the repair machinery (71). ATM and the MRN
complex have been shown to bind the viral genome and recruit
other proteins such as RPA, RAD51, and RAD52 that promote
replication of the virus. Recent studies have reported inhibition
of viral replication after pharmacological inhibition of ATM
(72). BGLF4, one of the first viral proteins expressed during
the lytic cycle, directly phosphorylates ATM, and H2AX (73).
BGLF4 also phosphorylates and activates TIP60 (74), a histone
acetyltransferase, which in turn activates ATM (75) (Figure 2A).

During lytic replication, ATM activation allows the
phosphorylation of P53 and SP1, a transcription factor involved
in DNA repair (76). SP1 plays a role in the formation of the
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FIGURE 2 | Role Of Atm In Ebv Life Cycle Regulation (A) The central role of ATM in the replication compartment of EBV. In the lytic cycle, DNA damage response

proteins such as γH2AX, the MRN complex, ATM, SP1, RPA, RAD51, and RAD52 bind the viral genome and promote replication of the virus. Viral proteins are shown

in red. BGLF4 phosphorylates H2AX, ATM, and TIP60 which acetylate ATM to promote this replication. ATM phosphorylates and activates Sp1 which is necessary to

the formation of the replication compartment comprising a large complex of six core viral replication proteins (BSLF1, BALF2, BBLF2/3, BALF5, BMRF1, and BBLF4).

ATM phosphorylates and activates P53, which is inhibited and driven by BZLF1 to the replication compartment. BZLF1 is a major transactivator of the lytic genes

promoter OryLyt. P53 binds to Sp1 and promote the activation of OryLyt. P53 is regulated by proteasomal degradation and can induce apoptosis, but BHRF1 inhibits

a panel of pro-apoptotic proteins. (B) ATM is regulated by EBV during latency. In the latent cycle, LMP1 downregulates ATM, and upregulates Bmi-1 which also

(Continued)
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FIGURE 2 | downregulates ATM. On the other hand, LMP1 activates the NFκB pathway which activates ATM. EBNA-1 upregulates NOX2, which generates reactive

oxygen species (ROS) that could activate ATM. Once activated, ATM activates CHK2 which promotes cell cycle arrest. However, EBNA-3C and EBNA-3A inhibit many

proteins involved in cell cycle control. (C) Potential involvement of ATM in the regulation of EBV latency. ATM could be involv ed in inhibiting the expression of certain

viral oncogenes, such as the main viral oncogene LMP1. ATM could also favor the progressive restriction of EBV latency, from type III latency to type I. In type III

latency, EBNA-2 interacts with the target of the Notch pathway RBP-JK, recruits coactivators and induces the transcription of pro-proliferative genes like Myc. In type

II latency, EBNA-3 replaces EBNA-2, and recruits co-repressors, thus preventing prolonged expression of MYC. In type I latency, RBP-JK is associated with

corepressors and only EBNA-1 remains expressed, which allows the attachment of EBV episome on cellular chromosomes.

nuclear replication compartment of the virus (72) where a high
level of P53 is found. SP1 and P53 form a complex which binds
and activates BZLF1 promoter (71), the major viral transactivator
of the EBV lytic genes. Other repair proteins present in these
compartments such as RPA, RAD51, and RAD52 also appear to
be involved in the induction of BZLF1 because their knockdown
greatly reduces viral replication (77). In addition, the activity
of CyclinA/CDK2 and cyclinE/CDK2 complexes appears
enhanced in this context, leading to a prolonged pseudo-S phase
environment that promotes replication of the viral DNA (71).

EBV uses ATM activation to facilitate its own replication. But
long-lasting activated ATM may promote P53 accumulation and
apoptosis induction. During the lytic cycle, the level of P53 is
constant despite recurrent activation of the DNA repair pathway,
and appears to be regulated by proteasomal degradation (71). In
addition, BZLF1 associates with P53, inhibits its transactivating
activity and drives it to the EBV replication compartment (71),
which greatly limits the ability of P53 to activate pro-apoptotic
genes. Even in that case, BHRF1, a viral analog of the BCL-2
protein expressed early during the lytic cycle, inhibits a large
panel of pro-apoptotic proteins such as BIM, BID, BAK, or
PUMA (78).

During Latency
ATM is also involved in the early steps of EBV latency
establishment where it plays a tumor suppressor role. In vitro,
the early hyperproliferation period of infected B cells is associated
with ATM activation, leading to the death of the majority of cells
(79). A total of about 3% of infected B-cells survive and become
indefinitely proliferating lymphoblasts (80). Some EBV latency
proteins have been shown to interact with ATM as well as with
other DNA damage related proteins, but the overall implication
of ATM in the latent cycle remains to be explored.

LMP1 upregulate BMI-1 in Hodgkin’s lymphomas, a
Polycomb related protein, and both proteins combine their
effects to downregulate ATM expression (81). Similarly, EBV
infection of the EBV negative BJAB line showed a defective
DNA damage response (82). In addition, biopsies of patients
with EBV-positive nasopharyngeal carcinoma (NPC) revealed
downregulation of ATM protein levels (83). On the other hand,
it has been reported that LMP1 positively regulates ATM in
NPC by activating NF-κB pathway (84). This divergence in the
effect of LMP1 on ATM expression is unclear and may be due
to different LMP1 expression levels or to the use of different cell
line types (Figure 2B).

EBNA1 upregulates the catalytic subunit of Nox2 in
the NADPH oxidase complex, inducing the production of
reactive oxygen species that could activate ATM (82). The

EBV-infected BJAB cells expressing EBNA1 also show more
chromosomal aberrations (82). EBNA3C, a viral protein essential
for transformation, has been shown to attenuate DNA damage
response pathways in the early steps of transformation. It also
inhibits the activity of many proteins involved in cell cycle
control, such as P14, P16, P27, CHK2, P53, BUBR1 (85–90).
EBNA3A appears to collaborate with EBNA3C in the inhibition
of P14 and P16 (85).

There is also evidence pointing to a role of ATM in
the regulation of latency of Kaposi’s sarcoma associated
herpesvirus (KSHV) and Murine γ-herpesvirus 68 (MHV68),
two herpesviruses closely related to EBV. During KSHV latency,
there is a steady phosphorylation of a small amount of ATM
and γH2AX, which play a role in LANA-1 transactivation, the
major latency protein (91). During MHV68 latency, ATM plays
a role in the transactivation of the LANA-1 analog protein
ORF73. Inactivation of ATM significantly reduces the expression
of LANA-1 (91) and ORF73 (92), respectively, demonstrating the
importance of ATM in the control of KSHV andMHV68 latency.

DISCUSSION

The increased incidence of malignancies in AT has primarily
been linked to the genetic instability caused by DNA repair
abnormalities. The high rate of association of B-cell malignancies
with EBVmay be interpreted as the consequence of AT associated
immunodeficiency. Most patients however do not present
opportunistic infections, indicating the absence of profound
cellular immune deficiency. Although data are scarce, AT patients
appear to have iNKT deficiency which may participate to the lack
of control of viral infections. The contribution of iNKT deficiency
in the propensity of AT patients to develop EBV-LPD requires
further study.

Beside immune deficiency, ATM could also contribute to
AT-associated EBV-related lymphoid malignancies by interfering
with the B-cell intrinsic regulation of EBV persistence. ATM is
known to play a role during the lytic cycle of EBV by creating
the replication compartment of the virus and by promoting
its replication. During latency, several viral proteins appear to
interfere with ATM expression or with its downstream signaling.
However, the effect of ATM on the regulation of viral latency is
not yet known. The fact that ATM plays a role in the regulation
of latency proteins of EBV-related herpesvirus, such as KSHV or
MHV68, suggests that ATM may also be involved in the control
of EBV latency.

Recent studies have shown an involvement of ATM in the
inhibition of gene expression. Indeed, ATM activation in the
vicinity of the DSB promotes the ubiquitination of nearby
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H2A histones. This prevents the progress of polymerase II and
thus inhibits the transcription of nearby genes (93). In the
case of DSB within the nucleolus, ATM allows the blocking of
polymerase I and its release of the nucleolus (94). ATM could
conceptually also inhibit the transcription of some viral genes,
such as the main EBV oncogene LMP1. ATM deficiency in AT
patients could therefore release this inhibition, contributing to
lymphomagenesis (Figure 2C). ATM could also participate in
the restriction of EBV latency by promoting the transition from
type III to type II latency and/or from type II to type I latency.
The large number of EBV-associated Hodgkin’s lymphomas,
described as being derived from type II-latency-infected B-cells
(95), suggests that the restriction of latency may not efficiently
occur in AT patients.

Humanized mice are a potent model to study the early
stages of EBV infection, establishment of latency III, and the
immune system response (96). However, B-cell ontology is not
complete in these mice, with little germinal center reactions
or BCR maturation, impeding the study of latency II and I.
Moreover, lytic infection cannot take place because of the absence
of human epithelial cells. Recent advances have greatly improved
the ontogeny of B-cells in these mice (97) and could open a new
field for EBV study. An infection of these cells by EBV has, to our
knowledge, not been yet assessed.

Studies on themechanisms of EBV-induced lymphomagenesis
in AT patients may shed light on the pathways involved in the
control of chronic EBV infection. This will have a significant
impact on the understanding of the physiopathology of EBV-
LPD, even outside of the context of AT. The tumor suppressor
role of ATM is highlighted by the frequent somatic mutations
of ATM in many lymphoid malignancies. This understanding
could allow the exploration of new therapeutic targets in these
lymphomas, for which there is still no effective treatment
targeting EBV, and in patients with AT where the usual
therapeutic approaches by cytotoxic agents are limited because
of their toxicity in the context of DNA repair abnormalities.
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