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Abstract: Diabetes is an endocrinological disorder with a rapidly increasing number of patients
globally. Over the last few years, the alarming status of diabetes has become a pivotal factor
pertaining to morbidity and mortality among the youth as well as middle-aged people. Current
developments in our understanding related to autoimmune responses leading to diabetes have
developed a cause for concern in the prospective usage of immunomodulatory agents to prevent
diabetes. The mechanism of action of vaccines varies greatly, such as removing autoreactive T cells
and inhibiting the interactions between immune cells. Currently, most developed diabetes vaccines
have been tested in animal models, while only a few human trials have been completed with positive
outcomes. In this review, we investigate the undergoing clinical trial studies for the development of a
prototype diabetes vaccine.

Keywords: diabetes; vaccines; clinical trials; insulin; GLP

1. Introduction

Persisting as a major global health threat, diabetes mellitus (DM) affects individuals of
all ages, ethnicities, and backgrounds, especially those associated with a prominent family
history of diabetes and a multitude of environmental factors [1–4]. As reported by the
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World Health Organization (WHO), 422 million people globally suffer from diabetes and
is rapidly progressing in intermediate and poverty-stricken nations [5]. Approximately
1.5 million deaths annually are caused by diabetes worldwide [5]. It has been reported
that China contributed to the highest number of diabetics in 2021, with 149.1 million
of its population between ages 20 and 79 being affected by this chronic disease. It is
forecasted that China will have approximately 174 million diabetic patients by the year
2045. Meanwhile, a survey in 2014 by Kaveeshwar and Cornwall which reported an
elevation approaching 8.3% in diabetic incidences further elucidates this observation [6–8].
Complications stemming from poorly managed DM represent a crucial cause of concern
as a threat to mortality, indirectly impacting the economical status of a country [9]. The
development of secondary complications worsens the mortality and morbidity caused by
diabetes [10]. Initially, the classification for diabetes depended on its etiology and clinical
course, before ultimately being categorized into Type 1 (T1DM) and Type 2 diabetes (T2DM),
as the previous definition excluded many sufferers who exhibited atypical presentation
and progression of the disease [11,12]. According to the American Diabetes Association,
T1DM occurs due to defects in insulin production, whereas T2DM precipitates primarily
from insulin resistance, followed by problematic reduction in insulin secretion, giving rise
to hyperglycemia [13,14].

Orban et al. (2001) elucidated three phases whereby researchers may interrupt the
underlying pathologic mechanisms behind T1DM, which are the autoimmunity develop-
ment, autoantibody development, and clinical manifestation emergence with remaining
residual β-cell function to be conserved [15]. The intention of halting these phases is to
avert autoimmunity development in its initial stages as well as to inhibit clinical disease
onset in high-risk individuals, since this phase is the root cause of the disease for the vast
majority of patients [16]. However, as for the prevention of T2DM progression, the Inter-
national Diabetes Federation (IDF), in 2006, proposed a method involving reduction in
modifiable risk factors [17,18]. In terms of monitoring parameters, autoantibodies, such as
insulin, insulinoma-associated protein 2 (IA-2), glutamic acid decarboxylase (GAD) or zinc
transporter isoform 8 (ZT8), act as biomarkers to detect the preliminary onset of diabetes,
as individuals who tested positive for more than 50% of these autoantibodies compared to
single β-cell antigens are at a greater risk of developing T1DM [19,20]. On the other hand,
β-cell destruction is mediated by different types of cytokines or by the direct activity of T-
or B lymphocytes.

The pancreatic β-cell damage may be initiated by direct environmental toxins, a
virus, or a primary immune attack against pancreatic β-cell antigens such as glutamic
acid decarboxylase 65-kD antibody (GAD65). T-helper lymphocytes, such as CD4+, are
activated by β-cell antigens and antigen-presenting cells, including the dendritic cells (DC)
and macrophages. Interleukin (IL)-12 secreted by macrophages then stimulate the secretion
of IL-2 and interferon (IFN)-γ by the CD4+ T-cells. IFN-γ then excites further resting
macrophages to secrete other cytokines, such as the tumor necrosis factor (TNF-α), free
radicals and IL-1β, which are lethal for pancreatic β-cells. Additionally, activated T-helper
cells produce cytokines which attract T- and B lymphocytes and trigger its multiplication
in the islet of Langerhans, hence precipitating insulitis. With time, B lymphocytes would
attack and harm the β cells by producing antibodies against secreted pancreatic β-cell
antigens, whereas cytotoxic T-lymphocytes (CD8+) directly attack β cells which carry the
target autoantigens [21–23].

As diabetes is a progressive disease, diabetic patients require effective, long-term treat-
ment and the regular monitoring of treatment to achieve the suggested glycemic HbA1c
levels. This management strategy may involve a combination of regimens of oral medicines,
injectables, such as insulin or GLP-1 analogs, or both dosage forms. These combinational
therapies or injectable therapies confer a high chance of inducing side effects, such as
diarrhea or vomiting, with GLP-1 analogs and weight gain or hypoglycemia following
insulin treatment. Although certain treatment regimens are unsuccessful at decreasing a
patients’ HbA1c to the desired level, the undesirable side effects of the medications itself
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causes patients to skip treatment, especially with higher doses, rendering the therapy inef-
fective. Presently, a patients’ lack of adherence to their treatment plan remains a persistent
clinical challenge, with over 50% of diabetic patients failing to strictly follow schedule
of medication administration. In addition, although adherence to insulin treatment has
improved in the past few years, due to the usage of pre-mixed formulas and smaller-sized
needles, it remains sub-optimal at 63–65% [24,25].

Hence, in an effort to avert medication adherence problems for chronic diseases such
as diabetes, there is a growing need for better prevention measures. Recent approaches
other than intervening with environmental triggers to halt the onset of DM early has led to
the discovery of effective vaccines. In this review article, we attempt to discuss advanced
methods of diabetes prevention and the role of adjuvants in relation to vaccines. Some
common practices for the prevention of diabetes at early stages is depicted in Figure 1.
Ongoing debates and different opinions on various vaccine products made from proteins,
antigens, and live pathogens were also examined. Besides that, we also reviewed other
types of vaccines from different diseases which may be useful in paving the path for
diabetes vaccine development.

Figure 1. Different modes of prevention of diabetes.

2. Vaccination

Vaccines elicit their responses in several ways: dampening the destructive Th1 im-
mune response to a benign Th2 response, inciting antigen-specific T-reg cells, eradicating
autoreactive T cells or arresting immune cell interaction [26]. A classification of different
vaccines for treating diabetes is mentioned in Figure 2.

2.1. Early Diabetes Prevention

There are various approaches involved in preventing DM onset and progression,
mainly by treating targeted individuals with a family history of diabetes or tenacious
autoantibodies, intensive lifestyle interventions, the consumption of dietary fibers and the
intake of vitamin D supplements [20,27–31]. However, the possibility of immunization
being a method of prevention remains under-researched. At present, vaccines are employed
as prophylactic measures in combating infectious diseases by using variants derived mainly
from targeted live-attenuated pathogens. However, concerns pertaining to the safety profile
of these vaccines has led to the investigation of more advanced bases known as adjuvants,
which perform a key role in skewing immune responses and their fabrication [32–34].
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Figure 2. A classification of different vaccines for treating diabetes.

2.2. Rationale behind Vaccine Adjuvant Action

A new era of vaccine development is presently emerging through novel combined ther-
apy comprising adjuvants, which specifically activate and drive immune responses [35–38].
Traditionally, incorporating an adjuvant into a vaccine presents certain benefits, such as
a reduced quantity of dose administered, leading to altered immune responses of greater
quality, with minimal side effects [39–41]. A prime example of frequently used adjuvants
includes alum adjuvants, which are readily available in the market today, as this compound
assists in promoting humoral immunity in an individual [42,43].

3. Newly Designed Vaccine Products

Currently, several utilized vaccine products, such as autoantigens and non-autoantigen-
specific therapies, are underway to be developed into vaccines for diabetes. A few of these
have almost reached the final human testing stage. Hence, in this article, we aim to dis-
cuss various approaches incorporating prevention strategies with vaccines with respect to
diabetes mellitus.

3.1. Protein-Based Approach in Vaccine Production
3.1.1. IL-1β-Targeted Epitope Peptide (1βEPP) as a New Vaccine Product for T2DM

Inflammation of the pancreatic islet in T2DM leading to β-cell apoptosis and disruption
of insulin production is mainly caused by IL-1β cytokine, a key mediator that induces
insulin resistance within the peripheral tissue [44–48]. However, several studies have
interestingly shown that IL-1β is capable and has potential to be enhanced as a T2DM
future therapy. To elaborate on this revelation, not only did a newly developed IL-1β-
targeted epitope peptide vaccine adjuvant with polylactic acid microparticles (1βEPP)
stimulate the level of glucose tolerance and provide a hyperglycaemia shield when tested
in diabetic KK-Aay mice model, but it also caused a reduction in the lipid profile and β-cell
apoptosis action [49]. However, a few alterations were made to create a securely modified
anti-IL-1β to address issues derived from the phase I and II trial studies [50]. Another
noteworthy research highlighting the use of a combination therapy (CT) of anti-IL-1β
and GAD65 DNA vaccine demonstrated the immense potential in reversing diabetes in
its early stages [51]. Besides that, another vaccine, hlL1bQb was initially developed and
tested in a preclinical simian phase before being tested in T2DM patients, where it was well
documented that the hlL1bQb immunization caused harm to human subjects involved in
the trial [52].
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3.1.2. Dipeptidyl Peptidase-4 Inhibitor (DPP4) as Novel Vaccine Product for T2DM

Incretins are hormones which are secreted from enteroendocrine cells into the blood
within minutes after food intake to regulate the amount of insulin to be secreted. Incretins
essentially consist of two variants, one being the glucose-dependent insulinotropic peptide
(GIP) and another being the glucagon-like peptide-1 (GLP-1). Although these hormones
share numerous common actions in the pancreas, they exhibit very distinct actions outside
of the pancreas. Since both types of incretins are quickly deactivated by a dipeptidyl
peptidase-4 inhibitor (DPP4) enzyme, DPP4 inhibitors, on the other hand, raise the concen-
trations of these hormones, resulting in enhanced β-cell responsiveness to raised glucose
concentrations as well as the suppression of glucagon secretion [53,54]. On the other hand,
activation of glucagon-like-peptide (GLP) receptor agonists results in insulin secretion and
caspase-mediated cell death inhibition in pancreatic β-cells through the action of DPP4.
Earlier researchers recognized GLP and DPP4 as both efficacious and long-lasting agents
for future approaches in treating T2DM [55–62], as elucidated by a study performed in
2014 which succeeded in synthesizing a DPP4 vaccine. When trials were performed in
C57BL/6J mice model, results revealed a rise in GLP-1 level and an enhanced sensitivity
of insulin without prompting adverse autoimmune responses. This occurrence is mainly
observed in B- and T-cell epitopes, where a significant increase in anti-DPP4 antibody titre
is detected along with the Th2 humoral response [63]. Recently, a study was conducted
using D41-IP, a newly combinatorial peptide vaccine, synthesized using the B-cell epitope
D41 within DPP4 and B-cell epitope of insulinoma antigen-2 (IA-2) in an effort to enhance
therapeutic responses [64,65]. However, this multi-epitope study is perceived more as an
alternative diabetic therapy, compared to the previous study, which focused on diabetes
onset prevention [65].

3.1.3. CTB-InsB Vaccination Product to Treat T1DM

Bombyx mori, a classic host which secretes recombinant proteins in its fifth instar stage
from the lumen of silk glands, has been used in silkworm biotechnology for ages [66–68].
This discovery by Dr. Maeda in 1985 originated from silkworm larvae and has drawn
much attention due to its high level of recombinant protein expression [69]. Cholera toxin
subunit B (CTB), which is known for its toxic characteristics, is usually used as strong
adjuvant, which, together with its antigen coupling action, will eventually lead to a down-
regulation response in the onset of T1DM [70]. On the other hand, the B chain of insulin
(INSB) is briefly known as a 30-amino-acid chain with an immunogenic epitope. When
used in combination, both CTB and INSB make up a consumable vaccine to induce immune
tolerance in diabetic patients, with its strong influences in evading insulitis when tested
in NOD mice. This specific tolerance increases Foxp3+ regulatory T-cell proportions in
peripheral lymph tissues and suppresses the biological functions of spleen lymphocytes in
mice. This important research proved the effectiveness of the CTB-InsB oral protein vaccine
against diabetes development [71–75].

3.2. Specific Self-Antigens Approach in Vaccine Production

Upon administration and absorption of the vaccine-adjuvant into the T1DM patients’
skin, toll-like-receptor (TLR) acts on depot-containing antigens through pattern recognition
receptors (PRRs) activation, which mainly leads to antigen presenting cells (APC) mat-
uration (primarily DC). Activated APCs on major histocompatibility complexes (MHC)
surface then interact with antigen-specific T cells and secrete IL-10 cytokine to suppress
Th1 by Th0 stimulation. Two pathways—the Th2 anti-inflammatory process and Treg cells
induction that suppresses Th cells development—eventually stimulate insulin secretion as
diagrammatically shown in Figure 3 [36,76–78].
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Figure 3. T1DM and vaccine adjuvant’s mechanisms of action.

3.2.1. IA-2 as New Vaccine Product for T1DM

The pharmacological action of the D41-IP vaccine in using IA-2 protein as an islet
autoantigen has been tested in few different studies [79]. IA-2, a tyrosine phosphatase
protein, is commonly known as a T1DM major islet antigen [80]. A study conducted in
2012 by Guan et al. claimed that the IA-2 vaccination is capable of delaying the onset and
the late stages of autoimmune diabetes either on its own or when co-administered with
plasmid IL-4/MCP-1, which proposed a promising future for T1DM patients [81,82]. Later,
a newly designed novel peptide vaccine, IA-2-P2, was introduced to the public, where
the overall idea of the vaccine was initiated based on the previous findings of Guan et al.
A drastic drop in the blood glucose levels of normoglycemic mice were obtained when
tested with the IA-2-P2 vaccine in comparison to P277 and control mice in the study. Hence,
it was concluded that IA-2-P2 was a suitable ameliorate vaccine to combat T1DM. The P277
peptide, a human 60 kDa heat shock protein (hsp60) is a causative factor for the onset
of diabetes of non-obese diabetic (NOD) mice which are genetically prone to developing
spontaneous autoimmune diabetes [83]. However, Lu et al. reported that the fusion of
the His-Hsp65-6IA2P2 protein vaccine through nasal inoculation is believed to serve well
in regulating the T1DM response [84]. Apart from IA-2, the zinc transporter (ZnT8) has
been also studied as a major autoantigen target in T1DM immunotherapy. However, no
investigations have been conducted to test ZnT8 as a diabetes vaccine in trials [85–88].

3.2.2. Glutamic Acid Decarboxylase 65-kD (GAD65): A New Vaccine Product for T1DM

The GAD65 antibody is an isoform of GAD targeted by self-reactive T cells that
exhibits susceptibility marker detection in T1DM more frequently as compared to the
IA-2 autoantigen [89,90]. On the other hand, aluminum hydroxide is the most used adju-
vant [91,92]. In 2011, the GAD-alum vaccine (Diamyd) comprising GAD and aluminum
hydroxide, was introduced, in which the efficacy and safety of the vaccine was tested
in phase II trials preceding four years of close pharmacovigilance [93–99]. However, no
desirable effects were observed within T1DM subjects, although two to three drops of
injected vaccine were used in each subject throughout the three trial stages of experiment,
rendering it ineffective [100–102]. In fact, HbA1c and insulin were not altered by the
GAD-alum treatment [100]. In addition to that, a review article by Cook et al. also high-
lighted the insufficiency of the GAD-alum vaccine when tested in clinical trials of larger
sample sizes [103]. However, the combination of CTB-insulin and CTB-GAD with IL-10 as
a newly proposed multi-component vaccine has proven to suppress β-cell autoreactivity in
T1DM [104]. Other studies also revealed that GAD65 antibodies elicit activity against glial
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fibrillary acidic protein (GFAP), a predictive biomarker that is expressed within peri-islet
Schwann cells in the event of the onset of T1DM, making it a suitable molecule to be
incorporated in the production of an immune tolerizing vaccine [105,106]. Hyperglycemia
was suppressed, whereas C-peptide secretion was enhanced significantly in T1DM using
this GFAP vaccine by acting upon T-cell entrance into pancreatic islets, which subsequently
shifts T-cell differentiation from a cytotoxic Th1- to a Th2-biased humoral response in
NOD mice [107]. Considering the complex mechanism of the action of self-antigens to-
ward the immune system, synthetic materials were used instead in one study to co-deliver
the immunomodulatory signals, where fabricated microparticle (MP) vaccines were re-
cently established via in vivo and in vitro methods. Therefore, the first biomaterial-based
vaccine product, hydrogel/microparticle, was introduced by using dual subcutaneous
immunization, and subsequently, a revised version involving the delivery of three shots of
the vaccine into NOD mice models was tested [108,109]. On the other hand, Phillips et al.
successfully created the first antisense oligonucleotide-formulated microsphere vaccine
capable of suppressing diabetes and boosting Foxp3+ T-reg cells without inducing any
unfavorable responses [110,111]. Multiple benefits were observed from these autoantigen-
specific interventions over those involving nonspecific immune suppression as an immune
tolerance therapy, including the reduction in pathogenic peptide epitope response and
any related side effects [112]. Even so, it is unable to be predicted if similar favorable
outcomes may be obtained from the phase III clinical trial [113]. In a recent double-blinded,
randomized, placebo-controlled Phase IIb clinical trial, the intra-lymphatic administration
of GAD-alum with vitamin D supplementation appears to preserve C-peptide in patients
with recent-onset T1D carrying HLA DR3-DQ2 [114].

3.2.3. Insulin as a Target in New Vaccine Product for T1DM

The BHT-3021 vaccine, which is made of proinsulin, a precursor insulin prohormone,
was proven effective in enhancing insulin production within its early developmental
stage [115]. Longer-term research for this vaccine was recently announced by NHS Choice
in which larger group of 200 participants will be involved. In another study, the reaction
between insulin-like growth factor 2 (IGF-2), an insulin dominant self-antigen, and an
insulin autoantigen initiated a response resembling negative/tolerogenic self-vaccination,
indicating a possible cure for T1DM, as reported by Chentoufi [116]. To further consolidate
this revelation, other studies have proven that self-antigen vaccination is one of the most
secure strategies against autoimmune diabetes [117].

3.3. Non-Antigen Specific Approach in Vaccine Production

Certain immunologically active microbes and their products have been reported to
prevent autoimmune diabetes in different animal models [118]. These agents may con-
fer a protective effect in humans by stimulating the immune system especially during
childhood development [118]. As per “the hygiene hypothesis,” the growing cases of au-
toimmune diseases may be caused by insufficient microbial exposure due to the improved
hygienic conditions of the developed world [118]. Some of these microbial approaches are
discussed below.

3.3.1. Live Pathogen Salmonella as Vector Vaccine

Live recombinant attenuated Salmonella-vectored vaccines exhibit great potential as
resources to improve human health by achieving long-lasting mucosal, humoral and
cellular immunity against a variety of non-Salmonella pathogens at a low cost. The use of
recombinant DNA has been a major breakthrough in antigen mucosal delivery for years
through the generation of a live attenuated Salmonella oral vaccine since it was initially
tested in phase I clinical trials [119]. It is the T-cell autoreactive downregulation response
in the Salmonella vaccine which conferred greater therapeutic effectiveness besides its
simplicity and relative safety in comparison to antigen-specific approaches, thus making
it a potential future therapy for T1DM despite an uncertain mechanism of action [120].



Int. J. Mol. Sci. 2022, 23, 9470 8 of 16

A current study utilized Salmonella typhimurium bacteria in combination with other small
regulatory proteins called cytokines and a low dose of an immunosuppressive drug, Anti-
CD3. Results revealed that the vaccine reinstates balance to the immune system and
prevents the attack of insulin-producing cells.

3.3.2. Inactivated Microbial Vaccines

Apart from alum and CTB adjuvants, complete Freund’s adjuvant (CFA) has also
been studied as a vital T-regulatory cell inducer which successfully reverses autoimmune
diabetes through multicomponent immunization. However, the injection of a combined
anti-CXCL10 vaccine with CFA is not advisable for human use due to its high toxicity
profile, despite its proven effectiveness, as elucidated in a study by Oikawa et al. (2010),
whereby the anti-CXCL10 vaccine used successfully reversed T1DM [121]. In few years,
further studies involving CFA were performed using CTB:GAD fusion protein, which
successfully induced the protective effects in tested NOD mice [122]. In more recent times,
a multivalent islet lysate-negative vaccine tested elicited a positive immunogenic response
in the pathophysiology of diabetes, in which incomplete Freund’s adjuvant (IFA) was
used [123].

3.3.3. BCG as Vector Vaccine in Clinical Trial Studies

In 2001, tumor necrosis factor (TNF-α) activation following BCG vaccine administra-
tion to restore endogenous β-cell function resulted in the discovery of a potential T1DM
reversal mechanism [124]. In addition to that, Faustman (2012) developed another BCG
vaccine which was tested in a phase I randomized control trial, resulting in a proven
ability of the BCG vaccine in triggering TNF to induce apoptosis in autoreactive T cells.
Furthermore, an increase in the restoration rate of pancreatic β-cell function was observed
in a rodent model response [125]. Likewise, a minimum of two doses of the BCG vaccine is
recommended, particularly with the first dose being administered in neonates. However,
further studies pertaining to this claim is required, as its mechanism of action in human
subjects remains unclear [126,127]. Nevertheless, no definite linkage was found in the
preservation of β-cell function in T1DM after prophylactic administration of the BCG as
hypothesized by other randomized clinical studies between the years 1999 and 2005 [128].
In contrast, approval by the Food and Drug Administration (FDA) led to the commence-
ment of a phase II clinical trial study regarding the activity of the BCG vaccine related to
T1DM reversal. This study design involves 130 participants, of which approximately over
100 candidates have received a minimum of one dose of the BCG vaccine, and progress or
response is actively being monitored for five years from the date of administration.

4. Potential of Other Disease-Vaccines in Treating Diabetes

Interestingly, previous research elucidated evidence for enteroviruses (EV) being a
causative factor for the onset of type I diabetes. Hence, avid and ongoing effort in con-
ducting research and development to develop and synthesize an EV vaccine is currently
in progress with the aid of technological advances. Yet, various issues are still under dis-
cussion, such as diabetogenic EV serotypes, safety concerns pertaining to it, and relevance
as well as accuracy of the accumulated literature reviews, before this novel vaccine can be
tested in clinical trials [129,130]. However, a noteworthy accomplishment was achieved in a
recent preclinical study involving the invention of the first multivalent formalin inactivated
CVB1 vaccine, where the vaccine proved to be effective with no adverse effects [131]. Apart
from the usage of vaccines indicated for viral infections, the tuberculosis DNA vaccine
known as DNA-HSP65 exemplifies high possibility in becoming the latest immunothera-
peutic agent for the management of diabetes [132]. A list of new vaccine products in the
pipeline that could be employed for diabetes can be found in Table 1.
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Table 1. List of vaccine products for diabetes.

Type of Vaccine Vaccine Name Indication Mechanism of Action References

Adjuvant-based vaccines Alum adjuvant-based vaccine T1DM and T2DM Activation of immune response; Promoting humoral
immunity [42,43]

Protein-based vaccines IL-1β-targeted epitope peptide (1βEPP) T2DM Alters the level of glucose tolerance and provides a
hyperglycaemia shield [49]

Dipeptidyl peptidase-4 inhibitor (DPP4) based
vaccine T2DM Inhibition of dipeptidyl peptidase-4 inhibitor (DPP4)

enzyme [53,54]

CTB-InsB vaccination product T1DM Down-regulation response in the onset of T1DM;
Induction of immune tolerance [71–75]

Specific self-antigen-based approach
in vaccine production IA-2 as a vaccine product T1DM Islet autoantigen mechanism; delaying the onset and

the late stages of autoimmune diabetes [81,82]

Glutamic Acid Decarboxylase 65-kD
(GAD65)-Alum vaccine T1DM Suppression of β-cell autoreactivity [104]

Insulin autoantigen-based vaccine T1DM Enhancing insulin production [115]

Non-Antigen-based vaccines Live pathogen Salmonella-based vector vaccine T1DM T-cell autoreactive downregulation response [119]
Inactivated microbial vaccine T1DM Positive immunogenic response induction [121]
BCG as a vector vaccine T1DM Restoration of endogenous β-cell function [124]

Other Disease-Based Vaccines Enteroviruses (EV)-based vaccine T1DM Delayed onset response [129,130]
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Future Perspectives

Despite various prospects and the effectiveness of each approach discussed previ-
ously, limitations which arise should be thoroughly considered and evaluated from various
perspectives, where modifications may be made for future immunotherapies and later
implemented in phase III and IV trials. To date, the majority of the diabetes vaccine de-
velopment has been studied using animal models, with relatively few human trials [26].
A major limitation of using animal models, such as NOD mice, is their profound sensitivity
to diabetes protection. As a result, several successful animal studies failed in human trials,
including the Diabetes Prevention Trial-1 [26]. Recently studies have suggested the admin-
istration of non-depleting anti-CD3 antibodies or a peptide from heat shock protein 60 to
be beneficial against a recent onset of T1DM [26]. The revolutionary Diamyd vaccine for
the prevention of diabetes, for example, could possibly be improved via the exploration
of other antigen delivery pathways, such as self-antigen DNA vaccine administration,
with consideration of divergent dose administration or replacement with a different type of
autoantigen [133,134]. Besides that, understanding various other routes of administration
could potentially be an area of further research. Being another pivotal part of vaccine devel-
opment, feasible study designs not only contribute toward grasping a better understanding
of the Alum-GAD system but also could pave the path to develop newer combination
therapies studies for diabetes.

5. Conclusions

The pressing concern pertaining to the rising number of patients falling victim to
diabetes has garnered the interest of numerous scientists and researchers worldwide in the
search for the most effective management strategies, as demonstrated with the abundance
of literature available to date. The urgent need for more effective prophylaxis in addition
to conventional dietary modification advice to patients has prompted various attempts
in developing vaccines to delay or prevent the onset of this chronic disease, as seen in
recent approaches where protein-based, self-antigen and non-antigen specific interventions
have exhibited promising potential for use as vaccines against diabetes in the near future.
However, a deeper understanding is still required to ameliorate and invent potent therapies
with minimal side effects regardless of the cause-related factors, especially for chronic
diseases, such as T2DM.

Author Contributions: Conceptualization, D.K.C.; resources, A.B.S., K.P. (Krishna Prasad), N.A.A.S.,
W.S.Y., A.D. (Arpita Das), P.B., N.G., T.G., A.D. (Amitava Das), S.B., M.C., J.M., K.P. (Kishneth
Palaniveloo), G.G., S.K.S. and K.D.; data curation, A.B.S., K.P. (Krishna Prasad), N.A.A.S., W.S.Y.,
A.D. (Arpita Das), P.B., N.G., T.G., A.D. (Amitava Das), S.B., M.C., J.M., K.P., G.G., S.K.S. and K.D.;
writing—original draft preparation, A.B.S., K.P. (Krishna Prasad), N.A.A.S., W.S.Y., A.D. (Arpita Das),
P.B., N.G., T.G., A.D. (Amitava Das), S.B., M.C., J.M., K.P. (Krishna Prasad), G.G., S.K.S. and K.D.;
writing—review and editing, D.K.C., R.R.B., A.B.S., K.P. (Krishna Prasad), N.A.A.S., W.S.Y., A.D.
(Arpita Das), P.B., N.G., T.G., A.D. (Amitava Das), S.B., M.C., J.M., K.P. (Kishneth Palaniveloo), G.G.,
S.K.S. and K.D.; supervision, D.K.C.; project administration, D.K.C.; funding acquisition, R.R.B. All
authors have read and agreed to the published version of the manuscript.

Funding: The Article Processing Charges (APC) of this review is funded by the Deanship of Graduate
Studies and Research, Ajman University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: RRB is thankful for Deanship of Graduate Studies and Research, Ajman Univer-
sity for providing funding towards the Article Processing Charges (APC).

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2022, 23, 9470 11 of 16

Abbreviations
The following abbreviations are used in this manuscript:

1βEPP IL-1β-targeted epitope peptide vaccine adjuvant with polylactic acid microparticles
ADA American Diabetes Association
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APC Antigen presenting cells
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CFA Complete Freund’s adjuvant
CTB Cholera toxin B subunit
DC Dendritic cell
DM Diabetes mellitus
DNA Deoxyribonucleic acid
DPP4 Dipeptidyl-peptidase-4-inhibitor
EV Enteroviruses
FDA Food and Drug Administration
GAD65 Glutamic acid decarboxylase 65-kD antibody
GFAP Glial fibrillary acidic protein
GLP Glucagon-like-peptide
IA-2 Insulinoma-associated protein 2
IDF International Diabetes Federation
IFA Incomplete Freund’s adjuvant
INSB B chain of insulin
IL-1β Interleukin-1β cytokine
IL-10 Interleukin-10
MHC Major histocompatibility complexes
MP Microparticle
NOD Non-obese diabetic
PRR Pattern recognition receptors
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
Th0 Naive helper T cell
Th1 Cytotoxic helper T cell
Th2 Humoral helper T cell
TLR Toll-like receptor
TNF Tumor necrosis factor
Treg cells Regulatory T cells
WHO World Health Organization
ZnT8 Zinc transporter isoform 8
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