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Abstract

The primary goal of genome-wide association studies (GWAS) is to discover variants that could lead, in isolation or in
combination, to a particular trait or disease. Standard approaches to GWAS, however, are usually based on univariate
hypothesis tests and therefore can account neither for correlations due to linkage disequilibrium nor for combinations of
several markers. To discover and leverage such potential multivariate interactions, we propose in this work an extension of
the Random Forest algorithm tailored for structured GWAS data. In terms of risk prediction, we show empirically on several
GWAS datasets that the proposed T-Trees method significantly outperforms both the original Random Forest algorithm and
standard linear models, thereby suggesting the actual existence of multivariate non-linear effects due to the combinations
of several SNPs. We also demonstrate that variable importances as derived from our method can help identify relevant loci.
Finally, we highlight the strong impact that quality control procedures may have, both in terms of predictive power and loci
identification. Variable importance results and T-Trees source code are all available at www.montefiore.ulg.ac.be/,botta/
ttrees/ and github.com/0asa/TTree-source respectively.
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Introduction

Advances in genetic marker technology now allow for the dense

genotyping of hundreds of thousands of single nucleotide

polymorphisms (SNPs). It is now possible to create, at a moderate

cost, representative samples counting thousands of individuals

each characterized by up to a million of genetic markers spanning

their whole genome. From these data, genome-wide association

studies (GWAS) aim to discover variants spread over the genome

that could, in isolation or in combination, lead to a particular trait

or an unfortunate phenotype such as a disease. The basic idea

behind a GWAS is to statistically analyze the genetic differences

between two populations: healthy vs. affected individuals [1].

The standard approach to GWAS is based on univariate

hypothesis tests, where the potential association of each genetic

marker is assessed in isolation of the others through the

computation of p-values based on statistical assumptions about

the data distribution [1–3]. While this standard approach has been

at the basis of many novel loci unraveled in the last years for

several complex diseases, it has several intrinsic limitations: (i) it

does not directly account for correlations among the explanatory

variables, while in the context of GWAS this correlation is often

very strong, because of linkage disequilibrium (LD) or artifacts

induced by the experiment design; (ii) it does not account for

genetic interactions, i.e. causal effects that are only observed when

specific combinations of mutations and/or non-mutations are

jointly present; (iii) it does not directly provide predictive models

for the genetic risk.

Some of these limitations are specifically addressed by advanced

multivariate statistical and machine learning techniques. Bayesian

linear regression methods and mixed-effect models that were

originally proposed in the context of genomic selection have been

adapted for GWAS [4–7]. The main strength of these methods is

the possibility to take into account population structure,

confounding effects, and linkage disequilibrium through the

incorporation of appropriate priors. Generic machine learning

(ML) techniques have also been exploited and adapted for GWAS.

From the ML point of view, a GWAS is a supervised classification

problem defined by thousands of individuals partitioned into two

output classes, and described by several hundreds of thousands of

discrete input variables corresponding to the SNPs (each variable

having typically three possible values – 0, 1 or 2 – representing the

number of mutant alleles present for the corresponding SNP). In

the literature, several classification methods have been applied on

GWAS data, such as Support Vector Machines, Logistic or

Penalized Regression, Neural Networks or Random Forests (RF)

[8–10]. In particular, RF-like methods are very attractive in this

context, as they have several intrinsic features that fit very well

with the requirements of GWAS as a supervised learning problem

[11–15]. First, they allow to build a predictive model without

making any assumption about the underlying relationship between

genotype and phenotype. Second, several variable importance

measures can be derived from these models. In the context of
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GWAS, they may help identify genomic regions containing causal

mutations which, in isolation but also in combination, may be

associated with the studied phenotype. Third, they are computa-

tionally efficient and almost free of hyper-parameters that need to

be tuned, making them easily applicable to very high-dimensional

GWAS datasets.

Several works have shown the good performance of RF

methods either on simulated [11] or on real GWAS data [13],

and in comparison with other methods, such as classical bayesian

regression methods proposed in genomic selection [16] or other

supervised learning methods [17]. The ability of RF to detect

interacting SNPs has been analyzed for example in [12,14]. These

studies show that RF performs better than univariate tests in this

goal, as expected, but that the probability to detect interacting

SNPs drops rapidly when the total number of SNPs increases. RF

importance scores were used by several authors as a pre-filtering

tool before the application of statistical tests to find interacting

SNPs [18,19]. The effect of LD on variable importance measures

derived from RF models has been investigated for example in

[13,20–22]. It mainly results in a reduction or dilution of the

importance of SNPs that are in LD with many other SNPs, which

may hinder even the discovery of strong effects shared by several

SNPs. Several approaches have been proposed to address this

problem. The simplest approach consists in pre-selecting only

SNPs not in LD before building the forest [13]. Based on a similar

idea, [23] proposed to prevent two SNPs in LD to appear in the

same tree in a forest and adapted importance scores so that the

importance of a SNP is only computed from the trees where this

SNP appears. Another approach proposed in [23] is to use

haplotypes instead of SNPs to build RF models. Despite good

performances on simulated data, [23] nevertheless recommend to

use the original RF methods together with their modified

importance scores on real GWAS datasets. In our previous work

[24], we proposed to treat haplotype blocks instead of single SNP

inside decision tree test nodes using a maximum likelihood

estimation of the conditional probability that the observed

haplotype block is drawn from the population of cases (resp.

controls). The results obtained on simulated data provided only

marginally better results than a direct application of RF on SNPs.

Our main contribution in this paper is a novel tree-based

ensemble method – called Trees inside Trees (T-Trees) – that takes

into account the correlation structure among the genetic markers

implied by linkage disequilibrium in GWAS data. In essence, we

propose to replace the univariate split functions used in the nodes

of a decision tree by non-linear multivariate split functions of

contiguous SNPs, themselves modeled as decision trees.

We validate and compare our method with the original RF

method on both synthetic datasets (results not reported here) and

real life datasets coming from the Wellcome Trust Case Control

Consortium [25]. We found that T-Trees systematically yield both

improved predictive accuracy and better identification of causal

loci. We also compare tree-based methods with standard linear

models, showing the superiority of the former over the latter.

Through a large-scale empirical investigation, a second contribu-

tion of our paper is hence to provide a better understanding of

tree-based ensemble methods in real-life conditions while, for

computational reasons, most previous empirical studies have

focused on small simulated and/or strongly filtered data. As a third

contribution, we also highlight in this study the very strong effect

of quality control procedures on the classifiers induced by RF-like

methods, both in terms of predictive power and loci identification.

Materials and Methods

In this section, we first briefly describe the decision tree

induction algorithm as well as standard tree-based ensemble

methods. We then present and motivate the proposed T-Trees

algorithm and describe how it relates with these former methods.

We proceed with a review of the linear models later used for

validation and then conclude with a description of the experi-

mental protocol and quality controls used within this study.

Pseudo-code and implementation details are provided in Support-

ing Information S1.

Tree-based Ensemble Methods
A classification decision tree [26] is an input-output model

represented by a tree structure. Any node in the tree represents a

subset of the input space, with the root node being the whole input

space itself. Internal nodes of the tree are labeled with a binary test

(or split) dividing the subset they represent into two disjoint subsets

corresponding to their left and right sub-trees. Binary tests are

usually univariate linear split functions of the form Xmvc?, where

Xm and c respectively denote the variable and the discretization

threshold (or cut-point) used to partition the node into two

subspaces. In the standard tree induction algorithm, combinations

of Xm and c for all candidate variables and for all possible cut-

points are typically investigated, and the one leading to the largest

reduction of some impurity criterion is chosen to partition the

node. Terminal nodes (or leaves) are labeled with a best guess

value of the output variable, e.g. determined as the majority class

in the subset represented by the leaf. The predicted output for a

Figure 1. A closer look into a T-Tree test-node. The group 1 is
tested. Out of this group, three SNPs are exploited by the weak learner.
In red (resp. green), probability of being a case (resp. control) estimated
by the weak-learner.
doi:10.1371/journal.pone.0093379.g001
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new instance is the label of the leaf reached by the instance when it

is propagated through the tree by following the binary tests.

Single decision trees typically suffer from high variance, which

makes them not very competitive in terms of accuracy. To

circumvent this problem, ensembles of decision trees have been

proposed and consist in growing a forest of T randomized trees

whose predictions are aggregated (e.g., by majority voting) to form

a final prediction. Representative algorithms of tree-based

ensemble methods include Random Forests [27] or Extremely

Randomized Trees ([28], Extra-Trees), and usually differ in the

way they introduce randomization in the tree induction process.

Random Forests (RF) exploit two sources of randomization: first,

each tree in the ensemble is built on a bootstrap copy drawn with

replacement from the original learning set; second, when splitting

a node, instead of searching for the optimal binary test among all

candidate variables Xm, only a random subset of K variables are

investigated (while all possible cut-points for these variables remain

considered). Using a random subset of variables typically leads to a

better bias/variance trade-off and therefore to better performance

(with respect to using all variables). By contrast, Extra-Trees (ET)

do not use bootstrap copies to build each tree. As for RF though, it

also only uses K of the variables when splitting an internal node.

However, instead of trying to the find the optimal cut-point, ET

draws cut-points at random for each of the K variables. From a

statistical point of view, dropping bootstrap leads to an advantage

in terms of bias, whereas the cut-point randomization has a

variance reduction effect.

In this work, the hyper-parameters that are mainly considered

are the number T of trees and the number K of variables

investigated at each internal node. Because the higher T , the

better the performance, this parameter is usually set to the highest

affordable value given the available computing resources. By

default, K is often fixed to the square root of the total number of

input variables. In some contexts (e.g., high output noise), it might

also be advantageous to constrain the size of the trees within the

ensemble, for example by setting a threshold Nmin on the number

of samples required to split a node or by globally limiting the

number of test nodes within each tree. By default, however, trees

are always fully grown.

As previously stated, tree-based ensemble methods can also be

used to derive variable importance scores for each input variables.

The two most used measures are the Mean Decrease Impurity (MDI)

importance [27] and the Mean Decrease Accuracy (MDA) importance

[27,29]. The MDI importance of Xm is computed as the weighted

sum of the impurity decreases for all nodes where Xm is used. It

represents together with the importances of the other variables a

decomposition of the information jointly provided by the inputs

about the output [30]. The MDA importance of Xm is the mean

decrease in accuracy of the forest when the values of Xm are

randomly permuted in the out-of-bag samples. In this work, we

choose the MDI importance for efficiency reasons. Indeed, unlike

the MDA importance, it is embedded in the tree growing process

and does not require any additional computation.

Trees Inside Trees
In this section, we motivate and describe the proposed T-Trees

algorithm as an extension of RF-like methods. We then proceed

with a discussion of variable importance scores as they can be

derived with our new method.

Motivation. Linkage disequilibrium in GWAS data reveals

that tightly linked SNPs may sometimes be associated with each

other. Mathematically, this suggests that input variables located in

a same region may be structured in a non-random way. Despite

evidence of this phenomenon, the structure of the feature space is

almost never explicitly taken into account by standard data

analysis tools. As such, we propose in this work a variant of tree-

based ensemble methods that can exploit the local information

carried by a region (or block) of genetic markers. The core

principles of our method is to: (i) transform the original input space

into groups of variables corresponding to contiguous and

(potentially highly) correlated SNPs and (ii) replace the univariate

linear split functions labeling the internal nodes of a decision tree

by multivariate non-linear split functions of several SNPs located

in a same block. In particular, we propose to model these complex

binary tests as randomized decision trees built only from the SNPs

of a block, hence making trees inside trees. From a machine

learning point of view, our method relates to ensembles of oblique

or functional trees [31,32], which also replace the usual axis-

aligned split functions by more complex alternatives. In the

context of GWAS, potential benefits include:

N Capturing interactions between loci (i.e., blocks of SNPs).

Since the size of the new feature space is inversely proportional

to the size of the blocks, the greater is the chance of finding

Table 1. Comparison between the two methods.

CDwtccc CDqc

K RF TT RF TT

100 0.683 0.921 0.628 0.719

500 0.799 0.942 0.675 0.747

1000 0.845 0.945 0.684 0.749

2500 0.888 0.944 0.700 0.746

5000 0.909 0.938 0.698 0.740

10000 0.919 – 0.697 –

25000 0.907* – 0.708* –

50000 0.898* – 0.698* –

Predictive performance of RF and TT for different values of K , tuned value for
Nmin and T~1000. Best AUC values for each column are underlined; best AUC
values for each dataset variant are shown in bold. For TT, sb~10 and IC~10. (�

corresponds to RF with T~1000 and Nmin~250); - TT was not applied for
values of Kw5000; both for computational efficiency reasons.).
doi:10.1371/journal.pone.0093379.t001

Table 2. T-Trees: block map and internal complexity
influence.

sb IC CDwtccc CDqc

10 1 0.906 0.717

5 0.953 0.765

10 0.945 0.749

20 5 0.955 0.755

10 0.945 0.740

20 0.931 0.706

50 5 0.938 0.742

10 0.937 0.744

25 0.913 0.700

Effect of block size sb and internal complexity IC, for K~1000, T~1000, and
Nmin~2000. Maxima for each block size are highlighted in bold.
doi:10.1371/journal.pone.0093379.t002
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direct (resp. indirect) interactions between regions in consec-

utive nodes (resp. along a branch).

N Discovering SNP combinations (i.e., haplotypes or super-

alleles) that are linked to the disease. Indeed, in standard tree-

based methods, the chance of testing consecutively two SNPs

from the same haplotype block is relatively small. With the

proposed method, we force the exploration of such interactions

when building the internal decision trees.

N Exploiting a group of surrogate variables. If two or more

variables are in perfect LD, then they share the exact same

information about the output variable and hence, due to the

randomization in tree-based ensemble methods, each of these

variables will be asymptotically equally selected in the

ensemble, so that their respective importances will decrease

as the number of surrogates increases [21,23]. The ability to

rank a block instead of a SNP will thus help identify a group of

nearby highly correlated SNPs in association with the disease.

Algorithm. The first step of the algorithm is to transform the

original input space, where each input variable corresponds to a

SNP, to a new input space, where each input variable now encodes

for a region of contiguous SNPs in the genome. As input, the

method hence takes a block map defining how SNPs are grouped

together. Such a map can be defined using available software for

haplotype block identification [33] but then makes the proposed

method strongly dependent on the output quality of such software.

In this work, we consider instead to simply partition the set of

SNPs into disjoint blocks of sb contiguous SNPs, where sb is an

user-defined parameter controlling the size of a block.

In this new space, we then apply the standard RF algorithm but

using the new group variables as input. In particular, this leads to

two changes: (i) K group variables are drawn at random when

splitting an internal node (instead of drawing K variables from the

original space) and (ii) binary splits become multivariate non-linear

functions of the SNPs in the corresponding block, and are

themselves modeled as randomized decision trees. From these

internal decision trees, numerical probability values of being a case

can be derived for all samples in the node, and then finally used as

a numerical attribute on which a cut-point can be fit (as in the

standard RF algorithm) to partition the node.

In this work, internal trees are built as single Extra-Trees with

internal parameter K~sb (found to be a good default value in

[34]) and the following changes:

N The number of test nodes in an internal tree is limited by an

internal complexity parameter denoted IC. The choice of this

value depends on the nature of groups of variables. IC = 1 is an

interesting choice for strongly correlated variables as they all

carry the same information. Higher values are better suited

when a combination of several variables is required to explain

the outcome.

N Since the number of test nodes in internal trees is limited,

expansion is done in random order to avoid tree degeneres-

cence, as it would otherwise happen if nodes were expanded in

depth-first order like in the standard algorithm.

As an example, Figure 1 illustrates part of a single T-Tree. The

large squared nodes are the outer nodes, while the small circled ones

are the inner nodes, i.e. the nodes of the internal decision trees

modeling the split functions of the outer nodes. The internal

complexity IC in this example has been set to 3. Hence, any

internal tree counts at most 3 inner nodes. Inside the outer nodes,

internal trees are expanded on groups of variables from the

original input feature space. In particular, the internal tree in the

highlighted outer node is expanded on group 1, which means that

its inner nodes are testing SNPs from this group only. For each

object reaching the outer node, this small tree outputs a

probability of being a disease case, and is used as a new numerical

attribute on which a threshold is fit as in the standard RF method.

Finally, as in RF, an ensemble of T such T-Trees are grown on

bootstrap copies of the learning set and their predictions are

combined to form a final prediction.

Individual and group-wise importances. As for RF, T-

Trees allow to derive variable importance scores. The nested

structure of the model gives rise to several possible adaptations. In

this work, we propose the following two MDI-like importance

measures:

N SNP importances: For each individual variable (or SNP), its

importance is computed as the weighted sum of the impurity

decreases for all inner nodes where this variable is used

(regardless of its originating group).

N Block importances: For each block of variables, its importance is

computed as the weighted sum of the impurity decreases for all

outer nodes where this group is used.

Standard Linear Models
To be self comprehensive, we briefly describe in this section the

standard linear methods with which we compare T-Trees. The

first family of methods are log odds ratio approaches, as

implemented in PLINK v1.07 [4].

Table 3. T-Trees: contiguous versus randomized blocks.

CDwtccc CDqc

K contig. rand. contig. rand.

100 0.903 0.753 0.690 0.600

500 0.936 0.835 0.728 0.625

1000 0.941 0.853 0.744 0.627

Predictive performance of TT with IC~sb~10, T~1000 and Nmin~2, using
contiguous blocks of 10 SNPs versus random blocks of 10 SNPs. Breaking the
structure using randomized block maps drastically deteriorates the results.
doi:10.1371/journal.pone.0093379.t003

Table 4. Predictive power: auc comparisons on the six other
WTCCC datasets.

qc wtccc

rf tt rf tt

BD 0.743 0.813 0.918 0.959

CAD 0.756 0.814 0.998 0.999

HT 0.807 0.866 0.938 0.969

RA 0.806 0.830 0.993 0.996

T1D 0.860 0.870 0.900 0.940

T2D 0.758 0.834 0.959 0.979

Predictive power of RF and TT on two variants of the 6 other wtccc datasets.
The qc columns corresponds to the ’’qc’’-like filtered variant and the wtccc to the

weakly filtered variant. (Parameters settings: RF: T~1000, K~10000,
Nmin~250; TT: T~1000, K~1000, IC~5, Nmin~2000).
doi:10.1371/journal.pone.0093379.t004
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N OR: The log odds ratio approach assesses how the presence of

a specific allele at a given locus increases or decreases the

genetic risk, and additively combines these evidences into a

global score. In particular, each individual is assigned with the

average risk over non-missing SNP, defined as:

1

n

Xn

i~1

gi| log (ORi),

where n corresponds to the number of non-missing genotypes, gi

denotes the genotype (0, 1 or 2) of SNPi of the individual and ORi

is the allelic odds ratio, that is the ratio between the proportion of

cases having a specific allele and the proportion of controls having

the same allele. In this variant of the method, odds ratios ORi are

directly derived from the dataset.

N ORlogit: Same as OR, but ORi values are derived from a

logistic regression model applied separately at each SNP i (and

correspond to the b1 coefficient of the logistic regression model

[35]).

The second family of methods are linear scoring functions (i.e.,

classifiers) of the form f (x)~wT xzb, whose parameters w and b

are obtained by minimizing.

E(w,b) ~
Xn

i~1

L(yi,f (xi))zaR(w)

where L is a loss function that measures model fit and R is a

regularization term that penalizes complexity. All of them were

evaluated using implementations from Scikit-learn [36].

N SGD-L1: Hinge loss function (L(yi,f (xi))~max(0,1{yi(xi)))
with L1 (R(w)~

P
i jwij) regularization, and optimized using a

stochastic gradient procedure.

N SGD-L2: Same as SGD-L1, but using L2 (R(w)~1=2
P

i jwij2)

regularization.

N Logit: Logistic loss (L(yi,f (xi))~ log (1ze{yif (xi))) with L2

regularization.

Note that, as in tree-based methods, variable importance scores

from linear models can also be derived, for example using the jwij
values.

Datasets and Protocol
To validate our method, we performed experiments on the

GWAS datasets made available by [25]. The WTCCC data

collection contains 17000 genotypes, composed of 3000 shared

controls and 14000 cases representing 7 common diseases of major

public health concern: Crohn’s disease (CD), bipolar disorder

(BD), coronary artery disease (CAD), hypertension (HT), rheu-

matoid arthritis (RA), type 1 (T1D) and type 2 (T2D) diabetes.

Individuals were genotyped with the Affymetrix GeneChip 500K

Mapping Array Set and are described by about 500,000 SNPs

(before the application of quality control filters).

In our experiments below, results on the Crohn’s disease data

are analyzed in more details. For this dataset, we investigate two

different quality control (QC) filters that have been proposed in the

literature. The first one corresponds to the original procedure

described in [25], while the second one corresponds to the QC

filter applied in ([37], Supporting Information S1). The second

filter is quite stronger than the WTCCC filter. Datasets resulting

from these filters are respectively denoted CDwtccc and CDqc. For

the six other six datasets, we also consider the same filters but

adapting the second one since it was not fully reproducible, as

some filtering steps were tuned through undocumented visual

inspections of various plots.

As evaluated methods do not deal with missing values as such,

we chose to randomly fill the missing genotypes taking into

account the genotypic distribution of the corresponding non

missing values of the SNP over the corresponding joint cohort of

cases and controls.

The predictive performance of all methods are assessed below

by the area under the ROC curve metric (AUC), which is obtained

on each dataset by 10-fold cross-validation (averaging the AUCs

over the ten fold). All compared methods are evaluated on the

exact same 10 folds to limit variability.

Results

In this section, we present our results on 7 WTCCC datasets.

We first compare T-Trees (TT) with RF in terms of predictive

performance and then investigate in details the influence of the

main parameters of our method (IC and sb) on the CD dataset.

Next, we compare TT and RF with standard linear models.

Finally, we evaluate and compare variable importance scores

derived both from the TT and RF and discuss these results in the

light of the loci confirmed in the literature.

Predictive Power of TT vs RF
To make our comparison of RF and TT independent of the

choice of their common parameters, we first carry out an

exploration of the parameters T , the number of trees in the

ensemble, Nmin, the minimal number of samples to split an (outer)

node, and K , the number of SNPs or groups probed at each (outer)

test node, both with RF and TT and on the CDwtccc and CDqc

datasets. For TT, blocks of size sb~10 are used and the internal

complexity is set to IC~10. Table 1 reports the best performance

of both methods, for various values of K , tuned parameter value

for Nmin and T set to 1000. We observe that using T-Trees

systematically and significantly improves the predictive accuracy,

regardless of the dataset variant. Even with the lowest value of K ,

their AUCs are better than the best results of RF. Full results for

Table 5. Comparison of the predictive power of tree-based
methods and linear models.

CDwtccc CDqc

RF 0:919 0:700

TT 0:955 0:765

OR 0.661 0.648

ORlogit 0.739 0.729

SGD-L1 0.623 0.613

SGD-L2 0.643 0.635

Logit 0.648 0.638

Poly [10] 0.716 –

LassoSVM [10] 0.762 –

doi:10.1371/journal.pone.0093379.t005
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Table 6. Regions highlighted from the top 200 SNPs according to SNP importances with RF and T-Trees on CDqc.

Random Forests

chr size rsid trend p-value importance

1 10 rs112090261,4,5 (IL23R) 8.24 ? 10218 1.40 ? 1022 (1)

2 2 rs37550762 5.18 ? 1021 5.30 ? 1024 (48)

2 17 rs118878273,4 2.42 ? 1028 1.27 ? 1023 (20)

2 5 rs102103021,4,5 (ATG16L1) 2.22 ? 10213 2.79 ? 1023 (6)

3 6 rs117181651,5 (BSN) 1.70 ? 1026 1.19 ? 1023 (24)

4 2 rs170459354 (ANK2) 5.28 ? 1022 6.45 ? 1024 (39)

5 3 rs16893874 3.18 ? 1025 3.32 ? 1024 (80)

5 12 rs172346571,4,5 1.72 ? 10213 2.26 ? 1023 (10)

5 2 rs17149128 (SNCAIP) 4.10 ? 1021 1.97 ? 1024 (166)

5 4 rs9310585 1.53 ? 1028 5.83 ? 1024 (44)

6 2 rs600382 2.38 ? 1025 2.67 ? 1024 (95)

8 4 rs102169094 7.76 ? 1025 3.04 ? 1024 (87)

10 2 rs16919914 2.22 ? 1021 5.20 ? 1024 (49)

11 2 rs1533339 (NTM) 2.78 ? 1024 2.15 ? 1024 (145)

16 4 rs20767561,4,5 (NOD2) 3.95 ? 10215 3.88 ? 1023 (4)

23 2 rs6522332 3.23 ? 1021 2.08 ? 1024 (155)

7 1 rs8347712,6 1.25 ? 1023 1.91 ? 1024 (177)

8 1 rs109578182,6 2.62 ? 1025 2.13 ? 1024 (151)

14 1 rs49036042,6 2.48 ? 1023 2.89 ? 1024 (89)

18 1 rs25421511,5,6 7.21 ? 1028 2.07 ? 1024 (156)

T-Trees

chr size rsid trend p-value importance

1 2 rs12409315 2.54 ? 1023 4.36 ? 1024 (32)

1 10 rs112090261,4,5 (IL23R) 8.24 ? 10218 5.23 ? 1023 (5)

1 2 rs11162341 8.99 ? 1021 2.28 ? 1024 (57)

1 5 rs6677092 (RPS7P5) 1.77 ? 1024 4.15 ? 1024 (33)

2 35 rs118878273,4 2.42 ? 1028 1.03 ? 1022 (1)

2 2 SNP_A-2293058 1.79 ? 1025 1.81 ? 1024 (78)

2 5 rs102103021,4,5 (ATG16L1) 2.22 ? 10213 3.07 ? 1024 (48)

3 2 rs17047422 3.45 ? 1024 1.91 ? 1024 (73)

3 2 rs6774 (B4GALT4) 1.39 ? 1022 3.41 ? 1024 (43)

3 2 rs4686733 3.65 ? 1021 1.39 ? 1024 (93)

4 2 rs1872321 6.88 ? 1029 1.19 ? 1023 (17)

4 2 rs170459354 (ANK2) 5.28 ? 1022 2.57 ? 1024 (53)

4 3 rs1595154 1.08 ? 1027 5.70 ? 1024 (28)

5 10 rs172346571,4,5 1.72 ? 10213 4.55 ? 1024 (30)

6 2 rs168846935 1.21 ? 1023 9.36 ? 1025 (145)

6 3 rs2784899 6.48 ? 1022 1.26 ? 1024 (106)

7 2 rs10270692 9.31 ? 1022 1.99 ? 1024 (68)

7 9 rs69475793 8.54 ? 1021 7.55 ? 1023 (3)

8 2 rs102169094 7.76 ? 10254 1.03 ? 1024 (131)

10 2 rs11011417 1.85 ? 1025 1.31 ? 1024 (100)

11 2 rs9804490 2.41 ? 1025 1.16 ? 1024 (117)

12 2 rs11613902 (TMEM117) 9.43 ? 1021 3.46 ? 1024 (41)

14 4 rs10144260 1.18 ? 1029 1.07 ? 1023 (18)

14 2 rs2819467 (C14orf79) 1.51 ? 1023 1.23 ? 1024 (110)

16 3 rs20767561,4,5 (NOD2) 3.95 ? 10215 6.43 ? 1024 (25)

Exploiting SNP Correlations within Random Forest
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various combinations of T , Nmin and K are presented in Figures

S01–S04 in Supporting Information S1.

Trends observed in Table 1 are similar whatever the QC filter

procedure but AUC scores are much lower with the stronger filter

(qc) than with the other procedure (wtccc). Notice that the optimal

values of Nmin and K are also quite different for both methods:

optimal results were observed with a slight pruning in the case of

RF (Nmin&250) and a much stronger pruning in the case of TT

(Nmin&2000); with RF, the optimal value of K is around or above

10000, while the optimum is reached for K~1000 with TT. We

also observe that TT is much less sensitive to the variation of K

around its optimal value than RF is.

We now investigate the effect of block size sb and internal

complexity IC. Table 2 summarizes results for different values of

sb and IC with K~1000 and Nmin~2000 (which corresponds to

the settings we identified as the optimal ones in the previous

experiment). Results are consistent across the two datasets, as the

optimal parameters for CDwtccc exactly coincides with the optimal

parameters for CDqc. They also suggest that TT is quite robust

against the block composition/choice. For both datasets, regard-

less of sb and the IC, we indeed see that AUCs do not significantly

fluctuate. The table even suggests that, no matter which block size

is used, the only parameter that affects the predictive power is the

internal complexity parameter (e.g., for IC~10, results for block

sizes 10 and 20 are almost identical). Nevertheless, we do observe a

slight decrease in performance as sb and IC increase. We notice

that larger block size and larger IC force T-Trees to explore a

larger number of variables for each inner split, and we believe that

by doing so they tend to overfit the training data.

These strong and promising results suggest that using more than

one SNP at each node improves tree-based classifiers. Table 3

however empirically ensures that our approach is effectively taking

advantage of the structured nature of the variables (i.e., the LD

pattern). When testing our approach with blocks of randomly

positioned SNPs rather than contiguous SNPs (i.e., when breaking

the surrounding LD structure), we indeed observe that perfor-

mance is significantly worse, which suggests that the increased

predictive power is not the sole consequence of the dimension

reduction introduced by our methodology but is rather due to an

effective use of an underlying structure. This result supports the

effectiveness of our approach and confirms the initial intuition that

led us to propose this method in the context of GWAS.

Finally, Table 4 summarizes AUCs obtained on the six other

disease related datasets, both with RF and TT and using the near

optimal parameter settings identified on the CD dataset. As for the

CD datasets, the TT systematically outperforms RF in terms of

prediction accuracy (even when there is not much room left for

improvement, i.e. when the AUC of RF is already very close to 1).

No matter how the datasets were preprocessed, taking into

account the structure of the descriptors allowed for a notable AUC

increase, in all cases.

The weaker QC filters of the WTCCC allowed both types of

forests to reach unexpectedly high AUCs. In particular, for CAD

and RA, RF and TT were able to almost perfectly predict

individual disease statuses. On these two datasets, we notice that

the removal of suspicious variables (i.e., showing a strong deviation

from the Hardy-Weinberg equilibrium (HWE)) decreases the

predictive power. In the most extreme case, with RF on CAD,

AUC dropped from 0.998 to 0.756.

Comparison with Linear Models
Next we compare tree-based algorithms with several standard

linear models, as described in Materials and Methods. We focus

here on predictive accuracy, and defer the comparison of SNPs

rankings obtained with tree-based methods and linear models to

the next Section.

Table 5 compares the predictive power of RF and TT with

standard linear methods on the CDwtccc and CDqc datasets. All

linear methods were evaluated following the same 10-fold cross-

validation scheme as for RF and TT and using the same folds. The

regularization parameter a was chosen for each method so as to

maximize the reported AUCs (Leading to a~10{6, 103, and 105

on CDwtccc and a~10{6, 103, and 106 on CDqc, respectively for

SGD-L1, SGD-L2, and Logit). Results for TT and RF correspond

to the best results reported in Tables 1 and 2. Like for RF and TT,

higher AUC values are reached on CDwtccc with the linear models.

However, unlike for RF and TT, the difference between the two

datasets is now very slight. For both datasets, the best results are

achieved with T-Trees. While the difference is notable on CDwtccc,

the gap between the best linear model and the best tree-based

method is much smaller on CDqc. ORlogit is the overall best linear

model. Its good performance suggests that a notable part of the

genetic risk can be explained as a linear combination of the

individual SNPs odd ratios. The three regularized models are very

Table 6. Cont.

Random Forests

chr size rsid trend p-value importance

23 8 rs5904497 (SMS) 4.41 ? 1022 3.26 ? 1023 (9)

23 2 rs6624585 (NHSL2) 2.69 ? 1022 2.24 ? 1024 (58)

3 1 rs117181651,5,6 (BSN) 1.70 ? 1026 7.93 ? 1025 (159)

5 1 rs22799802,6 6.19 ? 1025 7.03 ? 1025 (182)

8 1 rs109578182,6 2.62 ? 1025 1.06 ? 1024 (126)

18 1 rs25421511,5,6 7.21 ? 1028 9.35 ? 1025 (146)

Regions highlighted from the top 200 SNPs according to SNP importances with RF (top) and T-Trees (bottom) on CDqc. Each row corresponds to a set of SNPs obtained
by merging contiguous SNPs in the rankings that are not separated by more than 20 SNPs. For readability, only groups of more than 2 SNPs appear in the tables.
Markers that are isolated but reported as associated in [25] are nevertheless compiled at the bottom of both tables (6). For each region, the columns provide the
chromosome number, the number of important SNPs in the region, the most important SNP in the region (and its gene name if provided by PheGenI [40]), the p-value
of this SNP and its importance. (1) and (2): the regions reported as strongly (with a trend or a genotypic p-value ,1025) and moderately (with a trend or a genotypic p-
value between 1025 and 1024) associated in [25]. (5): also reported by [37]. (4): regions identified by both RF and T-Trees. (3): the two novel regions mainly spotted by T-
Trees.
doi:10.1371/journal.pone.0093379.t006
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Figure 2. Group and variable importances for the two novel candidate regions for Crohn’s disease. Regions 2p12 (top) and 7q31
(bottom), as found by T-Trees on CDqc . First row: SNP and block importances. Second row: univariate (Fisher) p-values and haplotype p-values as
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close to each other, with a slight advantage for L2 regularization

(SGD-L2 and Logit) over L1 regularization (SGD-L1). These

methods are however one step behind the log odds ratio methods,

which might be explained by the very high dimensionality of the

task and hence the less effective optimization procedure. Also, the

fact that variables are considered independent of each other in the

ORlogit method makes it very robust against overfitting. Small

noise effects due to a large number of irrelevant markers indeed

tend to cancel each other on average.

As an additional comparison, we also report in the last two rows

of Table 5 the best AUCs obtained by Abraham et al. in [10]. The

first method, called Poly, is equivalent to the OR method with the

difference that SNPs with high p-values (as computed on the

training fold) were removed from the model. The second method,

LassoSVM, trains a linear model by optimizing, with coordinate

descent, square hinge loss with L1+L2 regularization. These AUCs

were obtained by 10-fold cross-validation on a dataset that should

be very close to our own CDwtccc dataset. Although the QC filters

might be slightly different from ours, we believe that these results

can be compared with ours. We note from this comparison that

better AUCs can be achieved with the OR method when filtering

SNPs on the basis of their p-values. We applied the same filtering

in combination with our OR method and indeed, AUC increased

from 0.661 to 0.71 on CDwtccc. The AUC on CDqc however only

very slightly increased from 0:648 to 0:651 when filtering SNPs.

The Lasso SVM method of [10] works much better than both the

SGD-L1 and SGD-L2 methods, although its AUC is still inferior

to that of the two tree-based ensemble methods, RF and TT.

Variable Importance Analysis
We focus in this section on the analysis of variable importances

on the Crohn’s disease dataset, motivated by the availability of

reported loci for this specific phenotype. In particular, we compare

loci found by tree-based methods to loci reported in [25] and to

the 140 loci reported more recently in [37]. Similar results on the

six other WTCCC datasets are provided online.

We computed SNP importances using both RF and T-Trees.

Information related to the 200 first SNPs is summarized in Table 6

for the CDqc dataset. More detailed results are provided in

Supporting Information S1for CDwtccc and CDqc (see Tables S02

and S01 in Supporting Information S1). As several SNPs in these

lists are close to each other, we grouped together contiguous SNPs

that are separated by at most 20 SNPs in the dataset and only

reported in Table 6 those SNP groups containing more than two

SNPs, except when one such isolated SNP was highlighted in [25].

This procedure yields 16 regions and 4 isolated SNPs for RF and

27 regions and 4 isolated SNPs for T-Trees.

In the case of RF, the region that contains the most important

SNP, rs11209026, is located on chromosome 1 and contains 10

markers in total, spanning from 67.31Mb to 67.46Mb. SNP

rs11209026 was reported in [25] as strongly associated to the

disease and is also found in the 140 loci reported in [37]. In the

SNP ranking yielded by RF, five of the WTCCC confirmed

regions are selected and well represented in the 100 most

important variables. There are ten SNPs located in the interleukin

23 receptor regions on chromosome 1, five on chromosome 2 in

the ATG16L1 gene, six around rs11718165, twelve on chromo-

some 5 around rs17234657 and four in the NOD2 region on

chromosome 16. We also notice the presence of rs2542151 alone

at position 156 in the ranking. In addition, rs931058 on

chromosome 5 has been reported in the list of 140 loci. We note

however that this latter SNP was not reported in [25]. A few other

SNPs reported only in [37] appeared isolated (and thus not

reported in Table 6) in these 200 first variables: rs11260562,

rs909813, rs17101358, rs10923915, rs11190083 and rs1751852.

The same five regions from the WTCCC study are also

highlighted with T-Trees. In particular, rs11209026, rs10210302,

rs17234657 and rs2076756 are found among the 100 most

important SNPs. The region that contains the most important

SNP in the SNP ranking induced by T-Trees, rs11887827, is

located on chromosome 2p12 and contains 35 SNPs among the

top 200. This region was not previously identified in the literature.

Part of it (i.e., 17 SNPs) is also found by RF, with the most

important SNP at the 20th position in the RF ranking. The second

most important region found by T-Trees is located on chromo-

some 7q31 and contains 9 SNPs, with the most important one,

rs6947579, ranked at the third position. This region is particularly

interesting as it is found neither in the literature, nor by the RF

method. Additionally, rs16884693 was represented by 2 markers

and a few more of the 140 loci not reported by the wtccc appeared

isolated and at lower positions in the SNP ranking (rs11260562,

rs17101358, rs931058, rs10772590 and rs2352937).

Figure 2 illustrates SNP and block importances (as described in

Section Individual and group-wise importances), as well as single

and haplotype p-values along the top two regions specifically

identified with T-Trees, 2p12 (top) and 7q31 (bottom). For the

2p12 region, the plot shows that the block with the highest

importance is also strongly associated with the disease. Indeed,

while the univariate p-value fails to strongly identify this

association (the smallest p-value in that block is 1:10{7:6), the

haplotype p-value is however extremely low (1:10{67). The ld

pattern suggests that there are two haplotype blocks in this region,

and the 10 SNP block we identified with the T-Trees falls within a

strongly correlated subregion in the second haplotype block.

Similarly, for the 7q31 region, the same analysis shows that the

corresponding block has a haplotype p-value of 1:10{43 while the

flanking blocks are not associated at all.

Given the low haplotype p-values found for these two blocks,

they would have been also spotted by a genomewide scan of 10-

SNP windows with the omnibus haplotype test. Note however that

the TTrees method has found these blocks in addition to several

other previously reported loci and more importantly that it directly

provides a predictive model. Our method should also be more

robust to the choice of the window size and irrelevant SNPs within

blocks because of the tree node splitting mechanism. Trying

different windows sizes with the omnibus test would very likely

increase the false positive rate.

Inspection of variable importances on CDwtccc (Table S02 in

Supporting Information S1) also points out that several SNPs

filtered by the stronger QC filter were nevertheless considered

important by both RF and TT. In particular, many of these

variables are deviating from HWE. While this filter is commonly

accepted as a good exclusion criteria, it is also disputed [38] as it

might as well be used for the detection of marker-disease

association [39]. We discovered that when such variables were

exploited in a forest, they were often followed by many of their

neighbors which, arguably, lowers their suspiciousness. In

derived from the case/control omnibus test with H{1 degrees of freedom where H corresponds to the number of common haplotypes (a
haplotype is said to be common if its frequency is greater than 0:01 in the population under study). Third row: number of haplotypes in each block.
Bottom plot: ld pattern (r2) in the regions.
doi:10.1371/journal.pone.0093379.g002
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addition, these deviating SNPs allowed in some cases to detect

signals there were not reported in the WTCCC study.

Finally, as a last comparison, we also establish a SNP ranking

from the weights jwij as derived from linear models (details not

reported here). When considering the intersection between this

ranking and those yielded by RF and T-Trees on CDqc, we

observe the presence of several SNPs in previously reported

regions (in 1p31, 2q37, 5p13 and 16q12). This intersection also

includes one SNP in the 2p12 locus, i.e. one of the two regions

strongly and newly identified by T-Trees. This overlap is

reassuring and confirms our previous analysis. It also suggests

the presence of non-linear effects in these data, since (non-linear)

tree-based models indeed allow for better predictive performance

than linear models, even though both detect and exploit a

common subset of confirmed important SNPs.

Discussion

Overall, due to their intrinsic multivariate and non-linear

properties, tree-based ensemble methods prove to be a powerful

analysis tool in the context of GWAS. In terms of risk prediction,

tree-based methods show to be very effective to classify individuals

given their genotypes while, in terms of loci identification, they

confirm to be a well-suited alternative to standard approaches.

In this work, we proposed an extension of random forests, called

T-Trees, explicitly designed to take advantage of linkage

disequilibrium in GWAS data. We empirically evaluated the

proposed method and compared our results with standard tree-

based approaches and linear models. In all our experiments, we

noted significant improvement in terms of predictive power, hence

suggesting the actual existence of multivariate and/or non-linear

effects due to the combination of several SNPs. Our results

generalized and remained consistent across a wide range of

experiments. In particular, while we found that tree-based

methods may be sensitive to particular types of variables (rare

variants, markers deviating from HWE), conclusions on the

settings remain consistent across the seven WTCCC datasets.

In terms of identification of associated loci, tree-based methods

have been able to recover most of the loci already reported in the

literature, thereby confirming their relevance in this context. Most

interestingly, T-Trees identified two novel susceptibility loci in the

context of Crohn’s disease. By all appearances, these two regions

are potentially relevant from the biological point of view, but

require further experimental analysis to confirm their actual

relevance.

Finally, we also noted the importance of quality control filters,

which may either remove strong but associated signals or

indirectly hide weaker associations if spurious signals are not

filtered out.

Directions for further enhancing tree-based methods in the

context of structured input variables are various. In particular, one

of them would be to take explicitly into account the observed

correlation structure in a given dataset when defining the blocks of

variables exploited by the method. This could be achieved by

combining available databases (such as HapMap) and software

outputs (such as Haploview). Also, while T-Trees are currently

designed for binary traits, possible extensions include quantitative

non-binary traits (e.g., using regression trees). Finally, internal

decision trees in the outer nodes could also be replaced by other

types of weak learners.

Supporting Information

Supporting Information S1 Supplementary figures and
tables. T-Trees algorithm: pseudo-code and implementation

details.

(PDF)
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