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Abstract: Myricetin is a naturally occurring flavonoid with protective effects against a variety of
cancers. However, the molecular mechanism of myricetin against hepatocellular carcinoma (HCC) has
still not been fully elucidated. Previous studies have indicated that YAP is essential for cancer initiation
and progression. However, whether YAP contributes to the anti-cancer effects of myricetin remains
unclear. Herein, we aimed to investigate the effect of myricetin on HCC, and identify the underlying
mechanisms. We report that myricetin induced apoptosis and proliferation inhibition in HepG2 and
Huh-7 cells. Myricetin inhibited expression of YAP by promoting its phosphorylation and subsequent
degradation. Myricetin inhibited YAP expression by stimulating kinase activation of LATS1/2.
Knockdown expression of LATS1/2 by shRNA attenuated myricetin-induced phosphorylation and
degradation of YAP. Furthermore, myricetin sensitized HCC cells to cisplatin treatment through
inhibiting YAP and its target genes, both in vitro and in vivo. The identification of the LATS1/2-YAP
pathway as a target of myricetin may help with the design of novel strategies for human HCC
prevention and therapy.
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1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most frequent malignant cancer and the second leading
cause of cancer-related death worldwide, according to the recently released cancer report [1]. Meanwhile,
the overall number of deaths increased obviously due to HCC have rapidly increased in the past decades,
especially in Western Europe and Northern America [1]. Most HCC patients presumably die within
9–12 months after diagnosis, due to resistance to routine chemotherapeutic agents, high recurrence,
and metastasis [2,3]. Despite many attempts to exploit molecular targeted agents and immunotherapy
methods, effective agents have not yet been developed for HCC treatment [4]. Therefore, effective
therapeutic agents are urgently required for human HCC treatment.

There is increased interest in the use of natural compounds for the management of cancer and
other diseases, based on their varied biological properties [5]. Myricetin (3,5,7-trihydroxy-2-(3,4,5-
trihydroxyphenyl)-4-chromenone) is an edible flavonoid abundantly found in vegetables and fruits [6].
Studies have uncovered the different pathophysiological properties of myricetin, including its
antioxidant, cytoprotective, antiviral, antimicrobial, and antiplatelet properties [6]. In addition,
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myricetin exhibits significant anticancer effects against various types of cancers, including ovarian
cancer [7], breast cancer [8], gastric cancer [9], skin cancer [10], and placental choriocarcinoma [11].
Notably, it has been shown that myricetin induces cell-cycle arrest, proliferation inhibition, and apoptosis
by targeting cyclin B/Cdc2 complex, Akt/p70S6K/Bad signaling, mitochondrial apoptotic pathways,
and reactive oxygen species [12–15]. However, the underlying molecular mechanisms of these myricetin
activities have yet to be clarified.

Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ)
are closely related transcriptional regulators pervasively expressed in human malignant tumors [16].
Studies indicate that YAP or TAZ is crucial for cancer initiation or propagation of the majority of solid
cancers. The activation of YAP/TAZ leads to cancer stem cell attributes, growth, chemo-resistance,
and metastasis [16]. Remarkably, up-regulated expression of YAP and TAZ highly correlates with poor
tumor differentiation and unfavorable outcomes in HCC patients [17,18]. Moreover, overexpression of
YAP in the liver in transgenic mice leads to formation of liver tumors [19]. Consistently, knockdown
expression of YAP or TAZ significantly inhibits subcutaneous tumor growth of human and mouse
HCC cell lines [18,20]. In this study, we identified whether YAP was a target of myricetin in human
HCC cells. Moreover, we examined whether YAP was involved in the effect of myricetin against
HCC. Herein, we show that myricetin decreased cell growth and increased apoptosis of HCC cells.
Expression of YAP was down-regulated by myricetin treatment. In addition, myricetin promoted
YAP degradation through the proteasome pathway, and thus inhibited expression of c-myc, survivin,
and CYR61.

2. Materials and Methods

2.1. Reagents and Antibodies

The biochemical reagents myricetin (#SM8390) and cisplatin (#D8810) were purchased from
Solarbio (Beijing, China). MG132 (#M8699) was purchased from Sigma (St. Louis, MO, USA).
The plasmids pcDNA4/HisMaxB-YAP1 (#18978), pCIneoMyc-LATS1 (#66851), and pCIneoMyc-LATS2
(#66852) were purchased from Addgene (Watertown, MA, USA). The following antibodies were
used: anti-Caspase 3 (66470-1-Ig), YAP (13584-1-AP), c-Myc (#10828-1-AP), survivin (#10508-1-AP),
CYR61 (#26689-1-AP), LATS1 (#17049-1-AP), LATS2 (#20276-1-AP), CTGF (#23936-1-AP) and Actin
(#60008-1-Ig) (Proteintech Group, Chicago, IL, USA); p-YAP-S127 (#13008) (Cell Signaling Technology,
Beverly, MA, USA); and p-LATS1/2-S909/872 (#AF8163) (Affinity Biosciences, Cincinnati, OH, USA).

2.2. Cell Culture

HEK293T, normal hepatocyte cell LO2, the HCC cell line HepG2, and Huh-7 were obtained from
the Cell Lines Bank, Chinese Academy of Science (Shanghai, China). The cells were maintained in
DMEM containing 10% fetal bovine serum, 100 U/mL of penicillin, and 100 mg/mL streptomycin
sulfate, and incubated at 37 ◦C in a humidified atmosphere of 5% CO2.

2.3. Cell Growth Assay

The cells were treated with myricetin or cisplatin, and then cell growth was tested. For cell
counting assay, cells were seeded into 12-well plates (8000/well). Cell growth was evaluated by
calculating the cell number with a TC20TM automated cell counter (Bio-Rad, Hercules, CA, USA) at
different time points. For the CCK-8 assay, HCC cells were seeded into 96-well plates at 5000 cells
per well. The cells were treated with or without myricetin and cisplatin in five replicates. After 48 h,
the cytotoxicity was assessed by incubating the cells with CCK-8 reagent (#CA1210, Solarbio) for 1 h,
and measuring the absorbance at 450 nm with a microplate reader (Bio-Rad).
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2.4. Cell Proliferation/Apoptosis Assay

The HCC cells were treated with or without myricetin and cisplatin, and then cell
proliferation/apoptosis was tested. The EdU Kit (#C10310-1, Ribobio, Guangzhou, China) was
used to test the proliferation of HCC cells, as we described previously [21]. In brief, cells were
incubated with 50 µM EdU (#C10310-1) medium for 2 h followed by treatment with polyoxymethylene,
glycine and TritonX-100. Then, the cells were incubated with Apollo® 567 and Hoechst 33342. Images
was gathered by fluorescence microscope (Olympus TH4-200, Tokyo, Japan). For the cell apoptosis
assay, cells were collected after 48 h transfected. Then, the cells were stained by an Annexin V-PE/7-AAD
apoptosis detection kit (#559783, BD Bioscience, San Jose, CA, USA), as we described previously [22].
Fluorescence signals from at least 10,000 cells were collected by FACS (Beckman, Fullerton, CA, USA)
to determine the percentage of apoptotic cells.

2.5. Colony Formation Assay

Huh-7 cells were plated in 12-well plates at 1500 cells/well. The cells were treated with myricetin
for 24 h, and then were allowed to grow in the absence of myricetin for 10 days to form colonies.
The cells were fixed and stained with Giemsa dye liquor to visualize the cell colonies. Images were
gathered by light microscope. The number and size of colonies was measured by a NIS-Elements F3.0
imaging system (Bio-Rad, Hercules, CA, USA). The relative number and size of colonies in six random
visual fields (40×) under a light microscope is shown.

2.6. Quantitative Real-Time PCR

The cells were lysed, and total RNAs were obtained using Trizol Reagent (Invitrogen,
Carlsbad, CA, USA). cDNAs were prepared with random hexamers from mRNA, using the
AMV reverse-transcription kit (Promega Biotechnology, Madison, WI, USA). YAP and reference
GAPDH were amplified by real-time PCR using the Power SYBR Green PCR master amplification
mix (Life Technologies, Carlsbad, CA, USA) and 320 nmol/L primers. The primer sequences for
human YAP were F: 5′-AGCTGCCCGACTCCTTCTTC-3′; R: 5′-GAGGAATGAGCTCGAACATGC-3′.
The primer sequences for human GAPDH were F: 5′-AACTTTGGCATTGTGGAAGGA-3′; R:
5′-AACATCATCCCTGCTTCCAC-3′. Quantitative PCR reactions were performed on the iQ5TM
(Bio-Rad, Hercules, CA, USA) for 35 cycles using a recommended annealing temperature (60 ◦C).
Relative quantification with the comparative threshold cycle (Ct) was done using the Ct method.

2.7. Lentivirus Construction and Infection

The GFP tagged lentiviral vector PLL3.7 was used to express shRNAs designed to
target LATS1/2. The LATS1 shRNA target sequence was: 5′-GAGAAATTAAGCCATCGTGTT-3′;
5′-CAAGTCAGAAATCCACCCAAA-3′; 5′-CACGGCAAGATAGCATGGATT-3′. The LATS2 shRNA
target sequence was: 5′-CTACTCGCCATACGCCTTTAA-3′; 5′-CAGGACCAAACAGTGACACTT-3′;
5′-GCCATGAAGACCCTAAGGAAA-3′.

For lentiviral supernatant production, HEK-293T cells were grown on 10 cm culture plates to
~80% confluence. Then, 45 µL PolyJet reagent was diluted in 0.5 mL of DMEM medium (serum and
antibiotic free), and incubated at room temperature for 5 min. In addition, 5.5 µg pMD2G, 2 µg PsPAX2,
and 7.5 µg of the mixed shRNA construct were dissolved in 0.5 mL of DMEM medium (serum and
antibiotic free), and mixed with the pre-diluted PolyJet. The mixture solution was incubated for 20 min
before being added to HEK-293T cells. After 5 h, the supernatant was discarded and replaced with
10 mL of DMEM with 10% FBS. The supernatant, containing lentivirus, was harvested 48 h and 72 h
later. After filtering, the lentivirus was used for infection. For infection, HCC cells were incubated
with the LATS1/2 lentivirus supernatant for 6 h. The culture medium was discarded, and the cells
were cultured in complete DMEM medium with 10% FBS for 24 h. This procedure was repeated for a
second infection.
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2.8. Western Blot

The cells were lysed with ice-cold RIPA lysis buffer containing protease inhibitors (PMSF, Aprotinin
and phosSTOP). Lysate was incubated on ice for 30 min and then centrifuged for 20 min at 12,000×
g to remove debris. Proteins were boiled in 1× loading buffer for 10 min, protein samples were
resolved by SDS-PAGE, and proteins were transferred electrophoretically to a PVDF membrane
(250 mA, 90 min). The membranes were incubated with primary antibodies overnight at 4 ◦C,
and appropriate HRP-secondary antibodies for 1 h at room temperature. Detection was performed
with chemiluminescent agents. Images were gathered by Alpha Innotech’s FluorChem imaging system.
Densitometric analysis of blots was performed with Image J. All experiments were repeated three
times with similar results. A representative experiment is shown. The full images of all blots with
molecular markers are given in Figures S2–S6.

2.9. In Vitro Kinase Assays

The in vitro kinase assay was performed essentially as previously described [23]. Briefly, HEK293T
cells were transfected with the pCIneoMyc-LATS1, and pCIneoMyc-LATS2 plasmid for 72 h respectively,
then treated with or without 100 µM myricetin for 1 h. Then, cells were lysed and immunoprecipitated
with Myc antibody. The immunoprecipitated recombinants myc-LATS1 and myc-LATS2 were used as
kinase. HEK293T cells were transfected with the pcDNA4/HisMaxB-YAP1 plasmid for 72 h. Then,
cells were lysed and immunoprecipitated with His antibody. The immunoprecipitated recombinant
His-YAP was used as substrate. For immune-precipitation, the cells were harvested in the mild lysis
buffer (MLB), respectively (10 mM Tris at pH 7.5, 100 mM NaCl, 10 mM EDTA, 0.5% NP-40, 50 mM NaF,
1.5 mM Na3VO4, protease inhibitor cocktail, 1 mM DTT and 1 mM PMSF). For each group, 1 mg of
total proteins was immunoprecipitated with anti-His or anti-Myc antibodies for 90 min at 4 ◦C. Target
proteins were collected by incubation with protein G Sepharose beads for 60 min at 4 ◦C. To remove
low-affinity binding contaminants, the beads-proteins complexes were extensively washed three times
with MLB, and once with kinase assay buffer (30 mM HEPES, 50 mM potassium acetate, and 5 mM
MgCl2). Then, the immunoprecipitated his-YAP and immunoprecipitated myc-LATS1 or LATS2 were
mixed, and incubated in a final volume of 90 µL at 37 ◦C in the kinase buffer, containing 500 µM ATP.
Thirty minutes later, the reaction was stopped with the addition of 30 µL 4× loading buffer and boiled
for 10 min. The phosphorylation of YAP was analyzed by Western blot.

2.10. Xenograft Tumor Growth Assay

All animal studies were performed according to the guidelines and approval of the Ethical
Committee of Binzhou Medical University. To establish xenograft tumors, 5 × 106 Huh-7 cells
suspended in 100 µL phosphate-buffered saline were subcutaneously injected into BALB/c nude
mice. At 10 days post-injection, the mice were randomly assigned into four groups. Then, myricetin
(30 mg/kg/day), cisplatin (5 mg/kg/3 days) or both were intraperitoneally injected into the mice.
The control group received an injection of vehicle. The size of the xenografted tumor was scaled per
three days using a Vernier Caliper. When the tumor size of the control group reached approximately
10–15 mm, the mice were sacrificed, and the xenografts were resected. The xenograft tissues were
subjected to TUNEL and Western blot analysis.

2.11. DNA Fragmentation Detection

Cell apoptosis in tumor tissues was analyzed by TUNEL assay using the Fluorescein-FragEL™
DNA Fragmentation Detection Kit (Calbiochem, San Diego, CA, USA) according to the manufacturer’s
instruction. The nuclei of apoptotic cells were stained with highlight green fluorescence, and all cells
showed blue fluorescence with DAPI. The apoptotic index was evaluated by the percentage of cells
scored under a light microscope at 200-fold magnification.
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2.12. Statistical Analysis

All data are presented as the means ± SD. A one-way ANOVA with the least significant difference
post-hoc test was used to test for the differences in cell growth/proliferation/apoptosis, and colony
survival rate. A two-way repeated measures ANOVA was used to test for the differences in tumor
growth. A difference was defined as statistically significant if p < 0.05.

3. Results

3.1. Myricetin Suppressed Viability and Colony Formation of HCC Cells

To determine the potential cytotoxic effect of myricetin on HCC cells, CCK-8 assays were used
to measure the growth viability in HepG2 and Huh-7 cells treated with different concentrations of
myricetin for 72 h. As expected, myricetin treatment dramatically decreased cell growth and induced
visible cell death in HCC cells (Figure 1A). Treatment of HepG2 and Huh-7 cells with 100 or 200 µM
myricetin for 72 h markedly inhibited cell growth in a dose-dependent manner (Figure 1B). Furthermore,
a cell counting assay showed that cell growth was much slower at two days post- myricetin treatment,
and was more apparent at three days (Figure 1C,D). We next examined the effect of myricetin on colony
formation ability of Huh-7 cells. There were fewer colonies formed in myricetin treated cells than in
control cells (Figure 1E,F). Further, the colonies in myricetin treated cells tended to be smaller than
those in control cells (Figure 1E,G). Overall, these results indicated the cytotoxic effects of myricetin
on HCC cells. Moreover, we detected the effect of myricetin on LO2, a normal hepatocyte cell line.
Little effect was detected on the viability of LO2 cells at concentrations of 50–300 µM for 72 h. Viability
of LO2 cells was only dramatically decreased after incubation with 500 µM myricetin (Figure 1H).
In addition, the IC50 values of myricetin in HepG2, Huh-7, and LO2 cell lines were listed in (Figure S1).
Upon treatment with myricetin for 72 h, the mean IC50 values were 87.84 and 93.49 µM for HepG2 and
Huh-7 cells, respectively. However, the IC50 for LO2 cells was almost five-fold of that for HepG2 and
Huh-7 cells (Figure S1.)
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(1500/well), and then treated with myricetin for 24 h after growing in the medium without myricetin 

for 10 days. Colonies were stained and quantified. (E) Representative images are shown. (F) colony 
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Figure 1. Myricetin suppresses viability of HCC cells. (A) Representative images of HCC cells at three
days post-treatment with myricetin. Bar, 100 µm. (B) HCC cells were treated with the indicated dose of
myricetin for 72 h. The cytotoxicity of myricetin was assessed by CCK-8. The absorbance at 450 nm
(cell viability) is plotted. Values represent mean ± SD. n = 5, ** p < 0.005; *** p < 0.001, compared to
control group. (C,D) Cell numbers at indicated days after treatment with myricetin. n = 5, ** p < 0.005,
*** p < 0.001, compared to myricetin treated groups. (E–G) Huh-7 cells were seeded in 12-well plates
(1500/well), and then treated with myricetin for 24 h after growing in the medium without myricetin
for 10 days. Colonies were stained and quantified. (E) Representative images are shown. (F) colony
number plotted. n = 3, ** p < 0.005, *** p < 0.001, compared to control group. (G) relative colony size
was plotted. The colony size in the control group was set as 1. * p < 0.05, ** p < 0.005, compared to
control group. (H) Normal hepatocyte LO2 cells were treated with the indicated dose of myricetin for
72 h. The cytotoxicity of myricetin was assessed by CCK-8. Relative cell viability was plotted. Values
represent mean ± SD. n = 4; NS, not significant; * p < 0.05; ** p < 0.01, compared to control group.

3.2. Myricetin Induced Apoptosis and Reduced Cell Proliferation of HCC Cells

To detect the mechanisms underlying myricetin inhibiting cell growth, we compared the
proliferation and apoptosis of HCC cells treated with myricetin. EdU-labeling assays showed
that myricetin treatment dramatically inhibited proliferation of HepG2 and Huh-7 cells (Figure 2A,B).
Furthermore, myricetin-treated HepG2 cells had a markedly increased apoptosis rate compared to
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control cells. Similar effects of myricetin on apoptosis were detected in Huh-7 cells (Figure 2C,D).
Moreover, myricetin induced HepG2 and Huh-7 cell apoptosis in a time-dependent manner (Figure 2E).
Conformably, cleaved caspase3 levels significantly increased in myricetin-treated HCC cells (Figure 2F).
These results indicate that the dramatic slowdown of cell growth induced by myricetin treatment
might be attributed to both apoptosis and proliferation.
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Figure 2. Myricetin induces proliferation inhibition and apoptosis in HCC cells. (A,B) Cells were
treated with different doses of myricetin for 48 h, followed by EdU labeling analysis. Representative
images are shown. EdU-labeled (red) indicates the proliferation of cells. Bar, 20 µm. The proliferation
rate is plotted. n = 4, ** p < 0.005; *** p < 0.001, compared to control group. (C,D) Cells were treated with
different doses of myricetin for 72 h, followed by flow cytometry analysis. Representative scatter plots
are shown. The apoptosis percentage is plotted. n = 3, ** p < 0.005; *** p < 0.001, compared to control
group. (E) HepG2 or Huh-7 cells were treated with 200 µM myricetin for 0, 24, 48, and 72 h, followed
by flow cytometry analysis. The apoptosis percentage is plotted. n = 3, ** p < 0.005; *** p < 0.001,
compared to control group. (F) HepG2 or Huh-7 cells were treated with myricetin for 72 h, followed by
Western blot analysis of caspase 3 activation.
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3.3. Myricetin Decreased Expression of YAP and Its Target Genes

YAP/TAZ has been found to be involved in driving tumorigenesis and cancer propagation.
To determine the molecular mechanism of myricetin-mediated anti-tumor activities, we measured the
expression of YAP in mRNA, along with protein levels, in HCC cells treated with myricetin. The RT-PCR
analysis demonstrated that YAP mRNA levels were invariant after myricetin treatment in HepG2 and
Huh-7 cells (Figure 3A). However, treatment with myricetin stimulated YAP down-regulated expression
at the protein level in a dose-dependent manner (Figure 3B). A time-dependent down-regulation of
YAP by myricetin was also observed in HepG2 and Huh-7 cells (Figure 3C). These results indicate that
myricetin might promote degradation of the YAP protein, since it had no effect on YAP transcription.
To investigate this hypothesis, HCC cells were treated with myricetin and treated with or without MG132,
a proteasome inhibitor, followed by Western blot analysis of the expression of YAP. Whereas myricetin
treatment led to a decrease in the levels of YAP, treatment with MG132 blocked the down-regulation of
YAP induced by myricetin (Figure 3D). These data suggest that myricetin promoted proteasome-mediated
degradation of YAP. To further validate that the down-regulation of YAP by myricetin could impact on YAP
downstream target genes, we detected the expression of CTGF (connective tissue growth factor), c-myc,
surviving, and CYR61 in myricetin treated HCC cells. We found that myricetin downregulated expression
of CTGF, c-myc, survivin, and CYR61 in both HepG2 and Huh-7 cells in a dose- and time-dependent
manner (Figure 3E,F). Moreover, blocked YAP by shRNAs could decreased cell viability of HepG2 cells
significantly, whereas blocked of YAP could not synergistically promotes myricetin-induced cell death
(Figure S3). Taken together, these results suggest that myricetin might exert its anti-tumor activity through
downregulation of the YAP signaling pathway.
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Figure 3. Myricetin stimulates degradation of YAP and inhibits CTGF, survivin, c-myc, and CYR61.
(A) HCC cells were treated with the indicated dose of myricetin for 48 h, followed by RT-PCR analysis
of YAP transcription. YAP mRNA levels were normalized to GAPDH. Values represent the mean ± SD.
n = 3, NS, not significant, compared to control group. (B) Cells were treated with myricetin for 48 h
at the indicated doses, followed by Western blot analysis of YAP expression. (C) Cells were treated
with 200 µM myricetin for the indicated periods, followed by Western blot analysis of YAP expression.
(D) Cells were pretreated with 10 µM MG132 for 5 h, then treated with or without 200 µM myricetin for
72 h, followed by Western blot analysis of YAP expression. (E) Cells were treated with myricetin for
48 h at the indicated doses, followed by Western blot analysis of indicated protein expressions. (F) Cells
were treated with 200 µM myricetin for the indicated periods, followed by Western blot analysis of
indicated protein expressions.

3.4. Myricetin Promotes YAP Degradation by Stimulating LATS1/2 Activation

A previous study reported that phosphorylation of YAP by LATS1/2 promotes its proteasomal
degradation [24]. To determine whether LATS1/2 is involved in myricetin-induced YAP degradation,
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HCC cells were treated with myricetin, followed by detection of transcription and expression of
LATS1/2. Results show that myricetin did not affect the transcription (data not shown) and expression
(Figure 4A,B) status of LATS1/2 at doses of up to 200 µM. However, treatment of HCC cells with
myricetin resulted in an increase in LATS1/2 phosphorylation. Additionally, phosphorylation of YAP
was increased (Figure 4A,B). We next determined whether myricetin regulates the kinase activity of
LATS1/2 using an in vitro kinase assay. The LATS1/2 immunoprecipitated from myricetin-treated cells
showed higher levels of serine phosphorylation and induced higher levels of YAP phosphorylation,
compared to that from untreated cells (Figure 4C). This result demonstrates that treatment with
myricetin led to an increase of the kinase activity of LATS1/2. Furthermore, knockdown expression
of LATS1/2 by shRNA attenuated myricetin-induced phosphorylation of YAP (Figure 4D). Finally,
silencing LATS1/2 by shRNA rescued myricetin induced down-regulated expression of YAP (Figure 4E).
Conformably, the knockdown of LATS1/2 in HepG2 cells attenuated the cell apoptosis induced by
myricetin (Figure 4F), further supporting our finding that LATS1/2 played important roles in myricetin
induced degradation of YAP. In summary, our results indicate that myricetin regulated kinase activity
of LATS/2, and thus stimulated YAP phosphorylation and degradation.
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Figure 4. Myricetin promotes YAP phosphorylation and degradation via regulating LATS1/2 activity.
(A,B) Cells were treated with myricetin for 1 h followed by Western blot analysis of the phosphorylation
of the indicated proteins. (C) HEK-293T cells were transfected with the indicated plasmid for 72 h,
and then treated with or without 100 µM of myricetin for 1 h, followed by immunoprecipitation with Myc
or IgG (negative control) antibody, respectively. HEK-293T cells were transfected with the his-YAP plasmid
for 72 h followed by immunoprecipitation with His antibody. The immunoprecipitated LATS1/2 proteins
(kinase) were incubated with immunoprecipitated his-YAP (substrate) in a kinase assay system, followed
by Western blot analysis. (D) HCC cells were transfected with LATS1/2 shRNA for 72 h, then treated with
or without 200 µM myricetin for 1 h, followed by Western blot analysis of the phosphorylation of the
indicated proteins. (E) HCC cells were transfected with LATS1/2 shRNA for 24 h, and then treated with or
without 200 µM myricetin for 48 h, followed by Western blot analysis of the expression of the indicated
proteins. (F) HepG2 cells were transfected with LATS1/2 shRNA for 48 h, and then were treated with
200 µM myricetin for 48 h, followed by flow cytometry analysis. Representative scatter plots are shown
(left). The apoptosis percentage was plotted (right). n = 3, *** p < 0.001.
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3.5. Down-Regulation of YAP by Myricetin Sensitized HCC Cells to Cisplatin

Cisplatin is commonly used as a chemotherapeutic agent for human HCC treatment.
Chemo-resistance is a prime obstacle in cisplatin treatment of HCC. Consistently, recent studies
have demonstrated that up-regulated expression of YAP confers resistance against cisplatin in oral
squamous and urothelial cell carcinoma, and ovarian cancer [25]. The abovementioned results clearly
demonstrate that myricetin could inhibited YAP activity. To determine whether myricetin could
sensitize HCC cells to cisplatin, HepG2 cells were treated with myricetin, cisplatin or both, followed by
testing of the cell proliferation and apoptosis. As expected, the results demonstrate that the combination
of myricetin and cisplatin led to a significant decrease in cell proliferation (Figure 5A,B) and an increase
in cell apoptosis (Figure 5C,D), compared to treatment with myricetin or cisplatin alone. Furthermore,
the combination of myricetin and cisplatin can synergistically inhibit Huh7 cells growth (Figure 5E).
Concordantly, treatment with cisplatin clearly induced up-regulated expression of YAP, whereas the
combination of myricetin and cisplatin resulted in much lower levels of YAP than in cells treated with
cisplatin alone (Figure 5F). Notably, the combination of myricetin and cisplatin resulted in much higher
levels of cleaved caspase 3, and much lower levels of survivin, than in cells treated with cisplatin
or myricetin alone (Figure 5F). Similar effects were observed in Huh-7 cells treated with myricetin
and cisplatin (Figure 5F). Together, these results imply that YAP-induced cisplatin resistance could be
reversed by myricetin in HCC cells.
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Figure 5. Myricetin sensitizes HCC cells to cisplatin by inducing degradation of YAP. (A–D) HCC
cells were treated with or without 100 µM myricetin and 2 µM cisplatin for 48 h, followed by Hoechst
and EdU labeling and flow cytometry analysis. (A) Representative images are shown. EdU-labeled
(red) indicates proliferation of cells. Bar, 20 µM. (B) The proliferation rate is plotted. n = 4, ** p < 0.005;
*** p < 0.001. (C) Representative scatter plots are shown. (D) The apoptosis percentage is plotted.
n = 3, *** p < 0.001. (E) Huh-7 cells were treated with or without myricetin and cisplatin for 48 h.
The cytotoxicity was assessed by CCK-8. The percentage of cell growth compared with control is
plotted. Values represent the mean ± SD. n = 5, ** p < 0.005; *** p < 0.001. (F) HCC cells were treated
with or without 100 µM myricetin and 2 µM cisplatin for 48 h, followed by Western blot analysis of the
expression of the indicated proteins.

3.6. The Combination of Myricetin and Cisplatin Synergistically Inhibits Tumor Growth In Vivo

To further evaluate the effects of myricetin and cisplatin in combination on tumor growth,
we detected the tumor suppressive effect of myricetin and cisplatin in combination in Huh-7 xenografts
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in BALB/c nude mice. Whereas treatment with myricetin (30 mg/kg/day) or cisplatin (5 mg/kg/3 days)
alone at the given dose moderately inhibited tumor growth, myricetin and cisplatin in combination
suppressed tumor growth more obviously than myricetin or cisplatin alone (Figure 6A-C). Moreover,
the apoptosis indices in the tumor tissue were detected by TUNEL assay. Consistent with in vitro
studies, apoptosis of tumors treated with both myricetin and cisplatin was increased compared to
that in tumors treated with myricetin and cisplatin alone (Figure 6D,E). Moreover, we examined
the levels of YAP in these tumor xenografts. Cisplatin induced YAP expression, while myricetin
suppressed cisplatin-induced YAP expression (Figure 6F). Moreover, the combination of myricetin and
cisplatin resulted in much higher levels of cleaved caspase 3 and much lower levels of survivin than in
tumors treated with cisplatin or myricetin alone (Figure 6F). These results demonstrate that myricetin
significantly decreased cisplatin-induced YAP up-regulation, and enhanced the efficacy of cisplatin
therapy in vivo. Therefore, the combination of myricetin and cisplatin may be a better choice for HCC
treatment than cisplatin alone.
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Figure 6. Myricetin sensitizes Huh-7 tumors to cisplatin in vivo. (A) Huh-7 cells were subcutaneously
injected into BALB/C nude mice. The mice were treated with or without myricetin (30 mg/kg/day) and
cisplatin (5 mg/kg/3 days). (n = 8 for control; n = 7 for myricetin group; n = 8 for cisplatin group; n = 8
for combination treatment). The effect of myricetin and cisplatin on Huh-7 tumor volume is plotted.
** p < 0.01, *** p < 0.005, compared to medication groups. # p < 0.05, ## p < 0.01, ### p < 0.005, compared
to myricetin or cisplatin alone treatment groups. (B) Representative images of tumors (C) The effect of
myricetin and cisplatin on Huh-7 tumor weight is plotted. ** p < 0.01; *** p < 0.005. (D) TUNEL analysis
of apoptosis in Huh-7 tumors treated with or without myricetin and cisplatin. Bar, 20 µm. (E) The
apoptosis rate is plotted. *** p < 0.005. (F) The levels of YAP, survivin, and cleaved caspase 3 proteins
in tumors treated with vehicle, myricetin, and cisplatin were analyzed by Western blot. The relative
content of YAP after normalization to actin is shown. Values represent the mean ± SD. ** p < 0.005.
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4. Discussion

Myricetin is a common plant-derived flavonoid, and is well recognized for its anti-cancer activities.
Based on this study and other reports, myricetin acts against various types of cancers, including
hepatic, skin, pancreatic, and colon cancer cells [6]. Myricetin displays its anti-cancer effects by altering
some cancer hallmarks, including cell proliferation/apoptosis, angiogenesis, signaling pathways,
and metastasis [26]. Notably, myricetin exerts its anti-cancer effects by directly interacting with
oncoproteins such as AKT, MEK1, Fyn, and JAK1-STAT3 [10,27–29]. Our current study demonstrated
that myricetin induced LATS1/2 activation, YAP phosphorylation and degradation, survivin inhibition,
and caspase 3 cleavage, and subsequently induced proliferation inhibition and apoptosis of HCC cells
(Figure 7). These findings uncover some novel molecular events in HCC cells after myricetin treatment.
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Figure 7. The model for myricetin regulating YAP expression. Myricetin stimulates phosphorylation
and activation of LATS1/2 kinases, which in turn directly phosphorylate YAP on serine residues, leading
to proteasomal degradation. Therefore, the transcription of the downstream effectors of YAP, such as
CTGF, c-myc, CYR61 and survivin, are blocked.

The role of YAP as a novel promising therapeutic target has been pervasively recognized.
Demonstrating the molecular mechanisms underlying YAP kinase activity regulation would have
implications in the pathogenesis of human cancer. However, studies regarding specific YAP inhibitors
or use of its potential therapeutic reagents in cancer treatment remain very limited. It has been reported
that verteporfin combines with YAP and alters its conformation, thereby abrogating its interaction with
TEAD2 [30]. Additionally, a peptide mimicking VGLL4 function has been detected to directly compete
with YAP for binding TEADs in gastric cancer [31]. Notably, GCCSysm-4 has been discovered as a
YAP and COX-2 dual inhibitor, efficiently suppressing both YAP and COX-2 activation in colorectal
cancer [32]. Recently, Fisher, et al. found that sulforaphane increased YAP phosphorylation and
proteolytic degradation in epidermal squamous cell carcinoma [33]. Despite these elegant observations,
studies regarding YAP inhibitors for medicinal purposes remain very limited. Our current study firstly
showed that myricetin significantly inhibited expression of YAP by promoting its phosphorylation
and degradation. Meanwhile, it has been cumulatively demonstrated that specific inhibition of YAP
is a promising and pharmacologically viable strategy in treating cancers with elevated expression
of YAP [6,34]. Overall, this finding may help to shed some light on the development of new drugs,
such as myricetin analogs that may inhibit HCC development by targeting YAP. Further study would
be necessary to confirm whether myricetin inhibits expression of YAP in vivo, by using orthotopic
xenograft models.
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Previously, studies have demonstrated that the Hippo pathway component LATS1/2 is the
key regulator of YAP. In general, upstream regulators such as cellular stress, mechanical signals,
and extracellular stimuli promote activation of LATS1/2, which in turn phosphorylates YAP on
multiple serine residues, resulting in either the degradation of YAP through the ubiquitin–proteasome
pathway [24] or cytoplasmic retention of YAP by the 14-3-3 interaction [35]. Our in vitro kinase assays
suggested that myricetin remarkably promoted activation of LATS1/2, and that the promotion leads to
phosphorylation of YAP. Furthermore, shRNA against LATS1/2 rescued myricetin induced up-regulated
phosphorylation, and down-regulated expression of YAP. These results indicate that myricetin-induced
down-regulated expression of YAP depends on the kinase activity of LATS1/2. Remarkably, myricetin
inhibits PAK1 expression via abrogating the Ras-mediated signaling [36]. Moreover, PAK1 antagonizes
the phosphorylation and activation of LATS1/2, then activates YAP/TAZ mediated gene transcription
via inducing inhibitory Merlin phosphorylation [37]. Consistently, these findings suggest that
PAK1-LATS1/2 axis maybe involved in myricetin induced YAP/TAZ inhibition. More importantly,
several reports have shown that LATS kinase activity is often constitutively decreased in cancer cells,
and associated with increased cell proliferation [26]. It may be desirable to determine the effects of
myricetin on LATS kinase activity for human HCC treatment. However, the phosphorylation and
activation of LATS is context- and cell type-dependent [38]. Therefore, it would be necessary to define
the different roles of myricetin in different types of cells and cancers.

Recent studies have suggested that LATS1/2 and YAP, as the key components of the Hippo
pathway, may be closely related to the response of cancer cells to chemo-therapeutic drugs such
as cisplatin, Taxol and sorafenib [16,39–42]. A promising pharmacological strategy for overcoming
LATS1/2 and YAP induced chemotherapeutic resistance is urgently needed. Herein, we firstly showed
that myricetin is a novel pharmacological inhibitor for LATS1/2 and YAP. We further discovered
that myricetin significantly reawakened sensitivity of HCC to cisplatin treatment, both in vitro and
in vivo. Conformably, Guo et al showed that the expression of YAP regulates sensitivity to sorafenib
of HCC cells. Blocking of YAP by shRNAs synergistically promotes sorafenib-induced cell death
in vivo [42]. These findings demonstrate that myricetin might be a potential option to combat
chemo-resistance induced by aberrant activation of LATS1/2 and YAP. Striking, myricetin is affirmed
as “GRAS” (generally recognized as safe) by the U.S. Flavor and Extract Manufacturer Association.
Moreover, the no-observed-adverse-effect-level of myricetin is about 3000 mg/kg/day in rats [43].
The concentration of 30 mg/kg/day of myricetin might effectively inhibit cancer growth yet with
minimal toxicity to normal cells. However, future studies are needed to define the prevalence of
myricetin effects on YAP activation to understand the translation potential of myricetin treatments into
the clinic.

5. Conclusions

Our study demonstrated that the inhibition of cell growth, induction of cell apoptosis,
and proliferation inhibition in HCC cells by myricetin could be partly through the down-regulation of
YAP expression. Myricetin stimulated phosphorylation and activation of LATS1/2 kinase, which in
turn directly phosphorylated YAP on serine residues, leading to proteasomal degradation (Figure 6F).
Furthermore, myricetin significantly sensitized HCC cells to cisplatin by inhibiting YAP and its
downstream target genes. Overall, our findings suggest that inhibiting YAP by myricetin could be a
potential effective approach to treating HCC, and overcoming chemoresistance.
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