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Hypertension has a complex pathogenesis and symptoms appear in advanced disease.

Dysregulation of gene expression regulatory factors like microRNAs has been reported

in disease development. Identifying biomarkers which could help understand the

pathogenesis and prognosis of hypertension is essential. The study’s objective was to

investigate microRNA expression profiles according to participant blood pressure status.

Next generation sequencing was used to identify microRNAs in the whole blood of 48

body mass index-, smoking- and age-matched normotensive (n = 12), screen-detected

hypertensive (n = 16) and known hypertensive (n = 20) female participants. Quantitative

reverse transcription polymerase chain reaction was used to validate the next generation

sequencing findings in a larger, independent sample of 84 men and 179 women. Using

next generation sequencing, 30 dysregulated microRNAs were identified and miR-1299

and miR-30a-5p were the most significantly differentially expressed. Both microRNAs

were upregulated in known hypertensives or screen-detected hypertensives compared

to the normotensives. Kyoto Encyclopedia of Genes and Genomes pathway enrichment

analysis indicated possible involvement of platelet activation, calcium signaling and

aldosterone synthesis pathways. Further validation of miR-1299 and miR-30a-5p using

quantitative reverse transcription polymerase chain reaction confirmed sequencing

results while yielding new findings. These findings demonstrate microRNA dysregulation

in hypertension and their expression may be related to genes and biological pathways

essential for blood pressure homeostasis.

Keywords: hypertension, microRNA, blood pressure, cardiovascular, non-coding, sub-Saharan Africa

INTRODUCTION

The 8th report released by the Joint National Committee on Prevention, Detection and Evaluation
of High Blood Pressure describes hypertension (HPT) as the persistent elevation of blood pressure
(BP) above the 140/90 mmHg threshold (1, 2). Despite efforts to understand the pathogenesis of the
condition, HPT remains a leading public health concern affecting both developed and developing
countries (3, 4). It has been identified as one of the most important modifiable risk factors for

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.645541
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.645541&domain=pdf&date_stamp=2021-04-16
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:matshazid@gmail.com
mailto:matshat@cput.ac.za
mailto:tandimatsha@gmail.com
https://doi.org/10.3389/fcvm.2021.645541
https://www.frontiersin.org/articles/10.3389/fcvm.2021.645541/full


Matshazi et al. miRNAs and Hypertension

cardiovascular disease, renal disease, and stroke, and accounts
for over 10 million deaths throughout the world annually (5–
7). In 90–95% of HPT patients, the cause is unknown, and is
thus termed primary or essential HPT (8, 9). However, research
has demonstrated the involvement of genetic and environmental
factors in the development of HPT. The influence of epigenetic
factors such as deoxyribonucleic (DNA) methylation and histone
modification on the pathogenesis of HPT has been a subject
of intense research, with several important conclusions being
made along the way (10). However, there is a paucity of research
regarding microRNAs (miRNAs) in the context of HPT.

MiRNAs are a group of small, endogenous, non-coding
ribonucleic (RNA) sequences that are 17–25 base pairs long (11).
These molecules are involved in gene expression regulation at
the post-transcriptional level. This is achieved by binding to
the 3′untranslated region of complementary messenger RNA
(mRNA) molecules and inhibiting translation into protein or
inducing mRNA degradation (12). MiRNAs are present in
almost every cell and disturbances in their regulation are usually
associated with disease processes, including HPT (13, 14).
Herein, we investigated the miRNA profiles in South African
individuals with normal BP, as well as those presenting with
known or screen-detected HPT.

MATERIALS AND METHODS

Ethics Statement
This investigation was based on the Cape Town Vascular and
Metabolic Health (VMH) study, which was approved by the
Research Ethics Committees of the Cape Peninsula University of
Technology (CPUT) and Stellenbosch University (respectively,
NHREC: REC−230 40−014 and N14/01/003). Ethical approval
was also obtained for this cross-sectional sub-study from the
CPUT Health andWellness Sciences Research Ethics Committee
(CPUT/HW-REC 2019/H7). The study was conducted as per the
provisions of the Declaration of Helsinki. All procedures were
explained to the participants in their language of choice. Once
the participants fully understood their participation, they signed
informed consent forms to allow the collection of blood and
anthropometric data.

Study Design and Procedures
Data collection and procedures have been described previously
(15). Briefly, participants underwent anthropometric and BP
measurements, as well as oral glucose tolerance tests (OGTT).
Anthropometric measurements for each participant were taken
three times and the average reported. BP wasmeasured according
to the World Health Organization (WHO) guidelines (16), using
a semi-automatic digital BP monitor (Omron M6 comfort-
preformed cuff BP Monitor, China) on the right arm in a
sitting position and at rest for at least 10min. Three BP
readings were taken at 3-min intervals and the lowest systolic
BP and corresponding diastolic BP-values were used. Participants
were grouped into three categories based on; the use of anti-
hypertensive medication as known HPT, BP measurement of
140/90mm Hg or greater as screen-detected HPT and normal
BPmeasurement (<140/90mmHg) as normotensive. BodyMass

Index (BMI) was calculated as weight per square meter (kg/m2),
where kg was the participant’s weight in kilograms and m2, the
square of their height.

The following biochemical parameters were analyzed at an
ISO 15189 accredited Pathology practice (PathCare Reference
Laboratory, Cape Town, South Africa): glycated hemoglobin
(HbA1c) by High Performance Liquid Chromatography (BioRad
Variant Turbo, BioRad, Hercules, CA, USA); serum insulin by
a paramagnetic particle chemiluminescence assay (Beckman
DXI, Beckman Coulter, South Africa); serum cotinine by
Competitive Chemiluminescent (Immulite 2000, Siemens,
Munich, Germany); plasma glucose by enzymatic hexokinase
method (Beckman AU, Beckman Coulter, Brea, CA, USA);
total cholesterol (TC); high density lipoprotein cholesterol
(HDL-c) by enzymatic immunoinhibition—end point (Beckman
AU, Beckman Coulter, Brea, CA, USA); triglycerides (TG) by
glycerol phosphate oxidase-peroxidase, end point (Beckman
AU, Beckman Coulter, Brea, CA, USA); low density lipoprotein
cholesterol (LDL) by enzymatic selective protection—end
point (Beckman AU, Beckman Coulter, Brea, CA, USA);
and ultrasensitive C-reactive protein (CRP) by Latex Particle
Immunoturbidimetry (Beckman AU, Beckman Coulter, Brea,
CA, USA). In addition, blood samples were collected in a
Tempus RNA tube (ThermoFisher Scientific, Waltham, MA,
USA) and stored at−80◦C for total RNA extraction and analysis.

RNA Isolation
Total RNA, including miRNA, was isolated from whole
blood using the MagMax for Stabilized Blood RNA isolation
kit (ThermoFisher Scientific) according to manufacturer’s
instructions. The concentration and purity of each RNA extract
was determined using a NanoDrop One spectrophotometer.
Total RNA extracts with 260/280 values between 1.8 and 2.0, and
concentrations >20 ng/µl were used for microRNA sequencing
(miRNA-seq) using next generation sequencing (NGS) and
quantitative reverse transcription PCR (RT-qPCR).

MicroRNA Sequencing
This was conducted on total RNA samples from 48 female
participants representing three different HPT statuses. The
inclusion of females only in this part of the study was to avoid
introducing potential sources of variation due to gender effect in
an already small cohort. Small RNA library construction, deep
sequencing, and data processing were performed at Arraystar
Inc., Rockville, USA as previously described by Matsha et al.
(15). Briefly, the total RNA of each sample was used to prepare
the miRNA sequencing library as follows: (1) 3′-adapter ligation
with T4 RNA ligase 2 (truncated); (2) 5′-adapter ligation with T4
RNA ligase; (3) complementary DNA (cDNA) synthesis with RT
primer; (4) PCR amplification; (5) extraction and purification of
∼130–150 bp PCR amplified fragments (correspond to ∼15–35
nt small RNAs) from the polyacrylamide gel electrophoresis gel.
The Agilent 2100 Bioanalyzer was used to quantify completed
libraries, thereafter DNA fragments were denatured with 0.1M
sodium hydroxide to generate single-stranded DNA molecules,
then captured on Illumina flow cells, amplified in situ, and
finally sequenced for 51 cycles on the Illumina HiSeq system
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according to the manufacturer’s instructions. Raw sequences
were generated as clean reads from the Illumina HiSeq using
real-time base calling and quality filtering. The clean reads
that passed the quality filter were processed to remove adaptor
sequences as the trimmed reads. The trimmed reads (length ≥

15 nt) were aligned to the human pre-miRNA in miRBase 21,
using NovoAlign software. The miRNA expression levels were
measured and normalized as transcripts per million of total
aligned miRNA reads.

Gene Ontology and Functional Enrichment
Analysis
The Gene Ontology (GO) analysis was performed to describe
gene and gene product attributes (http://www.geneontology.org).
The ontology covers three domains: Biological Process, Cellular
Component and Molecular Function. Commonly predicted
gene targets were subjected to functional analysis using Kyoto
Encyclopedia of Genes and Genomes (KEGG). A conservative
Fisher’s exact-test and false discovery rate method were used to
calculate the targeted pathways.

Validation of NGS miRNA Expression
Results
To confirm the expression of miRNAs, the validation of NGS
results was performed on total RNA from an independent
sample of 263 male and female participants randomly selected
from an existing database and 48 females on which NGS had
been conducted. MiRNAs were converted to cDNA using the
TaqMan MicroRNA Reverse Transcription Kit according to the
manufacturer’s protocol (Life Technologies, USA). The miRNA
expression levels were assessed using TaqMan miRNA Assay
primers on the QuantStudio 7 Flex real-time PCR instrument
(Life Technologies, USA) analyzer. In order to determinemiRNA
expression in each sample and between two groups, the 2−1Ct

and 2−11Ct (17), respectively, were used and normalized using
miR-16-5p as the endogenous control. The suitability of miR-
16-5p as an endogenous control in RT-qPCR was assessed and
confirmed, as there was minimal variation in its expression in
normotensive and hypertensive participants.

Statistical Analysis
Data were analyzed using R statistical software version 3.2.2
(The R Foundation for Statistical Computing, Vienna, Austria)
and TIBCO Statistica version 13.5.0.17 (TIBCO Software Inc.,
California, USA). The Shapiro-Wilk W-test was employed to
determine whether the data were normally distributed, based
on probability thresholds of p > 0.1. Continuous variables
were summarized as mean and standard deviation (SD)
when normally distributed, while median, and 25th and 75th
percentiles were used for skewed variables, whilst categorical
variables were reported as counts and percentages. When
comparing groups, for continuous variables, the analysis of
variance (ANOVA) was used for normally distributed data;
Kruskal Wallis-H test with Dunn post-hoc-test was used for
skewed data, whilst the chi-square-test was used for categorical
variables. Multivariable regression analysis was conducted to
investigate the possible effects of these differences in baseline

characteristics on the expression of miRNAs in screen-detected
and known HPT. Various models were used, with variations to
the crude model being used to analyse the effect or relationship
of a baseline characteristic with miRNA expression in HPT. All
comparisons were made with the normotensive group as the
reference. A p-value < 0.05 was used to characterize statistically
significant results. MicroRNAs with fold changes ≥1.3, and p-
values≤ 0.1 were selected as the differentially expressedmiRNAs.
Novel miRNAs were predicted using miRDeep.

RESULTS

General Participant Characteristics
Of the 1988 VMH survey participants, 311 (227, 73.0% female)
were selected for inclusion into this sub-study. Of these, 48
(all female) took part in the NGS part of the study while an
additional 263 randomly selected male and female participants
were included in the RT-qPCR validation study. The distribution
of the NGS and RT-qPCR participants by BP status is shown
in Table 1. The 48 women in the NGS sample included 20 with
knownHPT, 16 with screen-detectedHPT and 12 normotensives,
whilst the validation sample included 106 known hypertensives,
52 screen-detected hypertensives and 105 normotensives. The
expected differences by status for HPT in the cardiovascular risk
profile were apparent across the two sub-samples (Table 1).

NGS miRNA Expression Profiling
All 48 samples met the quality control standards. We generated
Heat Map and Unsupervised Hierarchical Clustering on all
miRNAs that were expressed in at least one sample, to produce
miRNA or condition trees that would allow us to pick out groups
of similar miRNAs. The result of hierarchical clustering on
conditions showed a distinguishable miRNA expression profile
amongst the groups (Figures 1A–C). For the identification of
differentially expressed miRNAs, we computed “fold changes”
(i.e., the ratio of the group averages) and p-values between
each group. MicroRNAs with fold changes ≥ 1.3 and p-values
≤ 0.1 were selected as the differentially expressed miRNAs.
Based on pre-specified criteria, we then used volcano plots to
visualize the significantly differentially expressed pre-miRNAs
between the study groups as shown in Figures 2A–C. A total
of 30 significantly differentially expressed mature miRNAs were
identified at varying expression levels and are summarized in
Table 2. Of the thirty differentially expressed miRNAs, two
(6.7%) were novel, and whilst one of these novel miRNAs was
upregulated in known HPT vs. normotensive, the other was
upregulated in known HPT vs. screen-detected HPT. Whilst
miR-1299 exhibited the highest fold change of all significantly
upregulated miRNAs as seen in screen-detected HPT vs.
normotensive (fold change = 3.38, p = 0.0812), miR-30a-5p
upregulation was greatest in known HPT vs. normotensive (fold
change = 2.44, p = 0.0631) and known HPT vs. screen detected
HPT (fold change= 2.02, p= 0.0715; Table 2).

Kyoto Encyclopedia of Genes and Genomes pathway
analysis revealed 84 pathways, five of which are essential
for platelet activation, calcium signaling, vascular smooth
muscle contraction, vasopressin-mediated water reabsorption
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TABLE 1 | Characteristics of the participants, based on hypertension status.

Next generation sequencing sample Validation sample (RT-qPCR)

Normotensive,

n = 12

Screen-

detected

HPT, n = 16

Known HPT,

n = 20

p-value Normotensive,

n = 105

Screen-

detected

HPT, n = 52

Known HPT,

n = 106

p-value

Female, n (%) 12 (100%) 16 (100%) 20 (100%) - 57 (54.29) 36 (69.23) 86 (81.13) <0.001

Male, n (%) - - - - 48 (45.71) 16 (30.77) 20 (18.87)

Age (years) 49.6 ± 9.3 52.8 ± 7.1 56.1 ± 7.7 0.086 40 ± 15.32 51.12 ±

13.43

61.1 ± 10.6 <0.001

Body mass index

(kg/m2 )

29.1 ± 8.1 30.6 ± 9.0 32.3 ± 6.4 0.509 25.08 ± 6.45 28.71 ± 7.96 30.85 ± 7.06 <0.001

Waist circumference

(cm)

87.5 ± 16.2 92.0 ± 22.1 97.9 ± 11.4 0.226 81.99 ±

13.71

91.32 ±

16.71

95.86 ±

14.75

<0.001

Hip circumference (cm) 101.7 ± 17.7 106.1 ± 18.4 108.8 ± 14.2 0.504 97.55 ±

12.69

103.76 ±

15.3

106.05 ±

13.85

<0.001

Waist to hip Ratio 0.86 ± 0.06 0.86 ± 0.09 0.90 ± 0.06 0.139 0.84 ± 0.07 0.88 ± 0.08 0.90 ± 0.08 <0.001

Systolic blood pressure

(mmHg)

113.4 ± 14.5 147.7 ± 22.2 144.7 ± 27.7 <0.001 118.77 ±

12.95

149.12 ±

19.96

148.50 ±

23.81

<0.001

Diastolic blood

pressure (mmHg)

74.8 ± 11.9 90.6 ± 14.8 89.7 ± 17.7 0.018 74.95 ±

10.47

97.19 ±

12.32

89.11 ±

13.56

<0.001

Fasting blood glucose

(mmol/L)

6.18+3.87 7.50+4.58 8.28+4.27 0.413 4.87 ± 1.43 5.55 ± 2.72 6.70 ± 3.49 <0.001

2-h fasting glucose 8.63 ± 4.39 9.84 ± 6.53 12.83 ± 4.54 0.172 5.69 ± 2.8 6.8 ± 4.37 7.74 ± 4.47 0.002

HbA1c (%) 6.28 ± 1.60 7.10 ± 2.82 7.77 ± 2.67 0.276 5.79 ± 1.14 6.19 ± 1.49 6.70 ± 1.74 <0.001

Fasting insulin (mIU/L) 5.88 ± 3.49 7.89 ± 3.89 15.44 ± 8.66 <0.001 6.81 ± 6.65 8.03 ± 6.24 11.14 ±

14.33

0.011

Diabetes mellitus, n (%) 5 (41.7) 6 (37.5) 13 (65.0) 0.093 7 (6.7) 7 (13.7) 35 (33.3) <0.001

Triglycerides-S

(mmol/L)*

1.12

(0.86–1.64)

1.26

(1.00–1.50)

1.74

(1.43–3.31)

0.008 1.05 (0.72;

1.42)

1.28 (0.9;

1.67)

1.40 (1.05;

1.83)

<0.001

Total cholesterol

(mmol/L)

5.93 ± 1.14 5.66 ± 1.12 5.93 ± 1.23 0.757 4.75 ± 1.18 5.13 ± 0.97 5.42 ± 1.04 <0.001

LDL-cholesterol

(mmol/L)

3.76 ± 1.09 3.48 ± 0.97 3.96 ± 1.06 0.402 2.86 ± 1 3.13 ± 0.96 3.37 ± 0.91 0.001

HDL-cholesterol

(mmol/L)

1.57 ± 0.50 1.48 ± 0.59 1.17 ± 0.21 0.032 1.36 ± 0.41 1.35 ± 0.38 1.37 ± 0.34 0.984

usCRP (mg/L) 6.32 ± 8.79 9.73 ± 13.20 11.00 ± 6.89 0.44 7.32 ± 13.51 6.24 ± 7.09 7.24 ± 14.03 0.871

Serum cotinine

(ng/mL)*

10.0

(10.0–22.5)

209.5

(10.0–261.0)

99.4

(10.0–195.5)

0.146 137 (10;

265.5)

10 (10; 287) 10 (10;

135.75)

0.002

JIS MetS criteria 4 (33.33) 9 (56.25) 18 (90.00) 0.014 22 (21.15) 21 (41.18) 61 (58.65) <0.001

Values presented as mean ± SD unless marked with an asterisk*, in which case the median and (25th-75th percentiles) are reported. The Kruskal-Wallis-test and analysis of variance

(ANOVA) were used to compare the median and mean baseline characteristics, respectively, across blood pressure groups. SD, standard deviation; usCRP, ultrasensitive CRP; MetS,

Metabolic Syndrome.

and aldosterone synthesis and secretion. Based on GO
analyses, we retrieved the biological processes, cellular
components and molecular functions of dysregulated
miRNAs. In Figure 3, we present the top enrichment scores for
biological processes of dysregulated miRNAs in hypertensive vs.
normotensive participants.

Next Generation Sequencing Results
Validation
The RT-qPCR data were normalized using miR-16-5p and the
raw Ct values, showing its suitability as an endogenous control
in our cohort, are shown in Supplementary Figure 1. The two
miRNAs with the highest fold change between study groups

using NGS were selected for validation with RT-qPCR, namely
miR-30a-5p and miR-1299. The relative expressions (2−1Ct) of
each target miRNA in the three participant groups are shown in
Figure 4. Both miR-30a-5p and miR-1299 were upregulated in
known HPT compared to normotensive or screen-detected HPT,
p = 0.015, whilst miR-30a-5p was also significantly upregulated
in screen-detected HPT vs. normotensive, p = 0.023. Using the
2−11Ct formula to compute fold changes between two groups,
miR-30a-5p expression was 2.58-fold higher in known HPT vs.
normotensive and 1.69-fold higher vs. screen-detected HPT.
In screen-detected HPT, miR-30a-5p expression was 1.52-fold
higher when compared to the normotensives. As for miR-1299,
there was a 3.93-fold and 2.78-fold higher expression in known
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FIGURE 1 | Differential miRNA expression according to HPT status. The heatmap shows all differentially expressed miRNAs at adjusted p-value < 0.05. (A)

Normotensive vs. known HPT; (B) Normotensive vs. screen-detected HPT; (C) Known HPT vs. screen-detected HPT.

HPT vs. normotensives and screen-detected HPT, respectively.
However, there was not a great difference in the expression
of miR-1299 between screen-detected HPT vs. normotensive as
shown by the 1.41-fold difference in expression.

Multivariable Regression Analysis
The results of multivariable regression analysis are shown in
Supplementary Table 1. For miR-30a-5p, the crude odds ratio
was 1.31 [95% confidence interval (CI): 1.13–1.51, p < 0.001]
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FIGURE 2 | Differentially expressed pre-miRNAs in comparison between blood pressure groups. (A) Is a comparison between known hypertensives and

normotensives. (B) Is a comparison between screen-detected HPT and normotensives. (C) Is a comparison between known HPT and screen-detected HPT.

Significantly different expression of a pre-miRNA was those in which there was a ≥1.3-fold change difference in expression between comparison groups and p ≤ 0.1.

Red and green dots signify upregulated and downregulated miRNAs, respectively. No differential expression was signified with a black dot.

for screen-detected HPT, whilst for known HPT, the OR was
1.30 (95% CI: 1.13–1.49, p < 0.001). When the models were
adjusted for different variables, the expression of miR-30a-5p
remained significantly associated with both screen-detected and
known HPT (p ≤ 0.019). With regard to miR-1299, the crude
odds ratio was 0.80 [95% confidence interval (CI): 0.54–1.20, p
= 0.284] for screen-detected HPT, whilst for known HPT, the OR
was 1.11 (95% CI: 0.96–1.30, p= 0.164). There was no significant
association between screen-detected and known HPT with miR-
1299 expression for all tested models (p ≥ 0.134). In this cohort
of participants, differences in age, sex, diabetes status, BMI,
total cholesterol and trigylerides between normotensives and
hypertensives (screen-detected and known) did not significantly
impact the expression of both miR-30a-5p and miR-1299.

DISCUSSION

To our knowledge, no study has been conducted on miRNA
expression in relation to HPT in populations from Africa. Using
NGS, we identified 30 (including two novel) mature miRNAs
that were differentially expressed in 48 South African women
with either screen-detected or treated HPT. These miRNAs were
associated with pathways such as platelet activation, calcium
signaling and vascular smooth muscle contraction pathways
which are particularly important in cardiovascular pathogenesis
(18–20). Two miRNAs, namely miR-1299 and miR-30a-5p were
the most significantly dysregulated in hypertensive individuals
and this was validated using RT-qPCR in 311 study participants,
confirming the miRNA sequencing results while yielding new
findings. Multivariable regression analysis showed that in our
cohort, differences in age, sex, diabetes status, BMI, total

cholesterol and trigylerides had no significant effect on the
expression of miRNAs. Furthermore, the significant relationship
between miR-30a-5p expression and screen-detected and known
HPT was demonstrated.

Several studies have reported on a number of dysregulated
miRNAs in HPT using different tissues, but results remain
inconsistent (21–25). A study similar to ours reported 27
dysregulated miRNAs in a sample of 13 individuals with HPT
(21), although the miRNAs were not similar to ours. A recurring
theme within these miRNA profiling studies in HPT is the
inter-study inconsistency of findings. For example, expression
of various miRNAs such as miR-21, miR-145-5p, miR-155-5p,
miR-181a (26–34) that had been previously associated with
BP and HPT were not found in this study. We suspect this
may partially be attributed to the diverse genetic makeup
of Africans and in particular, our study participants whose
heterogeneous genetic makeup comprises 32–43% Khoisan, 20–
36% Bantu-speaking Africans, 21–28% European, and 9–11%
Asian ancestry (35). Furthermore, differences in the methods
used could account for the discordance in inter-study findings as
the tissue specific nature of some miRNAs has been previously
described (36). In our study, discordant results with regards
to miR-1299 were evident between NGS and RT-qPCR. Other
studies have employed the candidate miRNA approach and
reported on miRNAs that have not necessarily been identified
using microarrays or sequencing, highlighting the need for more
studies employing the same methodologies and experimental
designs and standardized sample preparation before these
miRNAs can be utilized as new biomarkers.

In a previous study, miR-30 was down-regulated in the plasma
of patients with essential HPT (37). In contrast, our findings
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TABLE 2 | Dysregulated mature miRNAs in screen-detected and known HPT compared to normotensive participants.

Mature

miRNA

miRNA

accession

number

Known HPT

vs.

normotensive

fold change

p-value BH Mature

miRNA

miRNA

accession

number

Screen-

detected

HPT vs.

normotensive

fold

change

p-value BH Mature

miRNA

miRNA

accession

number

Known

HPT vs.

screen-

detected

HPT

p-value BH

FDR FDR FDR

miR-30a-5p MIMAT0000087 2.44 0.063 0.7403 miR-1299 MIMAT0005887 3.38 0.081 0.8106 miR-30a-5p MIMAT0000087 2.02 0.072 0.7031

miR-504-5p MIMAT0002875 1.67 0.062 0.7403 miR-182-5p MIMAT0000259 2.08 0.022 0.8106 miR-504-5p MIMAT0002875 1.56 0.053 0.7031

miR-5189-3p MIMAT0027088 1.58 0.004 0.7403 miR-96-5p MIMAT0000095 1.89 0.030 0.8106 miR-novel-

chr15_18383

miR-novel-

chr15_18383

1.31 0.075 0.7031

miR-182-5p MIMAT0000259 1.57 0.060 0.7403 miR-183-5p MIMAT0000261 1.84 0.005 0.8106 miR-877-5p MIMAT0004949 0.76 0.017 0.7031

miR-183-5p MIMAT0000261 1.53 0.056 0.7403 miR-493-5p MIMAT0002813 1.65 0.069 0.8106 miR-106a-5p MIMAT0000103 0.75 0.091 0.7031

miR-1307-3p MIMAT0005951 1.52 0.017 0.7403 miR-1304-3p MIMAT0022720 1.44 0.085 0.8106 miR-17-5p MIMAT0000070 0.73 0.093 0.7031

miR-novel-

chr1_36178

miR-novel-

chr1_36178

1.46 0.034 0.7403 miR-5189-3p MIMAT0027088 1.39 0.059 0.8106 miR-20b-5p MIMAT0001413 0.69 0.060 0.7031

miR-382-5p MIMAT0000737 1.45 0.051 0.7403 miR-584-5p MIMAT0003249 1.38 0.080 0.8106

miR-584-5p MIMAT0003249 1.4 0.064 0.7403 miR-27b-3p MIMAT0000419 1.38 0.057 0.8106

miR-130b-5p MIMAT0004680 1.39 0.066 0.7403 miR-194-5p MIMAT0000460 1.36 0.057 0.8106

let-7a-5p MIMAT0000062 1.37 0.066 0.7403 miR-15a-5p MIMAT0000068 1.36 0.099 0.8106

miR-199b-5p MIMAT0000263 1.34 0.098 0.7403 miR-1304-5p MIMAT0005892 1.35 0.004 0.8106

miR-99b-3p MIMAT0004678 1.31 0.060 0.7403 let-7a-5p MIMAT0000062 1.32 0.076 0.8106

miR-6511a-3p MIMAT0025479 0.76 0.019 0.7403 miR-15b-3p MIMAT0004586 0.76 0.013 0.8106

miR-483-3p MIMAT0002173 0.75 0.064 0.7403

miR-6777-3p MIMAT0027455 0.69 0.003 0.7403

A comparison of dysregulated miRNAs between screen-detected HPT and known HPT participants is also shown.

BH FDR, Benjamini-Hochberg False Discovery Rate corrected p-value.
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FIGURE 3 | GO analysis—Biological Processes. The bars plots show the top 10 enrichment score values of the significant enrichment terms. X-axis: GOID’s

enrichment score value; it equals –log10(p-value); Y-axis: GO category. (A) Upregulated in known HPT vs. normotensive. (B) Downregulated in known HPT vs.

normotensive. (C) Upregulated in screen-detected HPT vs. normotensive. (D) Downregulated in screen-detected HPT vs. normotensive. (E) Upregulated in known

HPT vs. screen-detected HPT. (F) Downregulated in known HPT vs. screen-detected HPT.

using both sequencing and RT-qPCR showed an upregulation
of miR-30a-5p in both screen-detected or known hypertensive
(on antihypertensive treatment) individuals. This difference in
expression may be partially explained by the differences in the
sample type used for analysis. Whilst our study utilized whole
blood (composed of plasma, red blood cells, platelets and white
blood cells) for total miRNA expression, the other study made
use of plasma (cell-deficient). Pre-analytical samplemanipulation
using centrifugation, which is required for obtaining plasma from
whole blood, affects miRNA expression profiles, as it removes
from the plasma, cell-specific miRNAs that would otherwise have
been detected in whole blood (38). Findings similar to ours were
also reported byHuang et al. who demonstrated increased plasma
expression of miR-30a in essential and white coat HPT, relative to
normotensive participants (39). Overexpression of miR-30a has
been reported to interfere with the removal of damaged or dead
endothelial cells, promoting atherosclerosis and predisposing
individuals to cardiovascular complications, like heart attacks
(40). Similarly, other miRNAs in the miR-30 family have been
associated with cardiovascular diseases and suggestions made
that they act as predictors for acute myocardial infarction
and heart failure (40, 41). For instance, the overexpression of
miR-30b-5p was shown to have a downregulatory effect on
a muscleblind-like splicing regulator 1 (MBLN1) transcript in
atherosclerosis, possibly playing a role in the regulation of
vascular smooth muscle cells VSMCs (42). Another miRNA

with interesting results was miR-1299, which was significantly
upregulated in screen-detected HPT when compared to the
normotensive group, fold change= 3.38. This was also confirmed
with RT-qPCR, which indicated a 1.41-fold increase in expression
of the miRNA in screen-detected HPT compared to the
normotensive group. However, multivariable regression analysis
did not indicate a relationship between HPT and the expression
of miR-1299. Although miR-1299 is yet to be reported in
HPT by other groups, the microRNA has been implicated in
Rheumatic Heart Disease (RHD), a common complication of
which is pulmonary arterial hypertension (PAH) (43). One study
identified miR-1299 as an important role player in suppressing
the growth of colon cancer cells via downregulation of the signal
transducers and activators of transcription (STAT3). STAT3 is as
an important component in the heart’s adaptation to elevated BP
(44, 45). It is possible then that elevated expression of miR-1299,
as seen in the hypertensive participants, may be a contributing
factor in protecting against cardiovascular events associated with
elevated BP levels.

As seen in KEGG analysis, the significantly differentially
expressedmiRNAs had possible involvement in various pathways
relevant to HPT, including vascular smooth muscle contraction,
vasopressin-mediated water reabsorption, platelet activation,
calcium signaling, and aldosterone synthesis and secretion.
Alterations to the vascular smooth muscle cells (VSMCs)
phenotype has implications in vascular resistance, BP and HPT
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FIGURE 4 | Relative expression of miR-30a-5p and miR-1299. (A) miR-30a-5p in normotensive (n = 116), screen-detected HPT (n = 66) and known HPT (n = 124).

(B) miR-1299p in normotensive, screen-detected HPT and known HPT. Data are represented graphically as the mean ± SD. Not significant (NS) if p > 0.05 and

significant p-value denoted by an asterisk*.

and Kontaraki et al. demonstrated differential expression of
five miRNAs (miR-1, −21, −133, 143, and −145) previously
implicated in the alteration of the VSMC phenotype (34). Water
retention is also essential in BP regulation and fluid volume
maintenance and various miRNAs have been implicated in
these processes. Through repression of the methyl CpG binding
protein 2 (Mecp2) gene and MeCP2 protein, miR-132 regulates
vasopressin synthesis and as such, fluid retention (46), whilst
miR-32 and −137 regulate water retention by targeting kidney
water channels controlled by vasopressin (47, 48). Dysregulations
in aldosterone production or secretion pathwaysmay be a risk for
the development of HPT and aldosterone production is reduced
due to miR-24 targeting of mRNA from the CYP11B2 gene
(49), whilst angiotensin II-mediated overexpression of miR-21
leads to increased aldosterone secretion (50). Dysregulation of

calcium signaling leads to altered responses by the vasculature, a
common characteristic in HPT (51). In a murine model, Wu et al.
demonstrated the regulation of calcium signaling in the kidney by
the miR-30 family (52), whilst another study reported miR-214 as
a regulator of the calcium pathways through repression of mRNA
encoding the sodium-calcium exchanger protein, Ncx1 (53).

Our study had some limitations. Firstly, we did not investigate
the effect of antihypertensive drugs, which could have likely
influenced the differential expression of miRNAs between treated
(knownHPT) and untreated (screen-detectedHPT) hypertensive
individuals. For instance, in a murine model of salt-sensitive
HPT, a high salt diet was accompanied by reduced expression of
miR-27a, miR-29a, and miR-133a. However, Nebivolol prevented
the high salt-mediated lower expression of miR-27a, whilst
there was complete and partial reversal of high salt-induced
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miR-29a decrease by Nebivolol and Atenolol, respectively. Both
medications were able to prevent a decrease in miR-133a
expression (54). Second, in our NGS analysis, miRNA expression
screening was done in only 48 female participants. However, the
RT-qPCR validation was performed in a larger sample that also
includedmale participants. Lastly, only two of the 30 significantly
dysregulated miRNAs as shown by NGS were validated by RT-
qPCR.

In conclusion, our study demonstrated miRNA dysregulation
in hypertensive individuals and to our knowledge, is the first
study to do so in a sub-Saharan population. Based on our
findings, we have shown a number of miRNAs, particularly,
miR-30a-5p and miR-1299 that could be explored further for a
potential prognostic role, or as therapeutic targets.
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