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Abstract

Climate change is affecting the growth, phenology, and distribution of species across north-

eastern United States. In response to these changes, some species have been adversely

impacted while others have benefited. One species that has benefited from climate change,

historically and in response to experimental treatments, is common ragweed (Ambrosia

artemisiifolia), a widely distributed annual weed and a leading cause of hay fever in North

America. To better understand how climate change may affect the distribution of common

ragweed, we built a maximum entropy (Maxent) predictive model using climate and biocli-

matic data and over 700 observations across the eastern U.S. Our model performed well

with an AUC score of 0.765 using four uncorrelated variables, including precipitation sea-

sonality, mean diurnal temperature range, August precipitation, and January maximum tem-

perature. After building and testing our model, we then projected potential future common

ragweed distribution using a suite of 13 global climate models (GCMs) under two future

greenhouse gas scenarios for mid and late-century. In addition to providing georeferenced

hot spots of potential future expansion, we also provide a metric of confidence by evaluating

the number of GCMs that agree. We show a substantial contraction of common ragweed in

central Florida, southern Appalachian Mountains, and northeastern Virginia and areas of

potential expansion at the northern margins of its current distribution, notably in northeast-

ern U.S. However, the vast majority of this increase is projected to occur by mid-century and

may be moderated somewhat by the 2070s, implying that common ragweed may be sensi-

tive to climatic variability. Although other factors and modeling approaches should be

explored, we offer preliminary insight into where common ragweed might be a new concern

in the future. Due to the health impacts of ragweed, local weed control boards may be well

advised to monitor areas of expansion and potentially increase eradication efforts.
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Introduction

Average annual temperature has increased by 1.1˚C (2˚F) and precipitation has increased by

more than 10% over the last century in the Northeast U.S. [1]. Combined with increasing car-

bon dioxide (CO2) concentrations, these changes are already affecting species–plants are flow-

ering earlier [2] and species’ range shifts have occurred [3,4]. For instance, in the Green

Mountains, Vermont, northern hardwood trees have shifted up in elevation by nearly 100 feet

between 1964 and 2004 [5]. Plant species are also moving to higher latitudes with southern

species expanding into areas previously dominated by northern species in the Northeast U.S.

[6]. However, not all species respond similarly to climate change [7].

One plant species that may expand its range in the Northeast U.S. is common ragweed

(Ambrosia artemisiifolia L., Asteraceae), a widely distributed annual weed whose pollen is the

leading cause of hay fever and a major trigger of asthma [8,9]. Common ragweed has strong

competitive growth on frequently disturbed soils [10] and responds positively to elevated CO2,

which can dramatically increase its growth, reproduction, and pollen output [11,12,13,14].

Once established, common ragweed forms dense monospecific stands and is well adapted to a

diversity of habitats. However, ragweed generally requires full or abundant sun for germination

[15] and therefore usually does not grow under full tree canopy. Consequently, it is usually

found in non-forested habitats such as roadsides, abandoned fields, and agricultural croplands.

The historical distribution of common ragweed has changed with variations in climate and

land use. For instance, the paleoecological records indicate that common ragweed pollen

abundance increased with hot, dry climates and frequent disturbances, such as fire, grazing,

and to some extent, land clearing by humans [16]. Empirical evidence also indicates that com-

mon ragweed differs in its response to temperature and growing season length in some areas

compared to others [17]. In Europe, where common ragweed is an invasive non-native species,

it has been increasing its distribution and is expected to further expand its range due to climate

change [18,19,20,21]. Previous modeling efforts have used North American common ragweed

distribution to calibrate their European models [19,20,21]; however, none have examined the

potential expansion of common ragweed in North America. Moreover, we are not aware of

any studies that have examined the driving climate and bioclimatic predictors of common rag-

weed across the heavily populated eastern U.S.

Here, we applied a maximum-entropy (Maxent) approach for modeling the current distri-

bution of common ragweed in the eastern U.S. We used common ragweed occurrence data

from the Global Biodiversity Information Facility (GBIF) and climate data from WorldClim to

build and evaluate our model and identified the most important climate predictors. We then

applied a suite of 13 global climate models under two future greenhouse gas scenarios to proj-

ect the potential future distribution for mid and late-century and identify areas that are most

susceptible to future expansion.

Methods

Species occurrence data

We used geo-referenced locations of Ambrosia artemisiifolia (common ragweed) from the

Global Biodiversity Information Facility (GBIF) online database (gbif.org). This dataset

included over 3000 records of occurrence from 76 published datasets in the United States [22].

We then clipped the occurrence dataset with a shapefile of the eastern U.S. bounded by the

Mississippi River on the west and the Atlantic Ocean on the east (Fig 1). We also removed

occurrences that were outside of the contiguous U.S. resulting in 726 common ragweed occur-

rence records.
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Climate and bioclimatic data

Climate and bioclimatic data were downloaded from the WorldClim-Global Climate Data

website (worldclim.org) (version 1.4). WorldClim provides global gridded climate data con-

sisting of mean, maximum, and minimum temperature variables, precipitation variables, and

bioclimatic variables with a spatial resolution of 30-arc seconds (about 1 km2) [23]. The histor-

ical dataset consists of interpolations of average monthly climate data from weather stations

over the time period between 1960–1990.

Monthly climate data were also used to derive biologically relevant bioclimatic variables

[23,24]. We included bioclimatic variables because they represent meaningful controls of plant

growth and distribution [25]. We built and analyzed a number of ragweed distribution models

to identify the most important predictor variables. We then examined correlations between

those variables and selected four uncorrelated climate and bioclimatic variables, including pre-

cipitation seasonality, mean diurnal temperature range, August precipitation, and January

maximum temperature. Precipitation seasonality is a measure of the variation in monthly pre-

cipitation totals over the course of the year [24]. Mean diurnal temperature range is the mean

of the monthly temperature ranges (i.e., monthly maximum minus monthly minimum) [24].

The data were clipped by the same eastern U.S. extent as done with species occurrence data

above.

The future climate data was downscaled from 13 individual global climate models (GCMs)

from the Coupled Model Intercomparison Project Phase 5 (CMIP5) that were used in the Fifth

Assessment of the Intergovernmental Panel on Climate Change (IPCC) (Table 1). We used

Fig 1. Locations of common ragweed occurrences throughout the eastern U.S.

https://doi.org/10.1371/journal.pone.0205677.g001
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downscaled future climate data from these 13 GCMs for two time periods: 2050s (averaged

across 2041–2060) and 2070s (averaged across 2061–2080) and under two scenarios of future

greenhouse gas emissions referred to as Representative Concentration Pathways (RCPs) 4.5

and 8.5. These greenhouse gas emissions scenarios apply socio-economic assumptions about

future changes in global population, technological advances, and other factors that influence

the amount of CO2 and other greenhouse gases emitted into the atmosphere as a result of

human activities [26]. We used RCP 4.5 because it represents a low emissions scenario in

which emissions stabilize by mid-century and decline thereafter, and RCP 8.5, which repre-

sents a high emissions scenario and assumes continued increases in greenhouse gas emissions

until the end of the 21st century [26,27].

Species distribution model

We built a species distribution model for common ragweed using Maxent software [28]. In

general, species distribution models identify a relationship between a species’ presence and a

number of environmental or climate variables observed at those locations [29]. Once built,

species’ distribution models then can be used to predict the suitability of a grid cell. This suit-

ability is a function of the previously identified relationship for that given species and the envi-

ronmental variables. Suitability then can be modeled for other locations or under different

conditions (i.e., future climates). The Maxent software uses a machine-learning technique

called maximum entropy modeling, which finds the distribution that best represents the data

given all the available information [30,31]. Maxent is one of the better performing predictive

modeling techniques and has been widely used for modeling species’ distributions [32].

We built our Maxent model using ragweed occurrence data and climate and bioclimatic

variables to predict probability distributions across 3.3 million grid cells. We split our data set

into two sets–a randomly selected 70% of the data for model training and 30% for model evalu-

ation. To test the predictive performance of our model we resampled the test data set 500

times and report the area under the Receiver Operating Characteristic curve (AUC) [33] and

the fraction of our study area that our model predicted present [30]. To model the future dis-

tribution of ragweed we used downscaled climate projections from thirteen individual GCMs

for the 2050s and 2070s and two greenhouse gas emissions scenarios–RCP 8.5 and RCP 4.5.

Table 1. Thirteen global climate models that were used in this study.

GCM Institution

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization

(CSIRO) and Bureau of Meteorology (BOM), Australia

BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration

CCSM4 US National Center for Atmospheric Research (NCAR)

CNRM-CM5 France National Centre for Meteorological Research

GFDL-CM3 NOAA/Geophysical Fluid Dynamic Laboratory (GFDL)

GISS-E2-R National Aeronautics and Space Association Goddard

Institute for Space Studies (NASA GISS)

HadGEM2-ES UK Meteorological Office—Hadley Centre

INMCM4 Russian Institute for Numerical Mathematics (INM)

IPSL-CM5A-LR Institute Pierre Simon Laplace (IPSL)

MIROC5 University of Tokyo, Japanese National Institute for Environmental Studies

(NIES), and Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

MPI-ESM-LR Max Planck Institute (MPI) for Meteorology (low resolution)

MRI-CGCM3 Japanese Meteorological Research Institute (MRI)

NorESM1-M Norwegian Climate Centre

https://doi.org/10.1371/journal.pone.0205677.t001
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Results

Our species distribution model was able to accurately predict 85% of ragweed’s presences

across the study area (Fig 2, left panel). Analyzing the reserved test data set, our model had an

AUC score of 0.765, and the omission rate–that is predicting no presence when one is there–

was 0.396 (p< 0.001, one-tailed binomial test) (Fig 3). The occurrence data that we used did

not include true absence information for common ragweed. Therefore, we calculated the frac-

tion of the total study area that our model predicted present and compared this to a random

prediction of presences with an AUC of 0.5 [30]. This technique uses pseudo-absences instead

of true absences to calculate the percent of correctly predicted absences [34]. The fraction of

the study area that our model predicted present was 0.154.

We built the most parsimonious model possible while still maintaining a relatively high

AUC score and predicting 85% of ragweed’s presences. We used four uncorrelated variables,

including precipitation seasonality, mean diurnal temperature range, August precipitation,

and January maximum temperature. Of these four variables, mean maximum temperature in

Fig 2. Predicted current and future presence (occurrence) of common ragweed across the eastern U.S. Left panel represents current predictions and the

right panel represents the future distribution projections for RCP 4.5 and 8.5 and the 2050s and 2070s. The intensity of the colors represent agreement among

the 13 global climate models.

https://doi.org/10.1371/journal.pone.0205677.g002
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Fig 3. Model evaluation for common ragweed. (A) Receiver operating characteristic (ROC) curve. Red line is for the

training data (AUC = 0.780), blue line is for the test data (AUC = 0.765), and black line is for a random set of

predictions (AUC = 0.5). (B) Omission and predicted area curve. Red line is the fraction of background that is

predicted, blue line is the omission rate for the training samples, teal line is the omission rate for the test samples, and

black line is the predicted omission.

https://doi.org/10.1371/journal.pone.0205677.g003
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January contributed the most to ragweed predictions, followed by precipitation seasonality,

mean diurnal temperature range, and August precipitation. The response curve of how mean

maximum temperature during January affects the predicted probability of ragweed occurrence

(Fig 4A) shows a bimodal response with peaks below 1˚C and 6˚C. Predicted ragweed occur-

rence also had a negative relationship with mean diurnal temperature range (Fig 4B) and a

positive relationship with August precipitation (Fig 4C). The relationship between predicted

ragweed occurrence and precipitation seasonality was more complex–ragweed had a negative

relationship in response to very low and very high precipitation seasonality and a positive rela-

tionship with moderate precipitation seasonality (Fig 4D).

The area of suitable climate space for common ragweed is projected to increase in the future

but varies by greenhouse gas scenario and time period (Table 2). Interestingly, the area pro-

jected to be suitable for ragweed was greatest during the 2050s as compared to the 2070s under

both greenhouse gas emissions scenarios. The higher scenario–RCP 8.5 –had larger increases

of suitable area for ragweed compared to RCP 4.5 for the 2050s, but less of an increase for the

Fig 4. Response curves for the four climate variables used to predict common ragweed presence. (A) January maximum temperature, (B) mean diurnal

temperature range, (C) August precipitation, and (D) precipitation seasonality. Temperature variables in plots A and B have been multiplied by a factor of 10. For

example, 5 degrees C is represented by “50”.

https://doi.org/10.1371/journal.pone.0205677.g004
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2070s compared to RCP 4.5. Because ragweed occurrence varies considerably by GCM, we

used an ensemble to summarize all 13 models for each greenhouse gas scenario and time

period (Fig 2). All future projections of suitable area for ragweed show substantial contraction

in central Florida, southern Appalachian Mountains, and northeastern Virginia. Areas of

potential ragweed expansion occur in the northern states with CGM model agreement highest

in New York, Vermont, New Hampshire, and Maine. All future projections also agree that

Massachusetts, Connecticut, Rhode Island, and the coastal areas of New Jersey, Delaware, Vir-

ginia, and North Carolina will remain suitable for ragweed during the current century.

There are also a number of differences among the four future projections. For instance,

RCP 8.5 for the 2050s projects the largest amount of suitable climate space for ragweed, with

the largest amount of expansion, smallest amount of contraction, and the most stable area. By

contrast, RCP 8.5 for the 2070s projects the smallest amount of suitable climate space in the

future and the most amount of overall change compared to ragweed’s current distribution

(Table 2). Nevertheless, RCP 8.5 for the 2070s shows the largest amount of potential expansion

and agreement among the 13 GCMs in northeast U.S.

Discussion

Our results show that common ragweed is projected to have substantially more suitable cli-

mate space in the future across the eastern U.S. However, the vast majority of this increase is

projected to occur by mid-century and may be moderated somewhat by the 2070s. This find-

ing implies that common ragweed may be sensitive to climatic variability. For instance, we

found that ragweed is positively correlated with increasing August precipitation, which was

not surprising. However, ragweed was also negatively correlated to very low or very high

annual precipitation variability, indicating a general sensitivity to precipitation extremes. Rag-

weed’s sensitivity to water stress has been identified by others [19,20]. In Europe, where rag-

weed is an exotic invasive and has not yet maximized its full niche, it appears to be limited by

strong summer drought [19]. Ragweed is also negatively correlated to the mean of monthly

temperature ranges indicating that ragweed is sensitive to temperatures extremes, a finding

supported by other studies [19,20]. Our results also support the notion that ragweed is intoler-

ant to frost [20,35].

Species distribution models and their projections of newly suitable habitat can be useful for

land management planning [36,37]. Our results identify a number of locations that ragweed is

not currently present but may expand into in the future and thus become a new or increased

health concern. For example, metropolitan areas in the Northeast, such as Albany, New York,

Montpelier, Vermont, Concord, New Hampshire, and Augusta, Maine are all at increased risk

of ragweed expansion in the next 30 years. An expansion of ragweed at its northern margins of

its current distribution is generally consistent with European studies [18,19,21,38]. Therefore,

Northeast metropolitan areas may be well advised to start monitoring for ragweed presence

and potentially increase eradication efforts by local weed control boards. By contrast, some

Table 2. Future projected change in suitable area for common ragweed compared to the current distribution.

Scenario Timeframe Expansion Contraction Stable Overall Change

(Km2) (Km2) (Km2)

RCP 4.5 2050s 838,175 258,609 83,165 +94%

2070s 811,381 247,620 94,154 +92%

RCP 8.5 2050s 874,354 231,427 110,348 +120%

2070s 800,113 275,262 66,513 +73%

https://doi.org/10.1371/journal.pone.0205677.t002
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areas in southern Vermont and New Hampshire and parts of Massachusetts may become less

suitable for ragweed by the end of the century. These areas may provide opportunities to dis-

place ragweed with later-successional species [39]. It is important to recognize that ragweed is

adapted to a diversity of habitats and tends to grow competitively on disturbed soils [10].

Therefore, urban development and planning efforts may consider minimizing the exposure of

disturbed sites by requiring adequate soil coverage with other vegetation, or timing soil distur-

bance to occur in winter and spring, while ragweed is not dispersing.

We modeled ragweed distribution using climate predictor variables only. Alternative

modeling approaches could also include other factors, such as dispersal, land-use change, CO2

concentrations, and geographic and ecotypic variation among ragweed populations. Others

have also developed mechanistic modeling approaches to predict ragweed distribution [20,38]

and cite that climate envelope modeling may underestimate the true potential range of invasive

species [21,40]. We agree. Integrating mechanistic and empirical modeling approaches may

improve the predictive power and certainty associated with future projections [41]. Predictive

models could also be parameterized and restrained with known dispersal abilities, as has been

done with common ragweed in Europe [42].

Land use and disturbance history are also important, known drivers of ragweed distribution

[16]. We did not include land use in our final model because regional projections of future

land use change were not available. However, we did explore the relative influence of land use

in determining ragweed’s current distribution with earlier exploratory models. Specifically, we

included three land cover variables–National Land Cover data, tree canopy cover data, and a

dataset of impervious surfaces [43]–along with our climate variables to predict ragweed occur-

rence. The dataset of impervious surfaces was an important predictor variable in early explor-

atory model runs. Therefore, future research will further examine the role of land use and how

projected future changes in both land use and climate change may impact ragweed occurrence.

We also recognize that there is geographic and ecotypic variation among ragweed populations

[17,20,44], but to our knowledge incorporating this variation into predictive models for the U.

S. has not been done.

Another factor that influences the growth and potentially the establishment of ragweed is

the greenhouse gas CO2. Specifically, common ragweed has been shown to respond positively

to elevated CO2 [13,14,45], and global CO2 concentrations are increasing [46]. Although we

did not include CO2 concentrations in our model, future research could also integrate this fac-

tor into future projections of ragweed growth and distribution. There are many facets of

modeling ragweed that could be explored. Nevertheless, we have demonstrated that a relatively

simple climate niche model can predict its current distribution. Although not intended for

fine-scale mapping of ragweed occurrence, our model can be used to highlight key climatic

drivers and inform management actions.
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