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Abstract

There is a high incidence of non-obese type 2 diabetes mellitus (non-obese-T2DM) cases, particularly in Asian countries, for
which the pathogenesis remains mainly unclear. Interestingly, Goto-Kakizaki (GK) rats spontaneously develop insulin resistance
(IR) and non-obese-T2DM, making them a lean diabetes model. Physical exercise is a non-pharmacological therapeutic
approach to reduce adipose tissue mass, improving peripheral IR, glycemic control, and quality of life in obese animals or
humans with T2DM. In this narrative review, we selected and analyzed the published literature on the effects of physical
exercise on the metabolic features associated with non-obese-T2DM. Only randomized controlled trials with regular physical
exercise training, freely executed physical activity, or skeletal muscle stimulation protocols in GK rats published after 2008 were
included. The results indicated that exercise reduces plasma insulin levels, increases skeletal muscle glycogen content,
improves exercise tolerance, protects renal and myocardial function, and enhances blood oxygen flow in GK rats.
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Introduction

Type 2 diabetes mellitus: lean vs obese patients
Excessive accumulation of adipose tissue has been

considered a public health problem for the last 50 years
and today has reached epidemic proportions globally. This
condition results from a positive energy balance, in which
energy intake exceeds energy expenditure. Indeed, it has
been shown that excessive food intake and insufficient
physical activity reduce the ability of peripheral tissues to
respond to insulin, a process known as insulin resistance
(IR) (1).

Obesity is a multifactorial disease associated with
various genetic and environmental factors. Obese individ-
uals have an increased risk of developing chronic
disorders such as hypertension, cardiovascular disease,
IR, metabolic syndrome, and type 2 diabetes mellitus
(T2DM). Notably, individuals with obesity-related diseases
display more severe symptoms and suffer from higher
mortality rates when infected with viruses such as COVID-
19 (2).

It has been known for decades that obesity leads to
T2DM. This disease is a public health problem character-
ized by high blood sugar concentrations (hyperglycemia)

associated with impaired insulin sensitivity in the liver,
skeletal muscle, and adipose tissue and reduced insulin
secretion (3,4). It is estimated that T2DM corresponds to
90–95% of all diabetes cases (5). Furthermore, obese
T2DM patients typically present a low-grade and chronic
inflammation (6,7), including pro-inflammatory cytokines
(TNF-a, IL-6, IL-8, and IFN-a) and C-reactive protein
(CRP).

For example, several lines of evidence indicate that
adipsin is a fat inflammation-related and visceral fat
accumulation biomarker (8,9). Other biomarkers, including
plasma leptin, resistin, tumor necrosis factor-alpha (TNF-
a), plasminogen activator inhibitor 1(PAI-1), interleukins
(IL) IL-1b, IL-6, and IL-8, insulin-like growth factor 1
(IGF-1), monocyte chemoattractant protein 1 (MCP-1),
and visfatin, have also been reported. The plasma IL-6
concentration was proposed to be a T2DM and cardio-
vascular disease marker associated with an inflammatory
state, and increased systemic IL-6 concentrations have
been correlated with increased fat mass in both rodent
models and obese humans (4,10) . Moreover, reduced
serum adiponectin levels in obese individuals were
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associated with T2DM and attenuated cardiovascular
function (11).

It is well known that chronic inflammation reduces the
peripheral insulin response, promoting resistance to the
hormone, and, in TNF-a knockout rats, improved insulin
sensitivity has been reported. Additionally, obese TNF-a
knockout mice have reduced fat pad weights and
enhanced responses to exogenous glucose and insulin
than obese mice with unaltered peripheral insulin sensitiv-
ity. These results are due to high tissue TNF-a levels
promoting insulin receptor substrate-1 (IRS-1) serine
phosphorylation rather than the tyrosine kinase-dependent
phosphorylation, ultimately inhibiting insulin signaling (12).

In the last 25 years, the prevalence of obese T2DM
has increased from 13 to 31% in eastern populations
(5,13). However, T2DM also occurs in non-obese individ-
uals (14). For example, in Asia, 70% of T2DM patients are
non-obese with body mass index (BMI) values of
o19 kg/m2 (15,16) and present the ketosis-resistant
diabetes young (KRDY) phenotype, which is associated
with a high propensity for beta-cell function failure.
Notably, KRDY patients have a higher mortality rate
compared to obese subjects.

A similar disease feature was reported in a compara-
tive study of lean and obese diabetic patients in the United
States (17). The lean patients from the US study exhibited
an increased propensity for pancreatic beta-cell failure,
a low total triglycerides/high-density lipoprotein ratio
(TG/HDL) (an indirect marker of hepatic IR), and central
obesity (i.e., hip circumference) (17). Moreover, in a study
with non-obese Filipino T2DM patients, Bautista et al. (18)
detected reduced pancreatic beta-cell function using the
Homeostasis Model Assessment (HOMA) index com-
pared to overweight/obese patients. In non-obese diabetic
patients, the impaired pancreatic beta-cell function is
associated with genetic factors, including different alleles
in Japanese and Chinese populations (19,20), and
acquired autoimmunity, requiring exogenous insulin
administration for glycemic control (17) . Since environ-
mental and genetic factors are associated with non-obese
T2DM development, future studies will need to be
conducted to understand the underlying pathophysiologi-
cal mechanisms associated with this disease.

Physical exercise in T2DM subjects
Sedentarism is one of the main factors for developing

metabolic syndrome, cardiovascular diseases, and T2DM.
Studies have shown that regular physical activity reduces
the prevalence and helps manage these obesity-related
diseases (21,22). For example, regular physical activity
improved glucose tolerance, blood lipid level profiles, and
reduced risk factors for developing cardiovascular dis-
eases in T2DM patients (23). Additionally, physical exer-
cise programs have been shown to ameliorate glucose
uptake via insulin-independent translocation and glucose
transporter 4 (GLUT-4) expression, potentiate insulin

signaling during the post-exercise period, increase skele-
tal muscle oxidative capacity, attenuate lipid metabolite
generation, up-regulate the expression of genes asso-
ciated with mitochondrial biogenesis and metabolism,
decrease inflammatory markers, and restore immune
function (24-27). Interestingly, improved mitochondrial
function and biogenesis have also been observed in the
skeletal muscle of diabetic rats and humans following
exercise training (28,29).

Furthermore, physical exercise reduces cell hypertro-
phy and hyperplasia in adipose tissue and increases
GLUT-4 expression and insulin sensitivity (30). It has
also been shown to increase IL-6, IL-1ra, and IL-10 and
decrease TNF-a plasma levels, with an inflammation
modulatory effect (31,32). Additionally, the activation of
signaling pathways due to muscle contraction increases
glucose and fatty acid (FA) metabolism through gene
expression regulation. For example, during physical
exercise, AMP-activated protein kinase (AMPK) and
calcium-calmodulin-dependent protein kinase (CaMK)
are activated (33).

Exercise-induced AMPK activation has been shown to
lead to 1) reductions in malonyl-CoA generation, which
inhibits carnitine palmitoyltransferase 1 (CPT-1), by phos-
phorylating and inhibiting acetyl-CoA carboxylase, conse-
quently increasing FA oxidation acutely; 2) increased
insulin-independent glucose uptake due to GLUT-4
translocation to the plasma membrane; and 3) up-
regulated expression of genes related to mitochondrial
metabolism and biogenesis, resulting in persistently
increased FA oxidation (34). CaMK regulates genes
associated with mitochondrial biogenesis induced by
muscle contraction (33,35).

GK rats: a lean model of type 2 diabetes mellitus
The Goto-Kakizaki (GK) rat, a spontaneous non-

obese-T2DM animal model, was generated by selective
inbreeding using glucose-intolerant Wistar rats with a
hyperglycemic phenotype (15). Many studies have utilized
GK rats to evaluate non-obese T2DM features, develop-
ment, and complications (3,4,36-39). These rats display
insulin sensitivity impairment and T2DM similar to high-
caloric diet-induced obese animals. Interestingly, in con-
trast to the changes in rats submitted to diet-induced
obesity, the increased expression of proinflammatory
cytokines is not observed in the skeletal muscle and
retroperitoneal adipose tissue depots of 16-week-old GK
rats (3,38).

GK rats develop T2DM earlier in life, exhibiting a
reduced pancreatic beta-cell mass at 16.5 days of fetal
age. At 28 days of age, basal hyperglycemia, IR, and
impaired insulin secretion by pancreatic beta-cells are
observed. However, GK rats present a preserved beta-cell
response to other secretagogues, increased hepatic
glucose production, liver inflammation and liver glucotox-
icity, and late-stage diabetes complications (3,15,37,40).
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GK rats also exhibit typical T2DM hallmarks such as
hyperinsulinemia, increased gluconeogenesis, and ele-
vated plasma lipid levels (3,36). Indeed, impaired skeletal
muscle oxidative capacity has been associated with
T2DM pathogenesis in non-obese individuals. It has been
suggested that the lower skeletal muscle oxidative
capacity and attenuated mRNA expression of the nuclear
receptor coactivator PGC1-a is related to impaired
mitochondrial function (41,42).

Xue et al. (43) studied GK rats from 4–20 weeks of age
and reported that 412 genes were differentially expressed
in white adipose tissue (WAT). This result is not entirely
surprising, given that a progressive failure of body fat
accumulation was associated with animal age. The
authors also detected down-regulated gene expression
of fatty acid synthase (Fasn) and signal transducer and
activator of transcription-3 (Stat-3), a transcription factor
activated by leptin, and up-regulated expression of
inflammatory response and interferon-regulated genes.
Overall, the GK rats exhibit increased caloric intake, less
body fat accumulation, and chronic inflammation in the
absence of obesity.

In pancreatic beta-cells, ATP-sensitive K+ (KATP)
channel closure, due to plasma membrane depolarization
and voltage-dependent calcium channel opening, is crucial
for glucose-stimulated insulin secretion (GSIS) (44,45).
Alterations in KATP channel activity can lead to changes in
plasma membrane polarization, impaired insulin secretion,
and diabetes mellitus. In GK rats, insufficient KATP channel
closure caused by reduced glucose metabolism in pan-
creatic beta-cells culminates in GSIS impairment (46).

Our group recently described marked changes in the
three small intestine segments (duodenum, jejunum, and
ileum) of four-month-old male GK rats (39). Compared to
Wistar rats, GK rats have a reduced small intestine,
diminished crypt depth in the duodenum and ileum,
increased crypt depth in the jejunum, and longer and
thicker villi in the jejunum and ileum. The three intestine
segments also had thicker muscular layers. At the
molecular level, GK rats display elevated IL-1b levels in
the duodenum and jejunum and elevated NF-kB p65 in all
three segments. These changes are associated with a
high IL-1b reactivity in the muscle layer, myenteric
neurons, and glial cells. Moreover, a significant reduction
in submucosal neuron density in the jejunum and ileum,
ganglionic hypertrophy in all three intestinal segments,
and a slower intestinal transit were observed. It was
concluded that IR and T2DM development in GK rats is
associated with small intestine morphology changes,
tissue inflammation, and decreased intestinal transit.

Considering the evidence discussed above, along with
the fact that regular physical activity combined with weight
loss improves glucose homeostasis by raising glucose
disposal and insulin action in obese T2DM patients (47),
this review sought to evaluate the literature reporting the
effects of physical exercise on diabetic features of GK rats.

Methodology

Physical activity/exercise practice in GK rats
Eligibility criteria and key points for selecting the

related studies. The PICO (Patient, Intervention, Compar-
ison and Outcome) strategy was used to develop and
write this narrative review. This approach reduces the
possible risks of bias in the article selection process. This
study reviewed and analyzed the published literature on
chronic physical exercise interventions in GK rats, focusing
on metabolic and physiological alterations. The study
results are relevant to understanding how physical exercise
can specifically benefit non-obese T2DM patients.

Two review team researchers independently searched
electronic databases [PubMed, MedLine, Cochrane, Web
of Science, and Scopus] from January to November of
2021 for studies employing T2DM GK rats of any age OR
sex AND involving voluntary OR non-voluntary exercise
training OR other types of physical activity OR exercise OR
exercise training AND non-obese type 2 diabetes mellitus
OR muscle electrostimulation from 2008 to 2021. We
limited the search to include randomized controlled trials
published only in English in international indexed journals.

The articles used in this review were selected by two
independent researchers and based on the titles, objec-
tives, methodologies, and results of each article. Discrep-
ancies between the two researchers were resolved by
discussion with a third researcher. At the end of the
selection process, 16 studies were identified as being
associated with the evaluation of the effects of physical
activity or exercise training intervention on non-obese
T2DM GK rats.

A flow chart of the search strategy is presented in
Figure 1, and a summary of the risk of bias is presented in
Figure 2. The topics in this review, including obesity, insulin
resistance, physical exercise, type 2 diabetes, and
metabolism, are supported by solid research and vast
literature. Thus, the selected articles facilitate the discus-
sion of the central theme.

Main effects of physical exercise in GK rats
Effects on metabolic and diabetic features. As shown

in Supplementary Table S1, the exercise training protocols
included moderate-intensity swimming (n=1), moderate-
intensity treadmill running (n=9), low-intensity treadmill
running (n=3), low-intensity voluntary wheel activity (n=2),
and blood restriction and muscle stimulation (n=1).

In general, moderate physical activity markedly
improved the diabetic features of GK rats. Tufescu et al.
(48) reported that treadmill exercise reduced urinary protein
excretion, indicating renoprotective effects, and enhanced
type I fiber capillarization and proportion in extensor
digitorum longus (EDL) muscle. Type I fibers exhibit a high
capacity for oxidative metabolism and are resistant to
fatigue. Qi et al. (49) reported that 10–12 week-old GK rats,
submitted to 30–60 min of moderate-intensity treadmill
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exercise six days per week for eight weeks, displayed no
differences in body mass or blood glucose levels but had
increased serum adiponectin and insulin levels. Moreover,
in skeletal muscle, the authors observed enhanced

cytochrome c oxidase (COX) activity and mitochondrial
DNA (mtDNA) markers, such as COXII protein content, and
attenuated p53 protein and tumor p53-induced glycolysis
and apoptosis regulator (TIGAR) expression levels.

Figure 1. Flow chart of the study selection process for review preparation. GK: Goto-Kakizaki.

Figure 2. Risk of bias assessments for review studies of exercise intervention in Goto-Kakizaki rats. Low risk of bias: if present, is
unlikely to alter the results seriously; unclear risk of bias: a risk of bias that raises some doubt about results; high risk of bias: bias may
alter the results seriously.
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It is well known that p53 protein regulates aerobic
metabolism and is involved in various steps of glycolysis,
inhibiting glucose transport through down-regulated GLUT-
1 and GLUT-4 gene expression (49,50). Additionally, p53 is
involved in mitochondrial function, mtDNA content, and
biogenesis. The lack of this protein has been associated
with low oxygen consumption and high lactate production,
favoring substrate flux through the glycolytic pathway to
maintain the required ATP production (51).

In skeletal muscle of 46–52-week-old GK rats, treadmill
training increased the protein levels of phosphorylated
AMPK, peroxisome proliferator-activated receptor coacti-
vator 1 alpha (PGC-1a), GLUT-4, lactate dehydrogenase
(LDH), monocarboxylate transporters 1–4 (MCT-1 and -4),
and COX-IV (52). The same study also reported increased
glycogen content and citrate synthase activity in the liver
and skeletal muscle of rats subjected to exercise training
(52). These results corroborated reports that exercise-
induced glucose uptake (53) correlates with skeletal
muscle LDH and MCT-1 activities, oxidative capacity, and
lactate oxidation. It has been reported that the up-regulation
of LDH, MCT-1, and COX-IV protein levels reduces
hyperlactatemia in diabetic animals after an exercise
session. PGC-1a is involved in mitochondrial biogenesis,
insulin sensitivity, and lipid metabolism, playing a central
regulator of phenotypic adaptation and substrate utilization
induced by physical exercise (54). AMPK is involved in the
activation of mitophagy, autophagy, and lipolysis. AMPK
also inhibits other metabolic pathways, such as lipogen-
esis, protein synthesis, and gluconeogenesis (55,56).
Notably, Kim et al. (52) reported improved glucose homeo-
stasis, oxidative metabolism, IR, and up-regulated AMPK,
PGC-1a, and GLUT-4 protein expression in GK rats after
exercise training.

Nitric oxide synthase (NOS) produces nitric oxide (NO),
which plays a crucial role in nervous system function and
vascular tone (57). Increased blood glucose levels are
associated with impaired NO production and altered
endothelial NOS (eNOS) and nicotinamide adenine nucleo-
tide phosphate (NADPH) oxidase activities (58). Indeed, it
has been demonstrated that humans and animals with
T2DM present impaired mitochondrial oxidative capacity
(58). Thus, it is plausible that the benefits of moderate
exercise on the mitochondrial oxidative capacity of T2DM
subjects are mediated by increased NO production (59).
Interestingly, a study performed with plantaris muscle and
left cardiac ventricle of 9-week-old GK rats submitted to 9
weeks of running exercise reported enhanced insulin
sensitivity and eNOS expression (59). The same authors
showed improved mitochondrial biogenesis and function
through increased eNOS, PCG1-a, and UCP3 (uncoupling
protein 3) protein expression in the thoracic aorta of GK rats
subjected to moderate-intensity exercise (59).

Another study performed with 18-week-old T2DM rats
submitted to 8 and 14 days of physical exercise with or
without saxagliptin, an inhibitor of glucagon-like peptide 1

(GLP-1) degradation, investigated eNOS activity stimula-
tion (60). The authors found that exercise training improved
mitochondrial function and markers in older T2DM rats.
Raza et al. (28) reported that eight weeks of moderate-
intensity exercise inhibited NADPH oxidase activity, reac-
tive oxygen species (ROS) production, and superoxide
dismutase (SOD) activity in the pancreas of 11-month-old
GK rats. These results suggested improved mitochondrial
function due to enhanced oxygen utilization via the modu-
lation of mitochondrial complex IV activity and PPAR-g
levels.

Seven-month-old T2DM rats previously submitted to
8 weeks of treadmill running presented improved insulin
sensitivity and citrate synthase activity in the gastrocnemius
muscle (61). Additionally, the ventricular myocyte of
11-month-old GK rats submitted to 2–3 months of treadmill
exercise exhibited increased intercellular Gap junctional
(Gja1) expression, a gene involved in heart contraction.
It should be pointed out that the increased Gja1 expression
was not followed by altered calcium (Ca2+) transport (62),
indicating that exercise intervention preserves the ventric-
ular shortening of myocytes and Ca2+ transport (62).

Several authors described the beneficial effect of
physical exercise intensity in obese-associated T2DM rat
models (61,62). However, only three studies evaluated the
efficacy of low-intensity exercise in GK rats (63-65). Kupai
et al. (64) observed cardio-protective effects in GK rats after
six weeks of voluntary exercise, which could be associated
with increased NOS activity in cardiac and aortic tissues.
After three weeks of treadmill running, Kondo et al. (63)
observed a PGC-1a-induced increase in mitochondrial
function in GK rat muscle. Moreover, after six weeks of
treadmill running, GK rats exhibited enhanced mitochon-
drial oxidative capacity due to the increased succinate
dehydrogenase (SHD) activity, an enzyme associated with
microangiopathy prevention (66). Nakamoto et al. (65) also
reported increased SHD activity and detected up-regulated
PGC1-a expression in the soleus muscle of six-week-old
GK rats after six weeks of voluntary wheel running.
Exercise training increased this animal model’s oxidative
activity and oxygen uptake in skeletal and cardiac muscles
(67). These results are consistent with these tissues
exhibiting high energy metabolism levels (67,68) and
suggest that low-intensity exercise enhances mitochondrial
function and oxidative activity in skeletal and cardiac
muscle of lean T2DM subjects.

Previous studies have also shown that hyperglycemia
generates advanced glycation end products (AGEs), which
have been shown to accumulate in tissues (69) and are
associated with the down-regulation of skeletal muscle
protein synthesis and subsequent skeletal muscle atrophy
(70). Using diabetic subjects, Goldin et al. (71) demon-
strated that AGEs inhibit NO activity, increase ROS
production, and impair vasculature. A study performed with
GK rats submitted to a combined electro-stimulation
treatment and blood flow restriction reported attenuated
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AGE production and skeletal muscle protein synthesis
activation (72). Based on these findings, it appears that
even low-intensity physical exercise reduces AGE levels
and could prevent skeletal muscle atrophy in lean T2DM
individuals. The exercise training protocols reported in the
reviewed articles are summarized in Figure 3.

Varying beneficial effects according to exercise inten-
sity in GK rats. Exercise intensity refers to the amount of
energy required for the performance of physical activity
per unit of time. Exercise intensity can be measured
directly using respiratory gas analysis to quantify oxygen
uptake during exercise or through standard regression
models to estimate energy expenditure per a given work
rate. Another way to express exercise intensity is as multi-
ples of resting oxygen requirement [metabolic equivalents
(METs)]. In this approach, one MET corresponds to the
amount of oxygen consumed by a resting, awake
individual and is equivalent to 3.5 mL O2 per kg body
weight per minute. According to previous studies, low-
intensity exercise corresponds to activities requiring
o3 METs, moderate-intensity requires 3–6 METs, and
high-intensity requires 46 METs (73). The American
College of Sports Medicine describes moderate-intensity
exercise ranges between 40 and 60% of the maximal
capacity, whereas high-intensity exercise is above 64% of
the maximal capacity. Most studies describe high-intensity
exercise as above 80–85% of peak power output or

maximal velocity. In general, activities requiring o80%
of peak output are not considered high-intensity training
(74,75).

However, in rats, the exercise intensity tolerance
varies depending on the rat strain and associated disease,
reflecting a different work intensity and probably altering
the final metabolic and physiologic assessments if the
correct intensity for each rat strain and comorbidity is not
utilized. It is also necessary to consider other variables,
such as treadmill inclination, speed, oxygen consumption
(VO2), and/or intensity tracker. Despite these potential
challenges, all protocols included in this review demon-
strate that low- to moderate-intensity exercise (i.e., tread-
mill, swimming, and voluntary exercise) produced
beneficial effects in young and adult GK rats. Studies
seeking to determine the exercise intensity tolerance of
GK rats still need to be performed.

Maximum VO2 (VO2 max) reflects an adaptation of the
cardiorespiratory system and has been employed for
validating clinical studies and calculating endurance work
capacity (76). It has been reported that VO2 max rates
between 50–70% correspond to moderate-intensity exer-
cise (77,78). In this context, only two studies [Grijalva et al.
(59) and Keller et al. (60)] mentioned the use of 50% VO2

max, which was based on a previous study (79). However,
it is important to mention that the exercise intensity was
not directly assessed in these studies, which can result in

Figure 3. Main findings reported in the reviewed articles on physical exercise in Goto-Kakizaki (GK) rats.
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significant differences in relation to the markers evaluated
in GK rats submitted to moderate physical exercise, as
described in Supplementary Table S1.

Three studies used blood lactate analyses before and
after exercise to quantify the exercise intensity (63,66,80).
This analysis can detect the thresholds of sub-lactate
(B10 m/min, low-intensity) and supra-lactate (B25 m/min,
moderate-intensity). It is important to mention that sub-
lactate threshold intensities have been suggested to
promote no significant physiological changes associated
with stress responses (81).

The main protocols that analyzed exercise intensities
were defined by analyzing the VO2 max and lactate
threshold. The primary intensities used were based on
references from other rat strains with different diseases,
consequently generating differences in metabolic re-
sponses in GK rats. As previously described, exercise
intensity modulates several physiological parameters,
including VO2 and cytochrome c levels (82). Moreover,
regular physical activity or training at low to moderate
intensity improves IR by increasing skeletal muscle fatty
acid oxidation, augmenting hormonal responses (52,83)
and modulating gene expression, protein signaling, and
anti-inflammatory effects in GK rats (65). In this sense,
extensive investigations evaluating the effect of exercise
intensity on GK rat physiology and health are crucial.

As described in Supplementary Table S1 and Table 1,
low to submaximal exercise intensity positively affects
GK-T2DM metabolism. Positive effects are reported at
intensities of 50–70% of the VO2 max, which corresponds
to 15–21 m/min for one hour on the treadmill during each
training session. The exercise programs occurred 3–5
times per week and ranged from 8 days to 15 weeks of
training. However, it is important to note that exercise
intensity varies depending on oxidative stress and other
metabolic parameters (84).

Moderate-intensity training was achieved when GK
rats ran at 20 m/min (B75% of the VO2 max), suggesting
that this rat model, when trained, can perform moderate-
intensity running for one hour (48). Notably, even low-
intensity exercise protocols, such as walking or running at
around 50% of the VO2 max until the submaximal effort is
achieved enhance aerobic and anaerobic functions. This
observation is due to exercise training-induced increases
in eNOS activity, NO bioavailability, and subsequent
vasodilation of the diabetic heart (59).

Brooks and White (85) reported differential effects in
GK rats exposed to three conditions: a) rest; b) 14 m/min,
at 1% inclination, easy exercise; and c) 28.7 m/min, at
15% inclination, heavy exercise. All exercise protocols
lasted 90 minutes on a treadmill, where VO2, VCO2, and
respiratory exchange ratio (RER = VCO2,/VO2) were
determined to assess the metabolic responses. Interest-
ingly, the classification and extrapolation of the proposed
protocols (light, moderate, and heavy) did not directly
mention the VO2 max intensity measurement.

Dudley et al. (86) used a training protocol with 15%
inclination for 30, 60, and 90 min at speeds of 10, 20, 30,
40, 50, and 60 m/min. Exercise intensity-related differ-
ences were observed in the volumes of fast-twitch white
(FTW), fast-twitch red (FTR), and slow-twitch red (STR)
fibers and cytochrome c concentrations. For FTR, the best
response was detected at 83% VO2 max (B30 m/min)
and between 50–75% VO2 max (10–20 m/min). The best
response for STR was observed at 80% VO2 max (30–40
m/min). Moreover, exercise at VO2 max values of o50%
did not generate significant mitochondrial adaptations and
the responses between 60 and 90 min did not differ
statistically.

One crucial point is that there are currently no studies
utilizing the GK rat model in an incremental test, which
would allow correlations to be made with the VO2 max in
the same protocol. Most studies are based on Wistar,
Wistar-Kyoto, Sprague-Dawley, and Okamoto-Aoki rat
strains (76,82). It is also important to consider that, as
analyzed by Bedford et al. (82), different VO2 max values
vary among animal strain and gender, with male Sprague-
Dawley exhibiting values of 85.2 mL�kg–1�min–1, female
Sprague-Dawley, 81.1 mL�kg–1�min–1, male Wistar-Kyoto,
65.3 mL�kg–1�min–1, and male Okamoto-Aoki 72.3 mL�kg–1
�min–1. Thus, studies assessing and evaluating the experi-
mental approaches employed in exercise studies with the
GK rat model are lacking.

Three articles mentioned using low-intensity exercise
protocols, as determined by blood lactate levels (63,66,
80). The protocol used by Tsutsumi et al. (80) demonstrated
renoprotective action through the enhanced kidney-
mediated AGE uptake. Additionally, Morifuji et al. (66) and
Kondo et al. (63) reported that low-intensity exercise led
to augmented SDH activity and stimulated pro-angiogenic
factors [e.g., vascular endothelial growth factor (VEGF)
and fetal liver kinase 1 (FLK-1)], consequently prevent-
ing microangiopathy and improving capillary communica-
tion. However, the protocols did not reduce blood glucose
levels.

Macia et al. (61) described a reduction in plasma insulin
levels promoted by low-intensity exercise. Along with this
finding, increased citrate synthase activity, improved
microcirculation, and up-regulated lactate and glucose
metabolism-related protein expression (enzymes and
transporters) were observed in the skeletal muscle.

Blood flow restriction combined with low-intensity
electrical stimulation to induce muscle atrophy in GK rats
prevented muscle mass loss, reduced AGE production and
down-regulated the expression of receptor for AGE
(RAGE), with no significant changes in blood glucose
levels (72).

Using voluntary activity (i.e., low-intensity), Nakamoto
et al. (65) and Kupai et al. (64) reported significant SDH
activity in the soleus muscle and, unlike previous articles,
lower blood glucose and HbA1c levels in exercised GK
rats compared to rats not subjected to exercise. The total
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distance covered in the voluntary exercise could account
for these discrepancies.

Kim et al. (87) used a swimming protocol to investigate
the effects of physical exercise on GK rats but did not
mention the exercise intensity level. The authors reported
improved peripheral glucose utilization and insulin sensi-
tivity. Tufescu et al. (48) demonstrated that exercise
corresponding to 75% of the VO2 max (i.e., moderate-
intensity) did not affect blood glucose levels but had a
renoprotective effect that was enhanced by losartan.

Qi et al. (49) and Raza et al. (28) reported that
moderate-intensity exercise contributes to resolving oxida-
tive stress and improving mitochondrial function, as
determined by cyclooxygenase 2 (COXII), glutathione
reductase (GSH), p53 (a tumor-suppressor protein), TIGAR
(p53 inducible gene), ATPase6, cytochrome B (CytB), and
nuclear factor-kappaB (NF-kB) levels. These results
suggested that moderate-intensity exercise im-
proves energy metabolism and mitochondrial respiratory
function, induces antioxidant responses, and restores
insulin sensitivity.

Many of the processes involving eNOS are linked to
mitochondrial biogenesis, which, in the case of diabetes,
can lead to improved metabolic function in the face of
moderate exercise intervention. Some of these points are
related to basal mitochondrial activity maintenance, redox
balance regulation, and vascular restoration, mediated by
glucagon-like peptide-1 (GLP-1) through cAMP, which
improves myocardial contractility via Akt. The eNOS
activity is increased by enhancing the bioavailability of
tetrahydrobiopterin (BH4), a cofactor for NO synthesis
(59,60).

Of all the articles selected for this narrative review,
around 27%mentioned the use of low or moderate intensity
exercise, while the remaining studies (B73%) did not
mention the exercise intensity in the protocols used.
Because direct markers of exercise training were not

assessed in these studies, including VO2 max, lactate
threshold, and enzyme activities, it is difficult to accurately
define the exercise intensity and control loads used during
training sessions in GK rat models (Table 1). Thus, we tried
to address and discuss the main relevant results and
differences from these previous studies, which is funda-
mental to guide and design further strategies to corroborate
or refute the observed findings.

Beneficial effects of exercise in GK rats of different
ages. A summary of the effects of physical exercise on GK
rats of different ages is presented in Figure 4. It shows that
a 3–6-week exercise program with young 6–12-week-old
GK rats prevented microangiopathy, counteracting the
capillary regression in skeletal and cardiac muscle and
increased SDH and PGC-1a expression. Voluntary activ-
ity or low-intensity exercise attenuates infarct size by
stimulating heme-oxygenase (HO) activity and effectively
delaying the onset and progression of TDM2 in GK rats
(63-66).

Similarly, training programs or physical muscle stimu-
lation for 1, 2, 8, 9, 12, and 15 weeks at low- or moderate-
intensity increased eNOS and PGC-1a expression and
NO production, consequently eliciting positive kidney
function effects. Exercise programs have also been shown
to inhibit diabetes-associated muscle atrophy and
enhance muscle protein synthesis in 6–30-week-old GK
rats (48,49,59,60,72,80).

The effect of moderate-intensity exercise training for 4,
6, and 8 weeks was investigated in aged (430 weeks of
age) GK rats. The authors reported increased muscle and
liver glycogen content, improved glucose homeostasis,
oxidative metabolism, and IR, and up-regulated AMPK,
PGC-1a, and GLUT-4 expression (28,52,61,62). The
authors also observed improvements in ventricular myocyte
Ca2

+ handling despite variable muscle protein expression in
GK rats. Exercise improved mitochondrial respiratory func-
tion and energy expenditure, induced an antioxidant

Table 1. Exercise protocols used in each study and the physical intensity mentioned.

Article Intensity (Low – Moderate) Exercise protocol (Treadmill or swimming)

Tufescu et al. (2008) (48) Not mentioned 20 m/min - 0% grade incline - 60 min/day

Grijalva et al. (2008) (59) 50% VO2 max –
Kim S. et al. (2011) (52) Not mentioned 21 m/min - 0% grade incline - 50 min/day

Qi et al. (2011) (49) Not mentioned 20 m/min - 0% grade incline - 60 min/day

Kim M. et al. (2011) (87) Not mentioned 120 min/swim - 15 min resting each 60 min/day

Salem et al. (2013) (62) Not mentioned 20 m/min - 10% grade incline - 60 min/day

Keller et al. (2015) (60) B70% VO2 max (based on Soya et al. (81) 18 m/min until rat fatigue or 2 h

Raza et al. (2016) (28) Not mentioned 20 m/min - 0% grade incline - 60 min/day

Macia et al. (2018) (61) Not mentioned 20 m/min - 0% grade incline - 60 min/day

Morifuji et al. (2012) (66) Sub-lactate, low intensity 15 m/min - 0% grade incline - 60 min/day

Tsutsumi et al. (2015) (80) Sub-lactate, low intensity 15 m/min - 0% grade incline - 30 min/day

Kondo et al. (2015) (63) Sub-lactate, low intensity 15 m/min - 60 min/day

Sinon et al. (2021) (88) Moderate 15 m/min - 30 min/day
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response mechanism, reduced plasma insulin levels, and
increased ATP production in exercising muscle. Glucose
and lactate metabolism-regulating proteins were also up-
regulated in the muscle and improved the recovery time of
well-trained GK rats (28,52,61,62,87,88).

It is important to highlight that muscle function changes
during life; the natural tendency during the aging process
is the reduction in muscle protein balance, resulting in
the reduction in muscle mass (89). Some strategies have
been proposed to reduce or prevent muscle mass loss
during aging, including nutritional and physical exercise
programs, especially in people with comorbidities, such as
obesity, type 2 diabetes mellitus, cardiovascular diseases,
metabolic syndrome, among others, because these comor-
bidities exacerbate the process of muscle mass loss
(3,65,67).

In this review, it was observed that physical activity and
exercise training programs are potential strategies to
generate important metabolic and physiological adaptations,
leading to the improvement of several disturbances asso-
ciated with type 2 diabetes mellitus in GK rats of all ages.
Further studies are required to elucidate the mechanisms
involved in these processes, as well as the long-term effect
of physical exercise in preventing muscle mass loss during
aging.

Concluding Remarks

The exercise training protocols using GK rats cited in
this review had beneficial effects on several T2DM
features. Similar to obesity-related T2DM, these results
indicated that moderate-intensity exercise training can
attenuate or prevent complications in non-obese T2DM
individuals. Furthermore, similar responses to exercise
training were reported in the muscle, liver, adipose tissue,
pancreas, and blood of obese and non-obese T2DM rats
(Figure 5).

As discussed in this review, the diabetic characteristics
and the protocols used to examine the regression of the
T2DM condition confirmed that non-invasive treatments,
such as physical exercise, promoted improvements in the
physiometabolic response in GK and Wistar rats. How-
ever, it remains unclear if there is real health improvement
or if physical exercise is an effective treatment. Further
studies investigating how exercise intensity affects the
responses and adaptation in non-obese T2DM animals
are necessary. Filling in these knowledge gaps is
essential for understanding the effects of exercise
intensity (i.e., low, moderate, or high) and modality in
different animal strains. Furthermore, cognitive and func-
tional abilities need to be evaluated following exercise

Figure 4. Summary of the physical exercise effects in Goto-Kakizaki (GK) rats of different ages.
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training (90). In conclusion, proper interventions focusing
on a healthy lifestyle, including appropriate exercise
protocols, are necessary to preserve the quality of life of
both obese and non-obese T2DM patients.
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