
Encounter complexes and hidden poses of kinase-
inhibitor binding on the free-energy landscape
Suyong Rea, Hiraku Oshimaa, Kento Kasaharaa, Motoshi Kamiyab, and Yuji Sugitaa,b,c,1

aLaboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 650-0047 Kobe, Japan; bComputational Biophysics
Research Team, RIKEN Center for Computational Science, 650-0047 Kobe, Japan; and cTheoretical Molecular Science Laboratory, RIKEN Cluster for
Pioneering Researfch, Wako, 351-0198 Saitama, Japan

Edited by Yibing Shan, D. E. Shaw Research, New York, NY, and accepted by Editorial Board Member J. A. McCammon August 1, 2019 (received for review
March 18, 2019)

Modern drug discovery increasingly focuses on the drug-target
binding kinetics which depend on drug (un)binding pathways. The
conventional molecular dynamics simulation can observe only a few
binding events even using the fastest supercomputer. Here, we
develop 2D gREST/REUS simulation with enhanced flexibility of the
ligand and the protein binding site. Simulation (43 μs in total) applied
to an inhibitor binding to c-Src kinase covers 100 binding and unbind-
ing events. On the statistically converged free-energy landscapes,
we succeed in predicting the X-ray binding structure, including water
positions. Furthermore, we characterize hidden semibound poses and
transient encounter complexes on the free-energy landscapes. Regu-
latory residues distant from the catalytic core are responsible for the
initial inhibitor uptake and regulation of subsequent bindings, which
was unresolved by experiments. Stabilizing/blocking of either the
semibound poses or the encounter complexes can be an effective
strategy to optimize drug-target residence time.

protein–ligand interaction | protein kinase | free-energy landscape |
molecular dynamics simulation | replica-exchange molecular dynamics

Drug compounds have been traditionally designed by opti-
mizing their equilibrium binding affinity (e.g., dissociation

constant Kd) to a target protein. Many designed compounds still
lack in vivo efficacy, raising the importance of kinetics-based com-
pound design (1, 2). In the past decade, the “residence time concept”
has been extensively tested, where the drug compound is design to
reside in the vicinity of the target protein (3). This kinetics-based
design can potentially increase the selectivity to the target protein
and also better integrate with pharmacodynamics and pharmacoki-
netics design (4). In addition to the bound state structures, obtaining
an exhaustive mapping of the drug binding landscape is also desired.
However, obtaining such mapping experimentally at the atomic level
still remains a significant challenge.
Protein kinases (PKs) regulate signal transductions in cells and

their dysfunction can cause several diseases, making them an
important drug target, particularly for cancer treatment (5, 6).
Designing a selective PK inhibitor is a significant challenge because
the inhibitor competitively binds to a highly conserved ATP pocket
(Fig. 1) (7). The regulatory residues forming the pocket involve the
hinge and the gatekeeper residues (catalytic core), where ATP di-
rectly binds, as well as a Gly-rich loop (G-loop or P-loop), an α-helix
(αC-helix), and an activation loop (A-loop). The current inhibitor
design heavily relies on the atomic structures of the ATP binding
site, particularly those of the catalytic core, at bound states ob-
tainable from X-ray crystallography (8, 9). However, the inhibitor
selectivity is often a result of the combined contributions of the
regulatory residues (10, 11), and the regulation mechanism remains
unknown. The residues distant from the catalytic core could play an
important role during the binding processes besides the bound state
stabilization. Recent experiments using NMR and fast kinetics
measurements propose a 2-step binding model consisting of a fast
binding followed by a slow induced fit process (12). Elucidating the
structural features of binding processes is critical for understanding
the regulation mechanism at the atomic level. Yet, structures
of transient intermediates such as encounter complexes are still
unknown.

Molecular dynamics (MD) simulations, which provide atomic-
level details of dynamical processes, are increasingly used for
calculating drug-target binding pathways and kinetics, as well as
thermodynamics (13–16). Nowadays, MD simulations are able to
reach microsecond timescales and observe binding events.
Binding pathways and the kinetics extracted from these simula-
tions, however, suffer from large statistical uncertainty, because
it is difficult to observe multiple binding and unbinding events
within the available computational time, even when using spe-
cialized hardware (17, 18). In overcoming the difficulty, parallel
trajectory approaches predict binding pathways and kinetics at
longer timescales using short-time simulation data (19–22), while
various enhanced sampling methods characterize drug-target
binding, with a particular focus on unbinding kinetics, by effec-
tively crossing high energy barriers (23–31). Currently, unbinding
kinetics and their molecular determinants can be reasonably
estimated and directly compared with experiments, though
obtaining converged free-energy landscapes to map all of the key
intermediates along the pathway remains a challenge. In this
work, we focus on the 2D replica-exchange method—REST/
REUS, a combined replica-exchange umbrella sampling (REUS)
(32, 33) and replica exchange with solute tempering (REST) (34,
35). This combined approach complements drawbacks in each
method to further enhance the sampling and can precisely pre-
dict protein–ligand bound structures ab initio (36). Here, we
extend the method to introduce the flexibility of the protein
binding site as well as that of the ligand by utilizing the generalized

Significance

Molecular recognition via protein–ligand binding is essential
for biomolecular functions. Current understanding of ligand
recognition is mostly brought from a bound state structure
resolved by X-ray crystallography. Using molecular dynamics
simulation with enhanced sampling techniques, we here char-
acterize multiple bound poses and transient encounter com-
plexes of an inhibitor kinase on the statistically converged free-
energy landscapes. Our simulations propose parallel binding
pathways connected through encounter complexes, highlight-
ing the importance of early binding processes. Determination
of transient encounter complexes is still difficult experimen-
tally, and the present finding helps to understand the process
and widens the possibility of drug compound design.

Author contributions: S.R. and Y.S. designed research; S.R. and H.O. performed research;
M.K. contributed new reagents/analytic tools; S.R., H.O., and K.K. analyzed data; and S.R.,
H.O., and Y.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Y.S. is a guest editor invited by the
Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: sugita@riken.jp.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1904707116/-/DCSupplemental.

Published online August 26, 2019.

18404–18409 | PNAS | September 10, 2019 | vol. 116 | no. 37 www.pnas.org/cgi/doi/10.1073/pnas.1904707116

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1904707116&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sugita@riken.jp
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1904707116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1904707116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1904707116


REST (gREST) method (37). The approach, which we call gREST/
REUS, realizes extensive sampling of binding and unbinding events
and provides converged free-energy landscapes, which allows us
to characterize binding poses on multiple binding pathways with
unprecedented accuracy.
We apply the method to investigate the binding of PP1 (ATP-

competitive inhibitor) to c-Src kinase, a key signaling kinase in
the cancer process (38, 39). A previous microsecond timescale
unbiased MD simulation correctly predicted the structure of
c-Src kinase complexed with either PP1 or dasatinib as observed
in the X-ray crystal structures (17). The simulation shows that PP1
resides for a long time in the vicinity of the N-lobe before binding
through a water-separated intermediate. A subsequent free-
energy calculation shows that desolvation of the binding pocket
is the main contributor to the free-energy barrier (40). More
recently, a metadynamics-based unbinding simulation gave fur-
ther insight into the protein–water coupled dasatinib binding
(24). The study reports the koff value and relates it to cleavages
of the evolutionally conserved Lys-Glu salt bridge and the
dasatinib-hinge hydrogen bonds. In this work, we characterize
the structures and interactions of multiple binding poses, tran-
sient intermediates, encounter complexes, and pathways con-
necting them, on the free-energy landscapes. The calculated
energetics and kinetics agree with experiments as well as with
previous computations. We integrate those findings and propose
a parallel binding model. We highlight the role of G-loop resi-
dues distant from the catalyst core at the early stage of the binding
process, i.e., the formation of encounter complexes, which was
unresolved by a mutagenesis experiment and X-ray crystal struc-
tures (10). We believe that this work provides an effective strategy
to optimize drug efficacy with prolonged target residence times.

Results
Efficiency of gREST/REUS Simulation. The details of gREST/REUS
simulation are described in Materials and Methods and SI Ap-
pendix. In brief, gREST/REUS simulation conducts replica ex-
changes in 2 dimensions: exchanges of the PP1-Src distance
umbrella potentials (REUS dimension), and exchanges of solute
temperatures (gREST dimension). The solute is defined as the
dihedral angle and the nonbonded energy terms of both PP1 and
10 binding site residues, based on the X-ray crystal structure
(Fig. 1 and SI Appendix, Fig. S1). The current choice of the
solute enhances the flexibility of protein binding site residues (SI
Appendix, Table S1) and significantly increases the chance of
binding events to occur. In 78% of the replicas, the minimum
heavy atoms rsmd between the ligand PP1 and the X-ray crystal
structure is <1 Å (Fig. 2A, SI Appendix, Table S2 and Figs. S2–
S6, and Movies S1 and S2). Simulating 100 binding and un-
binding events, obtaining convergence of the protein structure
(SI Appendix, Fig. S7), we are able to characterize the bound
state and transient intermediates on the statistically converged
free-energy landscapes (Fig. 2B).

Multiple Binding Poses of the Inhibitor and Water Molecules. First we
identify multiple binding poses by standard k-means clustering
analysis, which uses Euclidean distance function to classify the
structures in the trajectory data at 310 K into a predefined
number of clusters (10 in the present study) (SI Appendix, Fig.
S8). In Fig. 2 C and D, we show 5 representative poses of the
bound region (ξ < 6 Å). The major pose I, which dominates the
bound region of ξ < 4 Å, is in excellent agreement with the X-ray
structure (PDBID: 1QCF) (41). PP1 occupies both the adenine
and the back pockets and forms highly conserved hydrogen
bonds with the hinge residues: 1 with the side chain of the
gatekeeper residue (Thr80), and an additional 2 with the main
chain of the hinge residues (Glu81and Met83) (8). We also find 4
semibound poses in the region of ξ = 5 ∼ 6 Å, which are not
resolved in the X-ray structure. Pose IV has the same PP1 ori-
entation as pose I, while the other poses (II, III, and V) have
different orientations. In the semibound poses, PP1 occupies
only the adenine pocket, and the hydrogen bonds with the hinge
residues are mostly absent.
The volmap feature in the Visual Molecular Dynamics (VMD)

software (isosurface at 20% occupancy) provides water distri-
bution in the binding pocket in each pose (Fig. 2E) (42). The
water distribution in pose I overlaps with water positions in the
X-ray structure. In the other poses, a layer of water molecules in
the back pocket separates PP1 and the binding site residues and
breaks the hydrogen bonds with Thr80 and Glu81. The semi-
bound pose IV agrees well with a prebound pose found in the
earlier conventional MD simulation (17). The previous free en-
ergy analysis shows that desolvation of the binding pocket mainly
contributes to the free-energy barrier for the dasatinib binding to
the Src kinase (40). Given that the water molecules deep inside
the pocket are absent only in the pose I, desolvation of the
pocket likely relates to the molecular orientation of the inhibitor.

Encounter Complexes in Parallel Pathways. We can confidently
characterize the binding pathways with multiple intermediates,
including encounter complexes, by constructing free-energy
landscapes from the simulation data. For this purpose, a set of
2D free-energy landscapes was constructed along the reaction
coordinate, chosen as the PP1-Src distance (ξ), and either the
PP1 position or orientation with respect to the protein, defined
using 6 anchor atoms (P1, P2, and P3 from the protein and L1,
L2, and L3 from PP1). For example, P1 is defined as the center
of mass (COM) of the protein backbone heavy atoms of the
residue closest to the COM of the protein (SI Appendix for de-
tails). The position and orientation of PP1 are defined by polar
angles, θ (P2-P1-L1) and φ (P3-P2-P1-L1), and Euler angles, α
(P1-L1-L2), β (P2-P1-L1-L2), and γ (P1-L1-L2-L3), respectively
(Fig. 3A). The free-energy landscapes along the PP1-Src distance
(ξ) and position, (θ, ξ) and (φ, ξ), are smooth and the pre-
dominant binding pathway is well defined (Fig. 3B). In the (θ, ξ)
landscape, we also find a secondary path originating from the
large θ value (∼120°), in addition to the dominant path from the
small θ value (∼60°). On the contrary, 3 landscapes along
the PP1-Src distance (ξ) and orientation, (α/β/γ, ξ), are relatively
rugged (Fig. 3C). This means that PP1 enters the pocket through
a unique azimuth angle but in various molecular orientations.
In order to characterize the binding pathways, we classify the

bound poses in Fig. 2D (Poses I ∼ V) by PP1 orientation: Bzz

(around β = 0° and γ = 0°), Bzp (around β = 0° and γ = 180°), Bpz

(around β = 180° and γ = 0°), and Bpp (around β = 180° and γ =
180°) (SI Appendix, Fig. S9). Given that pose IV, having the same
orientation as pose I, is an intermediate toward pose I, there are
actually 4 distinctive poses (thus we denote pose IV as Bzz*). In
the free-energy landscapes in Fig. 3C, the canonical pose Bzz (=
pose I) is located around ξ = 3 Å, whereas the semibound poses
(Bzp, Bpz, and Bpp) and the intermediate pose (Bzz*) are found in
the region of ξ = 5 ∼ 6 Å. Because of the energy barriers dividing
these poses in Fig. 3C, multiple poses may not be directly
exchangeable. To confirm this, we perform independent
microsecond-long conventional MD simulations (total 15 μs),

Fig. 1. Structure of the PP1-Src complex. (Left) Chemical structure of PP1
and experimental IC50 (45). (Middle) PP1 bound model from X-ray structures
(PDB ID: 1Y57 and 1QCF). (Right) PP1 and 10 binding site residues that were
treated as the solute in gREST. The distance between the COMs of PP1 and 2
binding site residues (Ala35 and Leu135) was used as a reaction coordinate
for REUS.
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where PP1 is bound after 4 μs and 3.2 μs in 2 of the 3 simulations
(SI Appendix). The analysis of simulation trajectories supports
that the multiple poses are not mutually exchanged in the bound
region. For example, the trajectory leading to the semibound
pose, Bpz, dissociates without changing to other poses after
reaching the bound state (SI Appendix, Fig. S10). The plausible
parallel binding pathways to multiple poses are indicated in the
free-energy landscapes in Fig. 3C. We also find distinct pathways
to multiple poses in the 3D probability distribution (Movies S3
and S4). The projection of free-energy landscapes onto the pairs
of reaction coordinates is useful to understand molecular
mechanisms underlying the parallel binding pathways. The
combined kinetic network models and flux analysis could help to
rigorously characterize the pathways based on kinetic flux (43),
although more extensive conformational sampling is necessary.
Parallel binding pathways are observed for the ligand in other
proteins, such as p38 MAP kinase (28), bromodomain (20), and
LAO protein (22) and may be a general feature of the ligand
binding process (44).

Using the k-means clustering analysis of the regions excluding
the bound region (ξ > 6 Å) (SI Appendix, Fig. S8), we extract the
representative intermediate and encounter complex structures
along the pathways to different poses, and their positions are
superposed on the free-energy landscapes in Fig. 3C. Multiple
bound states (Bzz, Bzp, Bpz, and Bpp) are connected only through
their own encounter states. The 4 parallel binding pathways are
sketched in Fig. 4A. In 3 of them, including the major pathway
(Ezz → Bzz), PP1 enters the binding pocket from the G-loop side.
In the Epz → Bpz pathway on the contrary, PP1 directly accesses
the hinge region. The latter corresponds to the path approaching
from the large θ value (∼120°) in the free-energy landscape for
the PP1 position (Fig. 3B).
Fig. 4B illustrates the binding site interactions along the

pathways. In the encounter complexes (Ezz, Ezp, and Epp), PP1
interacts with the highly conserved GxGxxG motif in the G-loop
(8). We find an additional hydrogen bond with the side chain of
Asp146 of the conserved Asp-Phe-Gly (DFG) motif in Ezz, which
likely fixes PP1 to the canonical pose orientation. Only in Epz,
PP1 directly accesses the pocket by forming hydrogen bonds with

Fig. 2. Structures and hydration of bound states. (A) Minimum values of heavy atoms rmsd of the ligand PP1 from the X-ray structure (1QCF) for selected
replicas (replica indexes of 1 to 18 and 55 to 72). (B) Free-energy profiles at 310 K along the PP1-Src distance (ξ). The PP1-Src distance (ξ) in the X-ray structure
(1QCF, ξ = 3.25 Å) is shown as a dotted line. (C) The X-ray structure with 2 dominant pockets: the adenine pocket for hydrogen bonding with the hinge region
and the back pocket for hydrophobic interaction. The hydrogen bonds between PP1 and hinge residues are shown by the yellow dotted line. (D) The bound (I)
and semibound (II–V) poses obtained from the simulation. PP1 in the X-ray structure is shown in gold for comparison. The hydrogen bonds between PP1 and
hinge residues are preserved in pose I, but not in the semibound poses. (E) Volume map representation of water distribution (isosurface at 20% occupancy)
around the binding pocket. Red spheres in the bound (I) and the semibound (II–V) poses, respectively, represent water molecules in the X-ray structure and
from the simulation. The poses I, II, III, IV, and V, respectively, correspond to Bzz, Bpp, Bpz, Bzz*, and Bzp in Figs. 3 and 4.

Fig. 3. Free-energy landscapes along PP1 position
and orientation. (A) Polar angles, θ (P2-P1-L1) and φ
(P3-P2-P1-L1) designating PP1 position (Left) and
Euler angles, α (P1-L1-L2), β (P2-P1-L1-L2), and γ (P1-
L1-L2-L3), designating PP1 orientation (Right). (B)
Free-energy landscapes at 310 K along the PP1-Src
distance (ξ) and polar angles (θ and φ) for the
gREST/REUS simulation. (C) Similar landscapes as in B
for Euler angles (α, β, and γ). Positions of represen-
tative structures in each state from the k-means
clustering analysis are marked on the landscapes
(white: bound state; gray: intermediate; black: en-
counter state). The pathway to the canonical binding
pose (Ezz → Bzz) is indicated by the gray arrow line.
The plausible parallel binding pathways to multiple
poses are indicated by solid and dotted frames.
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the hinge residues (the side chain of Tyr82 and the main chain of
Ser84). In a subsequent step toward the canonical pose (Ezz →
Bzz), PP1–G-loop interactions are replaced with hydrogen bonds
to the hinge residues (the side chain of Tyr82 and the main chain
of Met83), where Val23 appears to assist in retaining PP1 inside
the pocket. Accompanied with coupled desolvation of the binding
pocket, these hydrogen bonds finally rearrange to produce the well-
conserved hydrogen bonds with the gatekeeper (Thr80) and the
hinge residues (Glu81and Met83), stabilizing the canonical bound
state Bzz (= pose I). An interaction switch from PP1–G-loop to
PP1–hinge residues is observed in the other pathways (Ezp →
Bzp and Epp → Bpp), but these PP1 orientations preclude hydrogen
bond formation. Hence, multiple bound states are commonly sta-
bilized by interaction with the hinge residues, but the interaction
mechanism is different. Evidently, the G-loop residues play a major
role in stabilizing the encounter complexes. The G-loop displays a
remarkably high flexibility, but its fluctuations are largely suppressed
by the formation of encounter complexes (SI Appendix, Fig. S11). In
addition, upon going from the encounter complex to the bound
state, Phe20 reorients to fill the space originally occupied by PP1 (SI
Appendix, Fig. S12). Thus, the G-loop also contributes to the sec-
ondary stabilization of the bound state.
Along the main pathway (Ezz → Bzz), we find the highest free-

energy region in between Ezz and Izz (ξ = 8 ∼ 9 Å). We create an
ensemble of the transition state structures by extracting 1,600
structures that satisfy the following conditions from the simula-
tion trajectory at 310 K: 8 Å < ξ < 9 Å, 60° < θ < 100°, 60° < α <
120°, 60° < β < 100°, and 60° < γ < 100°. The k-means clustering,
with the input number of clusters equal to 5, provides 2 repre-
sentative structures at ξ ∼ 8.9 Å (77.1%) and ξ ∼ 8.2 Å (22.9%)
(Fig. 4C). In the former, the conserved Lys37-Glu52 salt bridge is
maintained (Lys37:Cδ − Glu52:Ce distance is 4.4 Å), while in the
latter, the salt bridge is broken and instead Lys37 forms a hy-
drogen bond with Asp146, releasing PP1. Concomitantly, the αC-

helix transiently rotates outward, opening the access to the
binding pocket. This feature of the transition state region is
consistent with the molecular switch mechanism proposed for
the dasatinib-Src kinase binding (24). The mutagenesis experi-
ment shows that the Src residues stabilizing the inactive αC-
helix-out conformation is sensitive to the inhibitor binding
(10). The coupled salt bridge and αC-helix motion is a key fea-
ture of the transition state for inhibitor-kinase binding.

Binding Energy and Kinetics. The present simulation describes half
of the binding process: i.e., from the encounter to the bound state
(intrusion into the binding pocket). The corresponding free-energy
change, ΔGintrusion, is −3.6 kcal/mol, obtained by integrating the
bound (ξ = 2 ∼ 10 Å) and unbound (ξ = 10 ∼ 16 Å) regions of the
free-energy profile in Fig. 2B and taking their ratio. The value of
ΔGintrusion displays the increase to −4.3 kcal/mol when increasing the
boundary distance up to ξ = 14 Å (bound region: ξ = 2 ∼ 14 Å,
unbound region: ξ = 14∼ 16 Å). The estimatedΔGintrusion corresponds
to 2,900 μM, which is significantly larger than the experimental IC50
(170 nM) (45). An independent free-energy perturbation calculation
produces a binding free energy (ΔGbind) value of −8.6 kcal/mol (Kd =
808 nM), which reproduces the experimental IC50 to a reasonable
extent (SI Appendix, Table S3). The difference between ΔGbind and
ΔGintrusion is about −5 kcal/mol, which corresponds to the free-energy
change associated with the encounter complex formation. The result is
consistent with the finding on Gleevec for which the physical binding
step contributes only micromolar affinities (−6.5 kcal/mol) for both Abl
and Src (12). However, the PP1 is small and its intrusion is accom-
panied by subtle changes in the binding site: the transient breaking of
the Lys37-Glu52 salt bridge (Fig. 4C) and the reorientation of Phe20
(SI Appendix, Fig. S12). This may contrast to the Gleevec-Abl kinase
binding for which a large conformational change (a slow induced-fit
process) is suggested (12).

Fig. 4. Parallel binding modes of PP1-Src. (A) Position of the COM of PP1 in each state for different pathways. The binding site cavity is shown in blue. (B)
Representative structures in each state obtained from the k-means clustering analysis for each binding pathway. Residues within 4 Å from PP1 are highlighted
in cyan. The residues interacting with PP1, as obtained from LIGPLOT analysis, are labeled (plane for hydrophobic and circled for hydrogen bonded inter-
actions). The major pathway leading to the canonical pose (Ezz → Bzz) is highlighted with the red border. Highly conserved residues in the binding pocket (8)
are shown (Left Middle). (C) Two representative structures in the transition state region (ξ = 8 Å ∼ 9 Å) along the main pathway (Ezz → Bzz) obtained from the
k-means clustering analysis.
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To link with binding kinetics, we analyzed the data of in-
dependently performed microsecond-long conventional MD
simulations (SI Appendix). The estimated kon value is 4.6 μM−1

agreeing with the previous computational estimate (17) and the
experimental value (∼5 μM−1) (46). This value, combined with
the calculated Kd (808 nM) produces a koff value of 3.7 s−1 using
the Kd = koff/kon relation, resulting in a residence time (1/koff) of
0.3 s. The reported residence time for dasatinib-Src binding, with
a dissociation constant of 11 nM, is 21 ± 10 s as estimated by
simulation (24) and 18 s to 900 s by experiments (47, 48). Con-
sidering that the binding of PP1 to the Src kinase is weaker than
that of dasatinib, the estimated residence time is reasonable.

Discussion
Precision Drug-Target Binding Simulations. Drug-target binding
simulations have evolved from predicting binding affinities to
mapping binding pathways and kinetics. The present gREST/
REUS simulations realize multiple binding and unbinding
events, achieved by enhanced flexibilities of the inhibitor and the
protein binding site. The simulations display faster statistical
convergence than in the original method, REST/REUS and
provide reliable free-energy landscapes for understanding mo-
lecular mechanisms. Currently, simulations are limited to sam-
pling from the encounter region to the bound state, and thus
direct estimation of kinetic parameters is not feasible. However,
the reversible sampling of the binding and unbinding events us-
ing gREST/REUS serves as the basis for accurate estimation of
thermodynamics and kinetics, complementary with other meth-
ods. For example, the gREST/REUS may be integrated with Markov
state modeling (MSM) with the transition-based reweighting analysis
method (TRAM) (49, 50) to significantly improve the efficiency of
estimating drug-target unbinding kinetics. Alternatively, gREST/
REUS simulations can be combined with the Brownian dynamics
approach (51, 52) or multiple independent MD, such as Parallel
Cascade Selection Molecular Dynamics (19) to provide both an
atomic level description of the binding pathway and kinetic param-
eters at high accuracy. The present 2D replica exchange approach
requires large computational resources, which prevent routine usages.
For a relatively fast binding process, 1-dimensional gREST may be
successful. Another possibility is to replace the gREST with a non-
replica type enhanced sampling method (53–55), maintaining sam-
pling efficiency while reducing the total number of replicas. The
simplicity of the present scheme could serve as a basis for future
complementary approaches using various types of enhanced
sampling methods for precision drug-target binding simulations.

Encounter Complexes with G-Loop. Traditional drug compound
design has relied on the structures and interactions at the bound
state resolved by X-ray crystallography. The analysis of free-
energy landscapes illuminates the roles of regulatory residues in
the binding process, which are not obtainable from the bound
state structure. Here, we succeeded in predicting the encounter
complexes on the multiple binding pathways for PP1-Src binding.
The formation of an encounter complex is generally considered as
a key step guiding the ligand toward a final bound state (56), while
it is difficult to observe and characterize the transient encounter
complexes experimentally (57). Our simulation shows that the G-
loop grabs PP1 by forming encounter complexes, and the in-
teraction between the G-loop and PP1 decides whether to enter
the pocket in the right orientation. In previous studies, the in-
teraction with the G-loop was found to modulate the inhibitor
selectivity (10, 11, 58, 59). The mutagenesis experiment shows the
combined contribution of the G-loop and other regulatory resi-
dues to the observed selectivity (10). Our simulation shows that
the conserved G-loop is preferentially responsible for the initial
uptake of the inhibitor and the regulation of subsequent bindings.
This mechanism is applicable to several inhibitor-kinase bindings.
Whether the encounter states have some influence on the binding
selectivity or not is an open question for future study.

Implication for Design. The encounter complexes and parallel
binding pathways characterized in this work can provide new
perspectives for the inhibitor design. Our results suggest that the
modulation of encounter complexes can be an effective strategy
for controlling the inhibitor binding, in addition to control of the
rate-limiting step thorough the conserved salt bridge (24). The
stabilization of encounter complexes can extend the residence
time (lower the koff) without affecting the association rate (kon).
The enhanced stability of the encounter complex may also re-
tard the dissociation from the semibound poses and can help
extend the residence time. The validity of this idea can be seen
in the recently designed Mps1/TTK kinase inhibitors, where the
shift of the G-loop position is related to the slow binding ki-
netics (60). It is likely that the G-loop traps the inhibitor at an
encounter state, resulting in the observed slow kinetics. Con-
versely, by designing the compound so as to destabilize the
encounter complexes against off-target proteins, it is possible to
effectively increase the binding to the target protein. Thus, the
possibility of inhibitor design would be widened by targeting the
encounter complexes. The encounter complexes characterized
in this work are only those directly leading to the bound states,
but in fact, the inhibitor can form encounter complexes at multiple
sites on the protein surface (17). Further analysis of inhibitor
dynamics including these encounter complexes, using methods
such as MSM, may provide yet another strategy for extending the
residence time. Our simulation predicts the existence of semi-
bound poses that are not resolved in the X-ray crystal structure.
The interactions with the surrounding residues of the semibound
poses are different from that of the canonical pose. It would be
possible to control the inhibitor binding by stabilizing/blocking the
semibound poses. As the binding process becomes explored, the
possibility of ATP-competitive inhibitor design will greatly expand
and help to overcome the difficulty in the traditional design based
on the X-ray crystal structures.

Materials and Methods
MD Simulation. The initial configuration of the PP1-Src complex was con-
structed using the X-ray structures of the unphosphorylated c-Src in active
conformation (PDBID: 1Y57) (61) and of the autoinhibited form of Hck in
complex with PP1 (PDBID: 1QCF) (41). The PP1-Src complex was solvated by
water molecules and neutralized by 6 sodium cations. All simulations were
performed using a development version of the GENESIS program package
(62, 63). We used the AMBER ff99SB-ILDN (64, 65) and TIP3P (66) parameters
for the protein and water molecules, respectively. The ligand parameters
were obtained by using GAFF with AM1-BCC (67).

Two-Dimensional gREST/REUS Simulation. We defined the solute region in
gREST as the dihedral angle and nonbonded energy terms of an inhibitor PP1
and 10 binding site residues, based on the X-ray crystal structure. Eight
replicas were used to cover the solute temperature range of 310 ∼ 3,100 K
(gREST dimension). The reaction coordinate (ξ) of the umbrella sampling
simulation (REUS dimension) was taken as the distance between COMs of
PP1 and the backbone heavy atoms of 2 binding site residues (Ala35 and
Leu135). Eighteen replicas were used to cover the ξ values in the range of 3.0
Å ∼ 15.0 Å. The total number of replicas in gREST/REUS simulation is 18 × 8 =
144. Replica exchange was attempted every 2 ps alternatively for the REUS
and gREST dimensions. Following 1 ns of equilibration run for each replica,
gREST/REUS for 300 ns per replica (43.2 μs in total) was performed for the
purpose of analyzing the PP1-Src binding.

Additional details are described in SI Appendix.
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