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Background: Tumor stemness is the stem-like phenotype of cancer cells, as a

hallmark for multiple processes in the development of hepatocellular

carcinoma (HCC). However, comprehensive functions of the regulators of

tumor cell’s stemness in HCC remain unclear.

Methods: Gene expression data and clinical information of HCC samples were

downloaded from The Cancer Genome Atlas (TCGA) dataset as the training set,

and three validation datasets were derived from Gene Expression Omnibus

(GEO) and International Cancer Genome Consortium (ICGC). Patients were

dichotomized according to median mRNA expression–based stemness index

(mRNAsi) scores, and differentially expressed genes were further screened out.

Functional enrichment analysis of these DEGs was performed to identify

candidate extracellular matrix (ECM)–related genes in key pathways. A

prognostic signature was constructed by applying least absolute shrinkage

and selection operator (LASSO) to the candidate ECM genes. The

Kaplan–Meier curve and receiver operating characteristic (ROC) curve were

used to evaluate the prognostic value of the signature. Correlations between

signatures and genomic profiles, tumor immune microenvironment, and

treatment response were also explored using multiple bioinformatic methods.

Results: A prognostic prediction signature was established based on 10 ECM

genes, including TRAPPC4, RSU1, ILK, LAMA1, LAMB1, FLNC, ITGAV, AGRN,

ARHGEF6, and LIMS2, which could effectively distinguish patients with different

outcomes in the training and validation sets, showing a good prognostic

prediction ability. Across different clinicopathological parameter

stratifications, the ECMs signature still retains its robust efficacy in

discriminating patient with different outcomes. Based on the risk score,

vascular invasion, α-fetoprotein (AFP), T stage, and N stage, we further

constructed a nomogram (C-index = 0.70; AUCs at 1-, 3-, and 5-year

survival = 0.71, 0.75, and 0.78), which is more practical for clinical

prognostic risk stratification. The infiltration abundance of macrophages M0,
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mast cells, and Treg cells was significantly higher in the high-risk group, which

also had upregulated levels of immune checkpoints PD-1 and CTLA-4. More

importantly, the ECMs signature was able to distinguish patients with superior

responses to immunotherapy, transarterial chemoembolization, and sorafenib.

Conclusion: In this study, we constructed an ECM signature, which is an

independent prognostic biomarker for HCC patients and has a potential

guiding role in treatment selection.

KEYWORDS

hepatocellular carcinoma, stemness, extracellular matrix–related genes, prognosis,
tumor microenvironment, therapeutic response

Introduction

Liver cancer (LC) is one of the most prevalent tumors in the

world, ranking as the sixth most common cancer and the third

cause of cancer-related deaths worldwide (Sung et al., 2021). The

World Health Organization estimated that more than 1 million

people will die of LC by 2030 (Villanueva, 2019), which indicates

that both the incidence and mortality of LC will increase

significantly (Bresnahan et al., 2020). It is a group of

heterogeneous malignant tumors with different histological

features and outcomes, mainly including hepatocellular

carcinoma (HCC), intrahepatic cholangiocarcinoma, and

mixed hepatocellular cholangiocarcinoma (Sia et al., 2017;

Yang et al., 2019). Patients with HCC are usually diagnosed at

advanced stages and are not suitable for the resect surgery

because of poor prognosis and a high recurrence rate (Forner

et al., 2018). At the same time, the molecular mechanism of HCC

is complex, usually involving a variety of genetic abnormalities,

such as genomic instability, single nucleotide polymorphisms,

somatic mutations, and dysregulation of signaling pathways,

which are all related to the occurrence and development of

HCC (Tang et al., 2021). Although many advances have been

made in the treatments in the past decades, the overall survival of

HCC patients is still unsatisfied (Zhang et al., 2018). To improve

the management of HCC, novel prognosis biomarkers are

urgently needed to evaluate the outcomes and therapy efficacy

for patients with HCC.

Cancer stem cells (CSCs) are a small group of undifferentiated

cells in tumor tissue and can induce unlimited self-renewal of

heterogeneous tumor cells (Kreso and Dick, 2014). A previous

study has shown that CSCs are not only crucial for tumor growth

and maintenance but also associated with tumor recurrence and

metastasis (Peitzsch et al., 2013; Nassar and Blanpain, 2016). Cancer

stemness has also been considered to play an important role in HCC

(Tsui et al., 2020), supported by the increasing events of genomic,

epigenomic, transcriptomic, and proteomic alterations related to it

(Eppert et al., 2011). It is well known that the high recurrence rate of

HCC is partly due to the presence of CSCs. Furthermore, the

sensitivity of conventional radiotherapy and chemotherapy is

limited attributed by the biological characteristics of CSCs and

protective effect of tumor microenvironment (TME) (Yi et al.,

2020). mRNA expression–based stemness index (mRNAsi) is a

novel quantitative method to describe the similarities between

cancer cells and CSCs, and higher mRNAsi scores are correlated

with active biological processes in CSCs and greater tumor

dedifferentiation, as reflected by histopathological grades (Pan

et al., 2019). It has been identified as an effective marker

associated with tumor recurrence and treatment resistance (Malta

et al., 2018).Meanwhile, TME not only regulates cancer stemness but

also cooperates with CSCs to endure multiple stress condition

(Carloni et al., 2014). The extracellular matrix (ECM) as a major

structural component of the TME is composed mainly of

biochemically distinct components such as fibrous proteins,

glycoproteins, proteoglycans, and polysaccharides (Poltavets et al.,

2018). It has been revealed that ECM plays a crucial role in normal

andCSCs as the niche (Kreso andDick, 2014). According to previous

studies, ECM stiffness had been implicated to promote cancer

stemness gene expression to drive the tumor-initiation activity of

HCC stem cells (You et al., 2016). The ECM–receptor interaction

pathway has been demonstrated as the most significant pathway in

cancer (Tian et al., 2021). However, the mechanistic implications of

mRNAsi on cancer biology are incompletely understood, and no

study has previously attempted to identify the prognostic value of

ECMs-related genes and their relationship with mRNAsi in HCC.

In this study, we developed a novel ECM-related signature

for predicting the prognosis of HCC using data from the TCGA

database. Then we validated its prognostic prediction capacity

using data from the GEO database and evaluated its correlation

with clinicopathological features, genetic alterations, immune

microenvironment, and therapeutic response. This signature is

expected to provide potential guidance for personalized

treatment of HCC patients.

Materials and methods

Study design

A schematic workflow of this study is present in

Supplementary Figure S1. In short, we utilized The Cancer
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Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)

dataset as the training set, and, three validation datasets were

downloaded from Gene Expression Omnibus (GEO) and

International Cancer Genome Consortium (ICGC). First, we

dichotomized TCGA-LIHC patients according to the median

mRNAsi score and compared the overall survival (OS) and

disease-free survival (DFS) between the two groups. Subsequently,

we compared the gene expression feature of patients from the two

groups to screen out differentially expressed genes (DEGs) and then

performed a functional enrichment analysis on them to select key

pathways and defined the related candidate genes. Third, a least

absolute shrinkage and selection operator (LASSO) regression

analysis was performed on these candidate genes, and a

prognostic model was constructed using TCGA-LIHC data and

validated in the GEO cohorts and the ICGC cohort. Then by

combination with the prognostic model and clinical

characteristics, a nomogram suitable for clinical application was

constructed. Finally, the correlation between genomic profile,

TME, therapy response, and risk score were analyzed.

Data source and acquisition of candidate
genes

In total, 355 patients with expression data of HCCwere obtained

from the TCGA database (https://portal.gdc.cancer.gov/).

GSE54236 with 161 samples and ICGC-LIRI-JP with 260 samples

were retrieved from theGEO (https://www.ncbi.nlm.nih.gov/geo/) or

ICGC (https://dcc.icgc.org/) as independent validation datasets. In

addition, transcriptome data and calculated tumor volume doubling

times of the GSE54236 cohort were used to explore the relationship

between the risk score and rapid tumor growth. The tumor volume

doubling time was calculated based on imaging data (Villa et al.,

2016). The stemness index data for HCC, including mRNAsi and

epigenetically regulated mRNAsi (EREG-mRNAsi) were

downloaded from a published study (Supplementary Table S1)

(Malta et al., 2018). Transcriptome and clinical data from the

GSE104580 cohort were used to evaluate the value of the

signature to predict the transarterial chemoembolization (TACE)

response. By utilization of the R package “IMvigor210CoreBiologies”,

the association between the signature and the response of

atezolizumab (an anti-PD-L1 blockade) was evaluated in the

IMvigor210 cohort (an immunotherapy study for bladder cancer).

Immunohistochemical (IHC) staining images were downloaded

from The Human Protein Atlas database (HPA, https://www.

proteinatlas.org/).

DEG analysis and candidate genes
selection

After classifying TCGA HCC patients into two groups based

on the median mRNAsi score, the differences in OS and DFS

were analyzed by using the “survminer” R package (v.4.0.3). We

compared the gene expression feature of the two groups and

selected genes with a false discovery rate (FDR) < 0.05 and |log2
fold change (FC)| > 1 as the DEG. Next, we performed a gene set

enrichment analysis (GSEA) on the DEGs using GSEA software

(version 4.0.1, http://www.broad.mit.edu/gsea/) and selected key

pathways, and genes contained in key pathways were selected as

candidate ones.

Construction and validation of an ECM-
related prognostic model

First, we used the LASSO analysis to screen variables from

high dimensional data to construct an ECM signature (Gui and

Li, 2005), and then we calculated the coefficients of this signature

using the “glmnet” R package. The risk score formula is as follow:

risk score =Σ Coefficient (ECMs i) * Expression (ECMs i).

Coefficient of gene (i) is the regression coefficient of gene (i)

in the LASSO–Cox regression model and Expression of gene (i) is

the expression value of gene (i) for each patient.

We divided the HCC patients into high- and low-risk groups

based on the median risk score and utilized the Kaplan–Meier

(K-M) analysis to compare the survival differences between

different risk groups; the prognostic capability of ECMs was

then measured by the area under the curve (AUC) of a time-

dependent receiver operating characteristic (ROC). Last, we

utilized datasets from the validation cohorts to confirm this

prognostic prediction capacity.

Correlation between the risk score and
clinical characteristics

We analyzed the relationship between the risk score and the

clinical features of HCC including AFP, vascular invasion,

primary tumor (T) stage, regional lymph nodes (N) stage, and

distant metastasis (M) stage. To evaluate the stability of the

robustness and accuracy of prognostic models, we compared the

survival difference between high- and low-risk groups under

clinical characteristic stratification.

Construction and assessment of a
predictive nomogram

We explored the correlation and independence of ECMs

signature and clinical characteristics using a multivariate Cox

risk regression analysis. In order to be applicable to the clinic, we

integrated the risk score with vascular invasion, AFP, T stage, and

N stage to construct a nomogram using the “rms” R package. The

prognostic predictive ability of nomogram was evaluated by the

calibration curve and time-dependent ROC curves. The ROC
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curves were plotted by using the “timeROC” R package. The

survival net benefits of each variable were estimated by a decision

curve analysis (DCA) using the “stdca” R package.

Functional and pathway enrichment
analysis

To explore biological processes related to the risk score,

Reactome pathway (https://reactome.org/) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

(https://www.genome.jp/kegg/) analyses were performed by

using the “clusterProfiler” R package.

Determination of tumor-infiltrating
immune cells

CIBERSORT is a tool which can estimate the distribution of

22 common tumor-infiltrating immune cells, including B cells,

T cells, NK cells, and macrophage cells, by transcriptome profiles

from the TCGA cohort (Newman et al., 2015). Meanwhile, the

tumor immune dysfunction and exclusion (TIDE) score was

calculated using an online tool (http://tide.dfci.harvard.edu/)

(Jiang et al., 2018). Patients’ epithelial–mesenchymal transition

(EMT) scores were calculated according to the methods

described in a previously published study (Qiu et al., 2022).

Genomic profile analysis

Genetic mutation data were analyzed and visualized by using

the ‘‘maftools’’ R package. We compared the differences of

somatic variants in most prevalent mutated genes between

high- and low-risk groups. The copy number variant (CNV)

data were downloaded from the Affymetrix Genome-Wide

Human SNP Array 6.0 platform using the “TCGAbiolinks”

package, and abnormal chromosomal regions were detected

using the “R/Bioconductor GAIA” package (Morganella et al.,

2011). Non-synonymous mutation data were obtained from the

Ensembl Variation (https://asia.ensembl.org/info/genome/

variation/prediction/predicted_data.html) database.

Subsequently, the data were read and the TMB values were

calculated using the ‘‘maftools’’ R package.

Prediction of treatment response

In total, four classic drugs were selected from the Genomics

of Drug Sensitivity in Cancer (GDSC) database (https://www.

cancerrxgene.org/) for analysis. The half-maximal inhibitory

concentration (IC50) is an important indicator for evaluating

drug efficacy or sample response to treatment. The GDSC

database helps in predicting each sample’s response to

targeted therapy or chemotherapy based on the sample’s

transcriptome. According to the cellular expression profiles in

the GDSC database, a ridge regression model was constructed

with the “pRRopheticl” R package to calculate the IC50 of the

drugs in the two risk groups. Transcriptome data and treatment

response information from the GSE104580 cohort were used to

test the effectiveness of signature in discriminating TACE

treatment responders from non-responders. Transcriptome

data and treatment response information from the

IMvigor210 cohort were used to examine the effectiveness of

the signature in identifying complete/partial responses (CR/PR)

or stable/progressive disease (SD/PD) with immunotherapy.

Statistical analysis

All statistical analyses in this study were based on R software

(v.4.0.3). We used Fisher’s test to compare the categorical

variables and the K-M curve to evaluate the differences in

survival between different risk groups. The results of the

multivariate Cox regression analysis were visualized using the

nomogram. The concordance index, time-dependent ROC, and

calibration were also important indicators used to assess the

nomogram. All tests were two-sided, and p < 0.05 was considered

statistically significant, unless otherwise stated.

Results

Stemness in HCC

According to the median mRNAsi score, we dichotomized

HCC patients in the training set into mRNAsi-high and

mRNAsi-low groups and identified that HCC patients with

high mRNAsi had both significantly shorter OS (median OS:

45.11 vs. 69.57 months, p = 0.002; Figure 1A) and DFS

(median DFS: 20.91 vs. 40.41 months, p = 0.0021;

Figure 1B). The functional enrichment analysis of the

DEGs between mRNAsi-high and mRNAsi-low groups

revealed that ECM-related pathways were the most

significantly enriched (Figure 1C). Among those pathways,

non-integrin membrane–ECM interactions and cell–ECM

interactions pathways were regarded as the key pathways

(p < 0.05, Figures 1D,E) with 75 ECM-related genes kept in

the two pathways (Supplementary Table S2). The expression

levels of these 75 ECM-related genes were mainly negatively

correlated with tumor cell stemness (p < 0.05, Supplementary

Figure S2A). In addition, we also found that non-integrin

membrane–ECM interactions and cell–ECM interactions

pathways were significantly negatively related with the

stemness index (R = −0.59 and −0.58, respectively, p <
0.001; Figures 1F,G).
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Construction of the ECM-related
prognostic model

Subsequently, we performed the LASSO regression analysis

on the 75 ECM-related genes screened before and finally selected

10 genes (LIMS2, ARHGEF6, AGRN, ITGAV, FLNC, LAMB1,

LAMA1, ILK, RSU1, and TRAPPC4) to construct a prognostic

prediction model (Figure 2A). The 10 genes were found to be

expressed in both tumor and normal tissues, among which

AGRN, FLNC, ILK, ITGAV, RSU1, and TRAPPC4 were

significantly upregulated in the tumor tissues, while

ARHGEF6, LAMA1, and LIMS2 were significantly

downregulated in the tumor tissues (p < 0.05, Figure 2B). We

downloaded representative images of IHC staining of the

proteins encoded by these genes in the TCGA-LIHC cohort

from the HPA database. The data showed that the expression

levels of these proteins in tumor tissues were higher than those in

normal tissues, except for the LIMS2 protein, which was

consistent with mRNA expression (Figure 2C). Matrix

metalloproteinase (MMP) is a family of zinc-dependent ECM

remodeling endopeptidases with the ability to degrade almost all

components of the ECM (Cabral-Pacheco et al., 2020). We found

that 10 hub ECM-related genes in this study were significantly

correlated with most members of the MMP family at the mRNA

expression level (p < 0.05, Supplementary Figure S2B).

Furthermore, the forest plots showed that the overexpression

of LIMS2 (HR = 0.74, 95% CI = 0.64–0.85, and p < 0.001) and

ARHGEF6 (HR = 0.72, 95% CI = 0.59–0.89, and p = 0.002) were

related to a significantly superior OS; on the contrary, the

upregulation of RSU1 was significantly associated with a

worse survival (HR = 1.57, 95% CI = 1.13–2.17, and p =

0.007; Figure 2D). The risk scores were calculated for each

patient based on the gene expression levels and Cox

regression coefficients.

Risk score= (−0.227 * ExpLIMS2) + (−0.008 * ExpARHGEF6) +

(0.002 * ExpAGRN) + (0.004 * ExpITGAV) + (0.005 * ExpFLNC) +

(0.007 * ExpLAMB1) + (0.015 * ExpLAMA1) + (0.043 * ExpILK) +

(0.131 * ExpRSU1) + (0.132 * ExpTRAPPC4).

As the risk score increased, the stemness of HCC got

stronger. The median mRNAsi score in the high-risk group

was significantly higher than that in the low-risk group (p <
0.0001, Figure 2E). In addition, EREG-mRNAsi is also an index

to assess tumor stemness (Malta et al., 2018). Likewise, the

median EREG-mRNAsi in the high-risk group was

significantly higher than that in the low-risk group (p =

0.0029, Figure 2F). Meanwhile, HCC patients in the high-risk

FIGURE 1
linical characteristics of stemness in HCC. The Kaplan–Meier plots illustrate the (A) overall survival and (B) disease-free survival in the high
mRNAsi group compared with the low mRNAsi group. (C) Significantly enriched pathways of differentially expressed genes between high and low
mRNAsi groups. The locations of ECM-related pathways are indicated. (D) Correlation analysis of ECM-related pathways and prognosis of HCC. (E)
GSEA analysis of differentially expressed genes between high and low mRNAsi groups. (F) Correlation of the non-integrin membrane–ECM
interaction pathway with the mRNAsi score. (G) Correlation of the cell–extracellular matrix interaction pathway with the mRNAsi score. HCC,
hepatocellular carcinoma; mRNAsi, mRNA expression–based stemness index; ECM, extracellular matrix; GSEA, Gene Set Enrichment Analysis.
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FIGURE 2
Construction and validation of the ECM-related prognostic model. (A) LASSO regression analysis showed the partial likelihood deviation curve
of theminimum number genes corresponding to the covariates (the abscissa represents the CI of each lambda, and the ordinate represents errors in
cross-validation). (B) Expression analysis of the 10 genes (TRAPPC4, RSU1, ILK, LAMA1, LAMB1, FLNC, ITGAV, AGRN, ARHGEF6, and LIMS2) in HCC
samples and normal samples. (C) Representative immunohistochemical staining plots for 10 selected genes. (D) Univariate Cox regression
analysis of these 10 genes. (E) Comparison of mRNAsi scores between high- and low-risk groups. (F) Comparison of EREG-mRNAsi scores between
high- and low-risk groups. (G) Kaplan–Meier curves showing different overall survival of patients in high- and low-risk groups. (H) ROC curves of
ECM-related signature for predicting the 1/3/5-year overall survival in TCGA. (I) Performance comparison of ECM-related signature and stemness-
related signature (constructed based on theDEGs between themRNAsi-high andmRNAsi-low groups). (J) Performance comparison of ECM-related
signature and published stemness-related signatures. (K) Kaplan–Meier curves showing different overall survival of patients in high- and low-risk
groups based on GSE54236. (L) Kaplan–Meier curves showing different overall survival of patients in high- and low-risk groups based on ICGC. (M)
ROC curves of ECM-related signature for predicting the 1/2/3-year overall survival in GSE54236. (N) ROC curves of ECM-related signature for
predicting the 1/2/3-year overall survival in ICGC. LASSO, least absolute shrinkage and selection operator; mRNAsi, mRNA expression–based
stemness index; ROC, receiver operating characteristic; ECM, extracellular matrix; TCGA, The Cancer Genome Atlas; IGGC, International Cancer
Genome Consortium; DEG, Differentially Expressed Gene.
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group had a significantly worse prognosis than that in the low-

risk group (median OS: 27.52 vs. 81.73 months, and p < 0.0001;

Figure 2G). The AUCs of 1-, 3-, and 5-year OS in the TCGA

cohort were 0.76, 0.72, and 0.72, respectively (Figure 2H). In

addition, we constructed a stemness-related prognostic signature

based on the DEGs between the mRNAsi-high and mRNAsi-low

groups (Supplementary Figures S3A–C). The results showed that

the ECM-related signature was more accurate and robust than

the stemness-related signature (p < 0.0001, Figure 2I). Also, the

performance of the ECM-related signature was also better than

other published stemness-related signatures (p < 0.0001,

Figure 2J) (Zhang et al., 2020; Hong et al., 2021; Shen et al.,

2021; Chen et al., 2022; Liu et al., 2022). We further explored the

correlation between our prognostic model and ECM collagen or

non-collagen genes. The association of 10 ECM-related genes

with collagen or non-collagen was consistent. The expressions of

LAMA1, LAMB1, ARHGEF6, ITGAV, FLNC, and RSU1 were

significantly positively correlated with most collagen and non-

collagen genes, while the expressions of LIMS2, TRAPPC4, and

ILK were significantly negatively correlated with most collagen

and non-collagen genes (p < 0.05, Supplementary Figure S2C).

Validation of the ECM-related prognostic
prediction model

To validate the accuracy of the ECM-related prognostic

prediction model, we performed a confirmatory test using

three independent validation sets from the GEO and ICGC

databases. The K-M curve showed that there was a significant

difference in OS between the high- and low-risk groups, and the

prognosis of patients in the high-risk group was significantly

worse than that in the low-risk group, consistent with the results

of the training cohort (GSE54236, median OS 12 vs. 27 months,

and p < 0.0001; ICGC-LIRI-JP, median OS 48 vs. not reached,

and p = 0.0026; Figures 2K,l). The ROC curves showed that the

AUC of the 1-, 2-, and 3-year survival time of the

GSE54236 cohort was 0.82, 0.7, and 0.68, respectively; the

AUC of the 1-, 2-, and 3-year survival time of the ICGC

cohort was 0.61, 0.64, and 0.66, respectively (Figures 2M,N).

Overall, the ECM-related prognostic model could stably and

accurately predict the prognosis of HCC patients. Furthermore,

the tumor volume doubling time was significantly negatively

correlated with the risk score in HCC patients in the

GSE54236 cohort (p = 0.00076, Supplementary Figure S4).

Association with the clinical
characteristics

As shown in Figure 3A, the risk score was positively

correlated with the AFP level (R = 0.28, p = 3e−6). In

addition, the risk score was significantly higher in the HCC

patients presented with macro-vascular invasion, followed by

those with micro-vascular invasion (Figure 3B). Meanwhile,

HCC patients with the advanced tumor stage (T) and the

positive lymph node stage (N) had significantly higher risk

scores (Figures 3C,D). However, as there were limited number

of patients with long distant metastasis, there was no significant

difference between patients presented with the long distant

metastasis (M) stage or not (p = 0.38, Figure 3E).

We subsequently divided the clinical features into different

subgroups to observe the stability of the ECM prediction efficacy.

The results showed that regardless of whether in the advanced

tumor stage (T3+T4) or not (T1+T2), patients in the high-risk

group had significantly worse OS (Figure 3F). Meanwhile, the

trend was similar in patients with N0 (median OS: 21.0 vs.

107.1 months and p < 0.0001) and/or M0 (median OS:

26.4 vs. 107.1 months and p < 0.0001; Figure 3G). Last, the

ECM signature could successfully differentiate HCC patients

with worse outcomes regardless of whether present with

vascular invasion or not, or whether with high or low AFP

levels (Figures 3H,I).

Establishment of a nomogram integration
with independent predictive factors

To better predict the 1-, 3-, and 5-year survival of HCC

patients, we constructed a nomogram combining the risk score,

vascular invasion, AFP, T stage, and N stage. The C-index of

nomogram was 0.70 (95% CI: 0.63–0.77) (Figure 4A).

Meanwhile, it could be observed that the calibration curves at

1-, 3-, and 5-year survival showed a good consistency between

actual observation and the prediction by nomogram (Figures

4B–D). The results showed the net benefit of nomogram-assisted

decisions at a wide range of threshold probabilities, suggesting

potential clinical usefulness of the nomograms (Figures 4E–G).

The AUCs for the 1-, 3-, and 5-year survival of the constructed

nomogram were 0.71, 0.75, and 0.78, respectively (Figure 4H).

Finally, the multivariate Cox regression analysis indicated that

the risk score and the T stage were the only two independent risk

factors (HR = 4.61, 95% CI = 2.36–9.0, and p < 0.001; HR = 1.96,

95% CI = 1.17–3.3, and p = 0.01; Figure 4I).

Biological pathways and functional
enrichment analysis

We performed a pathway enrichment analysis using DEGs

between high- and low-risk groups in the TCGA-LIHC cohort to

explore the biological processes associated with the risk scores. A

Reactome pathway enrichment results showed that DEGs were

significantly enriched in the cell cycle and metabolism-related

pathways, such as cell cycle checkpoints, cell cycle mitosis, DNA

replication, fatty acid metabolism, and peroxisome lipid
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metabolism pathways (p < 0.05, Figure 5A). The KEGG pathway

enrichment results were consistent with the Reactome

enrichment, which were also dominated by the cell cycle and

metabolism-related pathways, including cell cycle, DNA

replication, homologous recombination, pyruvate metabolism,

tryptophan metabolism, and starch and sucrose metabolism

pathways (p < 0.05, Figure 5B).

Immune landscape, immune checkpoint
profile, and immunotherapy response
prediction

We evaluated the tumor-infiltrated immune cell contents and

immune checkpoint profile and predicted immunotherapy

responses in different risk groups. In total, the high-risk group

had a significantly higher abundance of macrophage M0, resting

mast cells, and Treg cells and lower abundance of activated CD4+

memory T cells, resting NK cells, monocytes, macrophage M1,

activated myeloid dendritic cells, and activated mast cells

(Figure 6A). Common immune checkpoints such as PD-1

(Figure 6B) and CTLA-4 (Figure 6C) were significantly

upregulated in the high-risk groups and their expression levels

were significantly positively correlated with the risk scores.

However, the expression level of PD-L1 was not significantly

different between the high- and low-risk groups (Figure 6D). In

addition, there was no significant difference in the TIDE score

between high- and low-risk groups (Figure 6E). In addition, the

high-risk group had significantly higher EMT scores than those

of the low-risk group (p < 0.0001, Figure 6F). We validated the

prediction value of the ECMs signature for immunotherapy

response of the patients in the IMvigor210 cohort. The K-M

survival curve showed that immunotherapy-treated patients in

the high-risk group had significantly longer OS (median OS

9.2 vs. 8.0 months, p = 0.031; Figure 6G). Moreover, the risk score

of immunotherapy patients with objective response (CR/PR

status) was significantly higher than those without it (SD/PD,

p = 0.026; Figure 6H). Also, the proportion of immunotherapy

patients with objective response was significantly higher in the

high-risk group (p = 0.03, Figure 6I).

FIGURE 3
Correlation of ECM-related prognostic models with clinicopathological parameters. The correlation of the risk score and (A) AFP, (B) vascular
invasion, (C) primary tumor stage, (D) regional lymph nodes stage, and (E) distant metastasis stage. (F–I) Among the different stratified subgroups, the
high-risk group had a poor prognosis. AFP, α-fetoprotein.
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Genomic profile related to the ECM
prognostic signature

There are two figures presenting the top 20 frequently

mutated genes in the high-risk and low-risk groups (Figures

7A,B). The prevalence of TP53, MYO18B, JARID2, and HUWE1

alterations in the high-risk group was significantly higher than

those in the low-risk group; on the contrary, HTT, PIK3CA, and

LRRC7mutations were more enriched in the low-risk group (p <
0.01, Figure 7C). As shown in Figure 7D, TP53 alterations were

mainly located in the P53 domain, and the high-risk group had

more mutations than the low-risk group in this domain. In

addition, the low-risk group had significantly high frequencies

of amplifications and deletions in chromosome 11 and 13,

FIGURE 4
Validation of a nomogram-integrated independent predictive factors. (A) Nomogram with a combination of risk scores and different clinical
features. A calibration plot for predicting the accuracy of the nomogram in (B) 1-, (C) 3-, (D) and 5-year. (E–G) 1-, 3-, and 5-year DCA analysis of the
nomogram. (H) ROC curves of the nomogram for predicting the 1/3/5-year overall survival in TCGA. (I) Multivariate Cox regression analyses of the
risk score and clinicopathological factors for overall survival in TCGA. DCA, decision curve analysis; ROC, receiver operating characteristic;
TCGA, The Cancer Genome Atlas.
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respectively (FDR<0.01, Figures 7E,F). There was no significant

difference in the TMB value between the two risk groups (p = 1,

Figure 7G).

Chemotherapy response prediction

The results of drug sensitivity analysis indicated that the

patients in the high-risk group were more sensitive to commonly

used drugs such as sorafenib and cisplatin (p < 0.0001, Figures

8A,B), but more resistant to doxorubicin (p < 0.01, Figure 8C).

Meanwhile, there was no significant difference in sensitivity to

gemcitabine between the two risk groups (Figure 8D). In

addition, we assessed whether the ECM signature could

predict the TACE benefit for HCC patients. The boxplots

showed that non-responders of TACE had significantly higher

risk scores than responders (Figure 8E). We also assessed the

distribution of non-responders and responders in different risk

groups (Figure 8F) and found that patients in the low-risk group

had higher sensitivity to TACE than those in the high-risk

group. The AUC of the ECMs signature to predict response

to TACE in HCC patients was 0.72 (Figure 8G).

Discussion

The resistance of HCC to traditional treatments and high

tumor recurrence after therapy are pivotal causes of cancer-

related deaths (Liu et al., 2020); among this process, CSCs play

key roles through genetic mutations, dysregulation of signaling

pathways, epigenetic disruption, and/or TME regulation (Liu

et al., 2020). In this study, by analyzing the characteristics of

CSCs in HCC, we found that ECM is closely related to the

occurrence and development of HCC. The ECM is the major

structural component of the TME and is a highly dynamic

structure (Nallanthighal et al., 2019). ECM is both a structural

scaffold and a regulator of cell signal transduction in tissues

(Dalton and Lemmon, 2021). Research in recent years has mainly

focused on uncovering the cellular signal transduction

mechanisms involved in the development of HCC. Gene

modification plays an important role in tumorigenesis, and

anomalies of many related signal transduction pathways, such

as MAPK pathway, PI3K/AKT/mTOR pathway,WNT/β-catenin
pathway, and JAK/STAT pathway, are also related to the

progression of HCC (Mir et al., 2021). A previous study has

supported that ECM-related proteins establishes a physical and

biochemical niche for CSCs, providing structural and

biochemical support for regulating CSCs proliferation, self-

renewal, and differentiation (Nallanthighal et al., 2019). A

total of 10 key ECM-related genes were obtained from ECM-

related pathways to construct a novel prognostic prediction

signature, including TRAPPC4, RSU1, ILK, LAMA1, LAMB1,

FLNC, ITGAV, AGRN, ARHGEF6, and LIMS2. Previous studies

have demonstrated that these 10 ECM-related genes are

associated with the prognosis of various types of cancer,

especially HCC. In published studies, AGRN (Zou et al.,

2019), ITGAV (Zhang et al., 2019; Weiler et al., 2020), FLNC

(Qi et al., 2016; Yang et al., 2017), ILK (Chan et al., 2011), and

FIGURE 5
Enrichment analysis of differentially expressed genes between high- and low-risk groups. (A) Reactome pathway enrichment analysis. (B) KEGG
pathway enrichment analysis. The peak area and color represent the absolute value of NES and the q-values, respectively. KEGG, Kyoto Encyclopedia
of Genes and Genomes; NES, Normalized Enrichment score.
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RSU1 (Gkretsi and Bogdanos, 2015) were overexpressed in HCC

tumor tissues, thereby promoting tumor development,

metastasis, and even leading to poor prognosis, which is

consistent with our findings. These genes were more

upregulated in the high-risk group, which was responsible for

causing the inferior outcomes of patients with the high-risk

scores. When these genes were knocked out or downregulated,

the proliferation and metastasis of HCC cells could be

successfully inhibited, which indicates that they also have the

potential to be developed as new therapeutic targets (Yang et al.,

2017; Zou et al., 2019). Contrary to our findings, studies have

shown that TRAPPC4 is expressed at low levels in HCC tissues,

and HCC patients with low TRAPPC4 expression have a shorter

survival time than those with high expression (Shen et al., 2018).

This difference may be due to the tumor heterogeneity of HCC.

In addition, LIMS2 and ARHGEF6 were expressed at lower levels

in tumors than in normal tissues in our study and associated with

better clinical outcomes. The dysregulation of LIMS2, also known

as PINCH2, caused liver enlargement and tumorigenesis

(Donthamsetty et al., 2013).

Subsequently, we explored the probability of the ECM

signature in clinical application. By evaluating the relationship

between clinical features and the risk score, we found that ECM

signature was closely associated with AFP, vascular invasion, T

stage, and N stage. AFP is the most prevalent clinically applied

biomarker for the detection and treatment monitor of HCC,

associated with HCC differentiation (Tangkijvanich et al., 2000).

Previous studies found that the components of ECM, such as

fibroblasts, would stimulate the paracrine and upregulate the

AFP expression level (Ogunwobi et al., 2019). Meanwhile,

vascular invasion has been reported not only to be present in

about 50% of HCC but also to be a major risk factor for disease

recurrence, associated with shorter survival in HCC, which is

consistent with our results (Krishnan et al., 2021). The positive

correlation between ECM and vascular invasion may be mainly

attributed to the reason that ECM provides an essential scaffold

supporting the vascular endothelium (Davis and Senger, 2005).

Meanwhile, ECM induces tumor cell to transfer to an

endothelial-like phenotype, imitating the vasculature that

connect to blood vessels; and on the other hand, hypoxic

tumor microenvironment also facilitates the ECM to release

VEGFR and further angiogenic events (Winkler et al., 2020).

In recent years, immune-based therapies have revolutionized

the systematic management of advanced cancers (Whiteside

et al., 2016). The application of immune checkpoint inhibitor

(ICI) therapy targeting PD-1, PD-L1, or CTLA-4 represents a

major breakthrough for many types of cancers, including HCC

(Hoos, 2016). However, the objective response rate of these

agents as monotherapy for HCC is only 15%–20% (Cheng

et al., 2020). Previously identified biomarkers such as PD-L1

expression and tumor mutation burden cannot reliably predict

the benefit of ICI therapy (Mushtaq et al., 2018). Therefore,

FIGURE 6
Immune landscape, immune checkpoint profile, and
immunotherapy response prediction. (A) Comparison of the
proportion of 22 tumor-infiltrating immune cells in the high- and
low-risk groups. The expression levels of immune
checkpoints (B) PD-I, (C) CTLA4, and (D) PD-L1 in high- and low-
risk groups. (E) Comparison of TIDE scores in high- and low-risk
groups. (F) Comparison of EMT scores in high- and low-risk
groups. (G) Kaplan–Meier curves of patients receiving
immunotherapy in the IMvigor210 cohort. (H–I) Relationship of
the risk score and immunotherapy sensitivity. TIDE, tumor immune
dysfunction and exclusion; EMT, epithelial–mesenchymal
transition; ECM, extracellular matrix; AUC, area under the curve.
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strategies to improve their efficacy through patient stratification,

or selection of potential combinations are still urgently needed.

The composition of the tumor microenvironment has been

shown to influence ICI response (Petitprez et al., 2020). In

this study, we found that HCC patients with high-risk scores

have higher sensitivity to ICIs. However, there was no significant

difference in tumor mutation counts or in T cell function

(revealed by the TIDE algorism) between high- and low-risk

groups. Then this correlation between the risk score and ICI

response may be interpreted as the positive correlation between

the risk score and the expression of immune checkpoint genes,

including PD-1 and CTLA4. Previous studies have shown that

tumor-infiltrating lymphocytes, such as Treg cells and tumor-

associated macrophages, play an important role in driving

immune evasion, which in turn drives HCC progression and

affects patient treatments (Lurje et al., 2021). In our study, there

FIGURE 7
Genomic landscape of HCC patients in the high- and low-risk group. Oncoprints showed themost prevalent alter genes in (A) high-risk and (B)
low-risk. (C) Significantly different mutated genes between low- and high-risk groups. (D) Distribution of TP53 alterations in low- and high-risk
groups. (E,F) Detection and comparison of significant amplifications and deletions of copy number between high- and low-risk groups. (G)
Difference in the TMB values between low- and high-risk groups. HCC, hepatocellular carcinoma; TMB: tumor mutation burden.
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were significant differences in the abundance of immune cell

infiltration between the two groups of patients, including CD4+

T cells, Treg cells, macrophages M0, and myeloid dendritic cells.

It has been reported that the number of Tregs in tumor tissue or

peripheral blood of HCC patients is increased compared with

healthy individuals (Oura et al., 2021), and Tregs are associated

with poorer median OS (Lim et al., 2019). Both macrophages and

myeloid dendritic cells belong to myeloid cells, which are

important components of tumor tissues and key regulators of

the immune environment (Wu et al., 2020). They promote tumor

development and are associated with prognosis in HCC patients

(Wu et al., 2020). These findings explain the poor prognosis of

the high-risk group in our study from the perspective of the

immune environment. This shows the potential of our signature

in predicting the HCC tumor immune microenvironment, which

may be beneficial for immunotherapy of this malignancy. Different

numbers, phenotypes, and localization of tumor-infiltrating

lymphocytes are not only key regulators of disease progression

but also potential biomarkers for predicting immunotherapy

response (Maibach et al., 2020). Previous studies have shown

that higher levels of immune cell infiltration are positively

associated with immunotherapy response in multiple tumor

types (Karn et al., 2017; Kümpers et al., 2019). Interestingly, the

high-risk group not only had higher levels of immune cell

infiltration in our study but also showed a better response to

immunotherapy. Therefore, ECMs signature had the potency for

assisting oncologists to decide which patients are likely to respond

to ICI in order to take the best course of treatment.

FIGURE 8
Chemotherapy response prediction. The boxplots of the estimated IC50 for (A) sorafenib, (B) cisplatin, (C) doxorubicin, and (D) gemcitabine in
the high- and low-risk groups. (E) Distribution of risk scores among TACE treatment responders and non-responders in the GSE104580 cohort. (F)
Proportion of TACE treatment responders or non-responders in the high- and low-risk groups in the GSE104580 cohort. (G) ROC curve of ECM-
related signature in predicting TACE response in the GSE104580 cohort. IC50, half-maximal inhibitory concentration; TACE, transarterial
chemoembolization; ROC, receiver operating characteristic; ECM, extracellular matrix.
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In conclusion, this study developed a prognostic signature

composed of 10 ECM-related genes that can accurately and

robustly predict the prognosis of HCC. These genes have the

potential to be developed as therapeutic targets for HCC. Also,

this ECMs signature has an important value for HCC in the

selection of treatment.
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SUPPLEMENTARY FIGURE S1
Schematic illustration of study’s design. This study is mainly divided into
three parts: first, identifying ECM-related genes; second, constructing a
prognostic signature based on ECM-related genes; and finally analyzing
the multi-omics features underlying the signature. ECM, extracellular
matrix.

SUPPLEMENTARY FIGURE S2
(A) Correlation analysis of 75 ECM-related genes with stemness. (B)
Correlation analysis of 10 selected ECM-related genes and MMP family.
(C) Correlation analysis of 10 selected ECM-related genes and collagen
or non-collagen. ECM, extracellular matrix; MMP, matrix
metalloproteinase.

SUPPLEMENTARY FIGURE S3
Performance comparison of ECM-related prognostic prediction
signature and stemness-related prognostic prediction signatures. (A)
LASSO regression analysis showed the partial likelihood deviation curve
of the minimum number genes corresponding to the covariates. (B)
Kaplan–Meier curves showing different overall survival of patients in
high- and low-risk groups. (C) ROC curves of stemness-related
signature for predicting the 1/3/5-year overall survival. ECM, extracellular
matrix; LASSO, least absolute shrinkage and selection operator; ROC,
receiver operating characteristic.

SUPPLEMENTARY FIGURE S4
Correlation analysis of the tumor doubling time and the risk score.
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Glossary

HCC hepatocellular carcinoma

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

ICGC International Cancer Genome Consortium

mRNAsi mRNA expression–based stemness index

DEGs differentially expressed genes

ECM extracellular matrix

LASSO least absolute shrinkage and selection operator

ROC receiver operating characteristic

TACE transarterial chemoembolization

LC liver cancer

CSCs cancer stem cells

TME tumor microenvironment

TCGA-LIHC The Cancer Genome Atlas Liver Hepatocellular

Carcinoma

OS overall survival

DFS disease-free survival

OCLR one-class logistic regression

GSEA gene set enrichment analysis

K-M Kaplan–Meier

AUC area under the curve

T stage primary tumor stage

N stage regional lymph nodes stage

M stage distant metastasis stage

KEGG Kyoto Encyclopedia of Genes and Genomes

TIDE tumor immune dysfunction and exclusion

EMT Epithelial–mesenchymal transition

CNV copy number variant

GDSC Genomics of Drug Sensitivity in Cancer

CR/PR complete/partial responses

SD/PD stable/progressive disease

DCA decision curve analysis.
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