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Automated image analysis tools for Ki67 breast cancer digital pathology images would

have significant value if integrated into diagnostic pathology workflows. Such tools

would reduce the workload of pathologists, while improving efficiency, and accuracy.

Developing tools that are robust and reliable to multicentre data is challenging, however,

differences in staining protocols, digitization equipment, staining compounds, and slide

preparation can create variabilities in image quality and color across digital pathology

datasets. In this work, a novel unsupervised color separation framework based on the

IHC color histogram (IHCCH) is proposed for the robust analysis of Ki67 and hematoxylin

stained images in multicentre datasets. An “overstaining” threshold is implemented to

adjust for background overstaining, and an automated nuclei radius estimator is designed

to improve nuclei detection. Proliferation index and F1 scores were compared between

the proposed method and manually labeled ground truth data for 30 TMA cores that

have ground truths for Ki67+ and Ki67− nuclei. The method accurately quantified the

PI over the dataset, with an average proliferation index difference of 3.25%. To ensure

the method generalizes to new, diverse datasets, 50 Ki67 TMAs from the Protein Atlas

were used to test the validated approach. As the ground truth for this dataset is PI

ranges, the automated result was compared to the PI range. The proposed method

correctly classified 74 out of 80 TMA images, resulting in a 92.5% accuracy. In addition to

these validations experiments, performance was compared to two color-deconvolution

based methods, and to six machine learning classifiers. In all cases, the proposed work

maintained more consistent (reproducible) results, and higher PI quantification accuracy.

Keywords: breast cancer, color deconvolution, color image processing, hematoxylin, Ki67, color separation,

histogram, proliferation index

INTRODUCTION

Breast cancer is the most common form of cancer among women (DeSantis et al., 2014) and further
research and improved therapies are needed to reduce mortality rates. As pathology plays one of
the most critical roles for patient management and diagnosis of breast cancer disease, there are
opportunities to use this modality to improve patient care. Hematoxylin and eosin (H&E) slides
have traditionally been used for this in the past, since these stains highlight cellular morphology
and tissue microstructure. However, immunohistochemical (IHC) biomarkers have been gaining
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momentum in treatment planning, prognostication and research
(Sargent et al., 2005), as they highlight the presence of proteins
and the corresponding concentrations, which characterizes
tumor behavior and activity. Currently, clinical IHC-based
biomarkers such as Her2, ER, and PR are used to select
adjuvant and hormone therapies for patients, which have resulted
in improved patient care and outcomes (Hammond et al.,
2010; Gosho et al., 2012; Guerrero-Zotano and Arteaga, 2017).
Therefore, IHC slides have great potential to improve the quality
of care for breast cancer patients.

In the last several years, Ki67 has been investigated as a clinical
marker for breast cancer tumor aggressiveness and proliferation,
exhibiting potential in predicting disease survival, recurrence,
and response to various treatment options (Veronese et al., 1993;
Jalava et al., 2006; Dowsett et al., 2011). The Ki67 biomarker,
also known as MKI67, is a nuclear protein associated with cell
proliferation (Schonk et al., 1989). To visualize cells that are in the
process of dividing, tissue slides stained with diaminobenzidine
(DAB) and counterstained with hematoxylin (H). Pathologists
use scoring systems to estimate a proliferation index (PI); the
number of positively stained tumor nuclei divided by the total
number of nuclei in a specific region (Veronese et al., 1993). A
higher PI indicates many cells are undergoing cell division, which
can signify a more aggressive tumor.

Despite the utility of the Ki67 biomarker, there are challenges
of incorporating it into clinical and research workflows. Manual
PI measurement remains time consuming, and sensitive to inter-
and intra-observer variability among pathologists (Dowsett et al.,
2011; Gudlaugsson et al., 2012; Rizzardi et al., 2012; Shui et al.,
2015). There have been international standardization efforts
to reduce observer variability in PI measurement, but many
challenges remain (Khademi, 2013). Points of discussion include
variability in manually counted cells (Khademi, 2013), the
selection of appropriate cut-off thresholds for protein detection
(Albarracin and Dhamne, 2014), the number of high power
fields to evaluate (Harris et al., 2016), and the PI ranges that
correlate to prognosis, i.e., low (<10%), intermediate (11–30%),
and high (>30%) levels of proliferation activity (Khademi, 2013).
The European Society for Medical Oncology (ESMO) and the
American Society of Clinical Oncology have concluded that Ki67
would be a useful clinical tool if it was standardized (Dowsett
et al., 2011; Senkus et al., 2015). Therefore, to increase clinical
utility and adoption of Ki67, robust standards development,
research and tools to improve the consistency of PI quantification
are needed.

Automated image analysis and machine learning tools for
digital pathology, broadly known as computational pathology,
are a great solution to combat these challenges. They offer
efficient, reliable and objective PImeasurement for large amounts
of data. There are reimbursement models in the US that support
using digital image analysis to improve consistency of IHC
analysis for clinical use (Zarella et al., 2019). Such tools can be
used to assist pathologists in obtaining reproducible PI measures
(Luporsi et al., 2012), develop more consistent Ki67 scoring
guidelines as well as for breast cancer research.

Commercial algorithms for Ki67 have shown they are capable
of attaining fast and objective PI estimates (Pantanowitz, 2010;

Rohde et al., 2014), but because of the variability in Ki67 images
it is an on-going research topic to improve performance. In Acs
et al. (2019), the authors compared the reproducibility of Ki67
PI estimates of three well-known Digital Image Analysis (DIA)
platforms: HALO, QuantCenter and QuPath. Each method is
based on color deconvolution, cell segmentation and is followed
by machine learning to calculate the PI. In one experiment,
each algorithm was trained using the same slide at two different
times, separated by 4 days. The generated models were then
used on the same test set and there were differences in the
generated PI estimates. Although the differences were small,
the values were found to be different, which highlights the
importance of training data, and reproducibility challenges for
machine-learning algorithms. In Koopman et al. (2018) the
authors compared PI accuracy of two commercial products
from Visiopharm and HALO. Using 20 breast carcinoma cases
for training, 154 breast carcinomas specimens for testing, the
spearman’s correlation coefficient betweenmanual and automatic
PI values ranged between 0.93 and 0.94.

Research works in the literature have explored novel methods
for automated Ki67 PI calculation. In Polat and Güneş (2007)
a least-squares support vector machine with nine cellular
features was constructed to automatically classify regions of
interests from 683 samples of human breast tissues from a
single center (Wisconsin Breast Cancer Dataset). Using 10-fold
cross validation with 50–50 training and test splits, the highest
accuracy of 98%was reported. In Kårsnäs et al. (2011) an iterative
dictionary learning approach was used for classification of tissue
into probability maps of each stain type. The learning algorithm
automatically updated the dictionary using the training images
for final implementation on the test images. A 7.7% error rate in
PI measurement was found, on a dataset of 58 TMAs.

Deep learning methods are gaining momentum in medical
image analysis and have been applied to Ki67 quantification
as well. In Saha et al. (2017), a convolutional neural network
(CNN) was used to classify detected nuclei as immunopositive
or immunonegative. An F-score of 0.91% was reported. It was
stated that a 70–30 split was used for training and validation,
and in total, 450 regions of interest were taken from 90 slides,
from a single center. In Zhang et al. (2018), deep learning
was implemented to detect tumor regions in Ki67 images. The
proposed method used a combination of two models; CNN for
image classification and a Single Shot Multibox Detector (SSD)
for object detection. The CNN and SSD model obtained an
accuracy of 98 and 90%, respectively, and Ki-67 quantification
results were not reported. The overall proposedmethod utilized a
total of 3000 tiny image patches, which are complemented by data
generated by an adversarial network (GAN). The details on the
number of patients the patches come from, as well as the imaging
center(s) is unknown.

Although supervised learning methods are lucrative, there
can be challenges for medical image analysis. For state-of-
the-art methods, very large datasets with annotations are
required to achieve good performance. Generating large enough,
representative annotated datasets for training a Ki67 model is a
challenge, as they are laborious and time consuming to create,
as well as subject to observer variability. Additionally there
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are sources of noise and variability in Ki67 images that create
challenges for all automated approaches. For example:

1. Multi-Institutional Data: Across labs and institutions, there
are different scanning hardware systems and stain compounds
resulting in color variability across images, tissues, biomarkers
and patients (Krishnamurthy et al., 2013).

2. Slide Preparation: Different slide preparation and staining
protocols can create stain inconsistency, overstaining, and
other image artifacts. DAB overstaining causes stromal
regions and biomarker negative nuclei to carry DAB stain,
which can create false positives and negatives.

3. Biomarker Levels: Biomarker expression level varies from
patient to patient, and even within tumors due to disease
heterogeneity. There can be wide variability in the intensities
and colors for biomarker positive nuclei. Low biomarker
concentrations translate into lightly stained Ki67 regions,
whereas high Ki67 concentrations are darkly stained regions.

4. Ki67 Detection: The Ki67 positivity threshold (protein
detection cut off threshold) can be difficult to determine,
especially in the presence of overstaining.

5. Nuclei Size: Nuclei can be of varying size depending on the
magnification level (resolution) of the images as well as tumor
cells, creating objects at a variety of scales to be detection.

To enable clinical-use and large-scale studies of Ki67, automated
PI quantification tools must provide robust and consistent results
across all images and patients. For clinical implementation,
ideally, algorithms should be vendor-agnostic, efficient and
robust to data variability, so they can be deployed in any
clinical center and lab. For Ki67 standards development and
research, algorithms must analyze multi-center, international
datasets robustly and reliably.

To overcome these challenges, in this work, we investigate a
fully automatic, unsupervised method for Ki67 PI quantification
that is robust on multi-center, highly variable data. It is
unsupervised and depends on a novel color separation method
that discriminates between DAB and H stains using the IHCCH,
which can separate brown and blue colors robustly, regardless of
the variation in color, or biomarker expression level. It can model
both lightly and darkly stained images within one framework and
an adaptive threshold that suppresses background overstaining.
A novel adaptive nuclei segmentation method is also developed
to capture cells of different sizes.

The algorithm is first applied to 30 canine mammary tumor
tissue microarray (TMA) core images and performance was
evaluated against 129,404 manually labeled ground truths for
Ki67+ and Ki67− cells. Performance is measured in terms of
nuclei detection and PI quantification accuracy. The proposed
work was then applied to 50 human breast tissue TMA images
from Protein Atlas database (Uhlen et al., 2017). These two
datasets, from two different international institutions, have
variable PI scores and biomarker expression levels, background
staining, and color variability, representing a challenging dataset
to quantify. Performance is compared to six machine learning
classification methods and two color deconvolution approaches:
ImageJ (Schneider et al., 2012), and Immuno-Ratio (Tuominen
et al., 2010). Lastly, through visual examples, it is demonstrated
how the novel color separation method based on the IHCCH

can be easily applied to other biomarkers, such as ER, PR, and
Her2, which provides a robust, new way to detect stains in
IHC images.

METHODS AND MATERIALS

For robust and accurate automated PI estimation algorithms,
and IHC analysis in general, separating the hematoxylin (H)
stained nuclei from the IHC positive structures is the first and
most critical piece of the pipeline. Such a tool allows for the
biomarker positive regions to be analyzed separately from the
negative regions, which improves robustness. Inconsistencies
in this phase can greatly affect successive nuclei detection and
PI quantification.

Color deconvolution (CD) proposed in Ruifrok and Johnston
(2001) has dominated digital pathology image analysis as a
pre-processing step for automated stain separation. It has
been applied to Ki67 analysis for stain deconvolution and PI
estimation (Kårsnäs et al., 2011; Shi et al., 2016; Mungle et al.,
2017). CD is dependent on the Beer-Lambert (BL) law of
absorption (Ruifrok and Johnston, 2001; Macenko et al., 2009)
which characterizes each pure stain by an optical density (OD)
vector of light in the red, green, and blue (RGB) intensity
channels (Kårsnäs et al., 2011). The OD space linearizes the
relationship between stain concentrations (Di Cataldo et al.,
2010) and the stain vectors are used to un-mix the stain
concentrations on a per pixel basis.

Although CD has been used for IHC analysis with promising
results, for high concentrations of Ki67, the DAB stain is dark and
creates non-linear properties in the BL Law (Konsti et al., 2011).
For darkly stained regions, DAB stains are not true absorbers of
light and there is light scattering, which does not follow the BL
law of light absorption (Macenko et al., 2009; Varghese et al.,
2014). Figure 1 demonstrates how DAB stained images behave
in the OD space. The images on the left contain the original
Ki67 images, the middle images contain the 3D scatter plot of
the OD RGB values (color-coded), and the right contains the 3D
scatter plot projected on the plane of best fit. At low DAB stain
concentration levels, DAB and H are linearly separable in the
OD space and BL is effective to separate hematoxylin, and DAB
stains in this case. However, for higher Ki67 concentrations, light
scattering creates non-linearities in the OD space—brown pixels
are spread over a larger region in a non-linear fashion and there
are significant quantization effects at the darkest stain levels. In
these cases, the BL law may not be as effective in separating
hematoxylin and Ki67 stains and errors in the estimated stain
concentration images can occur.

In addition to these challenges, even for lightly stained images,
implementation of CD is also dependent on the selection of stain
vectors to generate an OD deconvolution matrix. In Ruifrok and
Johnston (2001), the authors implemented CD with predefined
stain vectors for DAB and hematoxylin for stain separation but
found the resultant stain concentration images to have missing
information in both the DAB and hematoxylin channels. Other
methods (Taylor and Levenson, 2006; Shi et al., 2016) have
recognized CD results vary for different staining and imaging
protocols and have focused on adaptively defined stain vectors
on a per image basis (Taylor and Levenson, 2006). However, due
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FIGURE 1 | (A) Sample images of low, intermediate, and high Ki67 stain concentrations. (B) RGB optical density space for respective images. (C) Projected plane

obtained via principle component analysis on the RGB OD color space.

to the non-linearity properties of the BL law for darker stains, and
variability of IHC images in general, adaptive estimation of stain
vectors is challenging and can be inaccurate for automated stain
separation and PI calculation.

In this work, we propose a novel color separation method
that discriminates between DAB and H stains using the IHCCH,
which does not dependent on the BL and can separate brown
and blue colors robustly, regardless of the variation in color,
or biomarker expression level. It and can model both lightly
and darkly stained images within one framework. The complete
Ki67 PI quantification pipeline is shown in Figure 2. First, the
TMAs are preprocessed with a color vector filter and background
subtraction, followed by color separation. An adaptive threshold
is used to adjust for DAB overstaining and separate DAB and
H channels robustly. An automated nuclei size estimate is used
to detect and count cells from both DAB and H channels. The
PI is computed based on the number of Ki67+ and Ki67−
nuclei, which is compared to the pathologists’ ground truths
to determine performance. This section will further detail the
methods, validation metrics, and data used.

Preprocessing
Due to the noise and variability in intensities/color in
histopathology images, a de-noising procedure is necessary.
Histopathology images consist of color (RGB) images

and the application of a scalar de-noising filter to each
channel individually may result in the loss of correlation
between channels and the skewing of colors (Macenko et al.,
2009). Instead, a Vector Median Filter (Plataniotis and
Venetsanopoulos, 2013) was applied to the images to make
colors appear more uniform in the images by preserving color
proportions and content. The Vector Median Filter calculates
the median color vector within a defined pixel neighborhood,
using a 3 × 3 window, for every pixel in the image that contains
non-zero values. By treating the pixels as vectors instead of
scalars, the resultant filtered image retains the relationship
between color channels and edges can be maintained better
than the scalar counterpart, while smoothing in low frequency
regions. After de-noising, a second preprocessing step known as
background subtraction was performed to isolate tissue and cell
regions and suppress background regions. A local mean adaptive
threshold was applied to each image in the grayscale luminance
channel because both DAB and H stained pixels are darker than
their surroundings allowing application of a single threshold to
capture both stains. A local mean adaptive method is an iterative
algorithm that measures a local threshold determined by the
mean grayscale intensities of a neighborhood. This method was
preferred over other popular methods such as Otsu’s method
(Otsu, 1979) because it is local, and can adapt to different stain
and tissue proportions.
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FIGURE 2 | Proposed automated Ki67 proliferation index calculator framework.

Color Separation
In this section, it will be shown that the b∗channel of the
L∗a∗b∗ color space is an efficient color representation that can
be used to automatically separate blue and brown colors for
effective DAB and H stain separation. IHC analysis performed
by a pathologist relies on the human visual system’s (HVS)
perception of staining intensity and color characteristics and the
L∗a∗b∗ space is a perceptually linear color space that mimics
the perception of color achieved by the human eye (Tkalcic
and Tasic, 2003). The L∗a∗b∗ color space is derived from XYZ
tristimulus values (Brey et al., 2003), which models the HVS non-
linear response to color perception with a cubic root relation.
Chromatic information is decoupled effectively from intensity
allowing automated approaches to examine purely color content,
regardless of its perceived luminance. The L∗ channel represents
luminance of an image, while the a∗ and b∗ axes represents
complementary chromatic content. Specifically, the a∗ channel
differentiates complementary red and green hues while the b∗

channel differentiates complementary blue and yellow hues.
Color separation of hematoxylin (blue) and Ki67 (brown) is

achieved through a method that differentiates colors associated
with each stain by focusing on the complementary yellow and
blue characteristics within the chrominance channel of IHC
images. The negative values represent “pure” or saturated blue
hues, zero represents no color content, and the positive region
defines “pure” or saturated yellow hues. Colors of interest in
Ki67 images are blue (H) and brown (DAB), where brown as a
color is composed of dominant yellow or orange hues (red +

green) mixed with black or blue in lower proportions (Cook et al.,
2005). Since brown is dominated by red and green components
and blue colors associated with H are dominated by the blue
hues, the channel has the potential to discriminate between DAB
and H stains.

Consider Figure 3 (middle row), which contains an RGB
Ki67 ROI, and the corresponding b∗ channel image b

(

x, y
)

,

where
(

x, y
)

ǫZ2 are the spatial coordinates. In b
(

x, y
)

, the brown
regions (DAB) are associated with high intensities (positive b∗

values), while the blue stain (H) is associated with low intensities
(negative b∗ values). To explore this relationship further, a novel
histogram representation of the b∗ channel, called the IHCCH, is
presented in Figure 3 (bottom row). The bins of the histogram
are color coded according to the average RGB color at that
particular b∗ value. Blue hues from the H stain are located in the
negative b∗ region of the histogram and as the color saturation
decreases (lower H concentration) the b∗ values approach zero.
This is even true for light purple or other blue-ish hues. For DAB
staining, a similar effect is observed as positive b∗ values represent
the relative saturation of yellow (red and green) hues, which
are the dominant color components in brown. Light browns are
close to the origin (low R and G values), and darker browns
correspond to larger values of b∗ (higher R and G values). Light
and dark Ki67 brown colors are consistently described by positive
b∗ values regardless of the intensity and darkness. For regions
with large amounts of overstaining (Figure 3D), the overstained
regions (light brown in color), are represented by a high number
of occurrences in the first few bins of the positive b∗ values. This
provides a robust mechanism to manage overstaining, as low
values of b∗ can be suppressed.

In order to separate IHC images into H andDAB components,
two thresholds computed from the IHCCH are used to threshold
for color separation into blue and brown. The first threshold,
Tblue, is used to globally threshold and isolate H pixels, and the
second threshold denoted Tbrown is used to find DAB pixels. The
b∗channel b(x,y) is then scaled to create images and which are
confidence images ∈ [0,1] that describe the level of saturation of
blue and brown for H and DAB stains, respectively. A value of 0
is associated with little or no stain color content (achromatic) and
a value of 1 represents the strongest or most saturated stain color
content for each stain. By scaling the confidence images to the
minimum and maximum observed b∗ values within each image,
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FIGURE 3 | Region of interest from OVC dataset of Ki67 TMAs (top) with corresponding b*channel images (middle) and IHCCH plots (bottom).

the contrast between low and high staining is increased, and eases
detection of H and Ki67+ regions. Formally,H

(

x, y
)

andD
(

x, y
)

are found by thresholding and scaling, as in

H
(

x, y
)

=











−b(x,y) + Tblue
bmin

for b
(

x, y
)

< Tblue

0 for b
(

x, y
)

≥ Tblue











(1)

D
(

x, y
)

=











b(x,y) + Tbrown
bmax

for b
(

x, y
)

> Tbrown

0 for b
(

x, y
)

≤ Tbrown











(2)

where b
(

x, y
)

is the b∗ channel image at pixel locations
(

x, y
)

,
bmin is the minimum b∗ intensity and bmax is the maximum b∗

intensity in the image. The
(

x, y
)

locations where H
(

x, y
)

and
D

(

x, y
)

are nonzero value [i.e. H
(

x, y
)

> 0 and D
(

x, y
)

> 0]
are the detected regions that contain blue and brown colors,
respectively, and are used to create binary masks for the DAB and
H stains. The binary masks can be used to mask the R, G, and B
channels to generate color images that represent the segmented
blue and brown regions.

A natural choice for the thresholds would be Tblue = Tbrown =

0, since b∗ = 0 marks the absence of color. However, as
seen in Figure 3, DAB overstaining results in large amounts
of DAB background staining which falsely stains H nuclei. As
a result, thresholds Tblue = Tbrown = 0 could cause false
positives in the D

(

x, y
)

channel due to background staining, or
false negatives in the H

(

x, y
)

channel by missing lightly stained
Ki67− nuclei.

To determine a threshold that robustly detects DAB positive
and negative regions in the presence of background overstaining,
an adaptive threshold is designed to mimic a pathologist’s
response to variably stained images. Pathologists typically “raise”
their threshold for determining the Ki67+ regions in the
presence of overstaining, which allows them to robustly detect
Ki67 and H nuclei. Inspired by this, this behavior is modeled
through an adaptive histogram thresholding using an iterative
algorithm that searches for a threshold that optimally separates
two classes based on the “weight” of the histogram on either side
of the threshold. In the presence of overstaining, the histogram is
heavy on the right side, and the threshold is iteratively increased
to “balance” the histogram.
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The adaptive threshold method is as follows. Utilizing the
IHCCH, an initial threshold at b∗ = 0 is defined. The “weight”
of the histogram on either side of the threshold is computed and
depending on the amount of staining content, the threshold is
shifted left or right by one bin. For example, a large amount
of DAB overstaining will result in the histogram being heavily
weighted on the right side and consequently, the threshold
will be shifted to the right. This process is iterated until the
threshold is found that “balances” the histogram on either side
of the threshold.

Formally, for the ith iteration with, Tbini being the currently
selected threshold, first, the sum of the histogram counts on
either side of the threshold are found by:

Ai =
∑Ni

b=Tbini
h

(

b
)

, b =
[

Tbini , Tbini + 1 , . . . , Ni

]

(3)

Bi =
∑Tbini

b=Mi
h

(

b
)

, b =
[

Mi, Mi + 1 , . . . , Tbini

]

(4)

where, h(b) is the b∗ histogram (IHCCH), b is the b∗ value,
Ai and Bi are the sum of histogram counts on either side of
the threshold Tbin. Ni and Mi determine the intervals used to
compute Ai and Bi. If Ai > Bi, the histogram is heavy on the
right side, and the threshold is moved to the right by one with
Tbin = Tbin + 1 and a bin is removed Mi = Mi + 1. If Ai < Bi,
the threshold is shifted to the left by one with Tbin = Tbin−1 and
Ni = Ni − 1. A final optimized threshold T∗ is determined when
the change in the threshold is minimized between iterations and
Tblue = Tbrown = T∗. In DAB overstained images, the histogram
will be heavy on the right and the threshold will be successively
shifted to the right until there is a balance.

Nuclei Detection
To count nuclei and determine a proliferation index, a nuclei
detection algorithm was implemented to quantify the number of
individual nuclei in the separated hematoxylin and Ki67 color
channels. A modified version of the nuclei detection algorithm
proposed in Qi et al. (2012) is utilized due to its ability to
identify overlapping and clustered nuclei. The method was
originally proposed for the grayscale stain channels of H&E
images, however, in this work, we use the color-separated DAB
D

(

x, y
)

and H
(

x, y
)

images for nuclei detection. It depends on
the gradient magnitude and direction, along with a cell radius
parameter to estimate nuclei centers. A voting image is used
to determine the center of a cone area with the supplied cell
radius. The mean shift algorithm is used to determine final nuclei
seed locations.

In Qi’s original work, a cell radius parameter r was supplied
by the user to detect nuclei. Instead, we introduce an adaptive
cell radius estimator to automatically determine the cell radius
parameter r. This eliminates user interaction and ensures the
framework provides repeatable and reliable results, regardless
of the magnification factor or size of the cells. The cell radius
estimate is determined automatically by: (1) creating a binary
foreground mask for each stain [H

(

x, y
)

> 0 and D
(

x, y
)

> 0],
(2) estimating the area of unique objects, (3) generating a sorted
histogram of object areas, (4) trimming the top and bottom
20% of objects according to their area, (5) estimating cell radius

on the remaining objects. Trimming the histogram of object
areas removes really small or large objects, with cellular objects
remaining. The cell radius is then by approximating the area of
the remaining objects with the equation of a circle A= πr². Since
cancerous nuclei (DAB stained) are usually larger compared to
Ki67− nuclei (H stains), the average nuclei radius is estimated
separately for each channel.

Validation Metrics
To validate the proposed methodology, two types of validation
tests are performed that measure nuclei detection performance
and PImeasurement accuracy. Nuclei detection performance was
assessed through calculation of an F1 score, which incorporates
both sensitivity and precision to give an overall measure of
algorithm performance and is found by:

F1 =
2× TP

(2× TP + FP + FN)
(5)

where TP is true positive, FP is false positive, and FN is false
negative. A circular validation window was examined for each
automatic seed location resulting in a true positive if the window
contained a coincident seed from the manually labeled data and a
false positive if a labeled seed was absent. Once a manual seed was
paired with an automatic seed it was removed from the manual
data to ensure no repeated counting of a labeled seed occurred.
The manual seeds unaccounted for after validation represent the
false negatives not detected by the proposed method.

To assess the PI accuracy, first, the PI is computed by for an
entire TMA by:

PI =
# Positive Nuclei

Total # Nuclei
× 100% (6)

Manual and automatic PI estimates are compared
through correlation analysis, PI differences, intra-class
correlation coefficient (ICC) calculations and Bland Altman
plot comparison.

Experimental Data
A total of 30 canine mammary TMA core images with 129,404
individually labeled nuclei was obtained from the Ontario
Veterinary College (OVC) at the University of Guelph. The
TMAs were scanned with a Leica SCN400 Slide Scanner at 20X
magnification, image resolution of 72 DPI and pixel spacing of
0.5µm. Individual TMA core images were cropped from whole
slide images using Pathcore’s Sedeen (Martel et al., 2017). Manual
counting was performed in ImageJ (Schneider et al., 2012) by
zooming in on the image and placing seed markers at Ki67+
and Ki67− nuclei locations using a computer mouse. This was
repeated until the entire core was labeled. Three example TMAs,
exhibiting varying biomarker expression levels, PI and color
variability are shown in Figure 4. An example region of interest,
along with the annotations from the OVC dataset is shown
in Figure 5.

Another dataset containing 50 Ki67 TMA core images from
the Protein Atlas (Uhlen et al., 2017) was used to further assess
the proposed approach. This open source dataset, has Ki67
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FIGURE 4 | TMA images from OVC (top) and Protein Atlas (middle) datasets, with corresponding IHCCH below.

protein expression data acquired from an IHC lab in Uppsala,
Sweden. The TMAs were digitized using Aperio ScanScope R© AT
or Aperio ScanScope R© T2, with an image resolution of 96 DPI.

The TMA’s were scored according to three PI ranges: < 25, 25–
75, and>75%. Three example TMAs from this dataset are shown
in the bottom row of Figure 4.
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FIGURE 5 | Region of interest from OVC Ki67 TMA. Nuclei detection for H and DAB channels, for automated and manual approaches. (Top) Ground truth

annotations. (Bottom) Automatically detected nuclei using the balanced threshold method. Green marker is for Ki67+ and Pink for Ki67−.

The combined dataset containing 80 multi-institutional TMA
images scanned using three different scanners, two different
continental processing laboratories with contrasting staining
protocols, results in a broad diversity of patients, stain vendors,
color variation, image resolution, and variable staining levels. The
IHCCH plot of each corresponding TMA can be seen below each
TMA in Figure 4. There is wide range of stain variation, color
variability, and varying levels of biomarker expression.

RESULTS

In this section, the experimental results will be presented. First,
the visual results of the IHCCH method will be shown, followed
by quantitative results for the automated radii estimator and
thresholding method to separate the DAB and H channels. The
OVC data is used for this, since this dataset contains individually
annotated nuclei. Using the optimized/validated algorithm, the
next subsection contains the performance on the Protein Atlas
dataset. Since the Protein Atlas data’s ground truths are PI ranges,
the accuracy was measured based on a binary quantification
system, i.e., whether or not the automatically generated PI
value falls within the ground truth range. The final sections of
results compare the proposed method to two color devolution
frameworks and six supervised learning models. Both the OVC
and Protein Atlas datasets are used for these experiments.

Visual Analysis
The proposed framework introduces the IHCCH and
thresholding to determine DAB and H stains. Using a threshold
of Tblue = Tbrown = 0 (i.e., b∗ = 0), example segmentation
results for four regions of interest are shown in Figure 6. The
top row contains the original Ki67 image, the second row
contains the IHCCH and the third and fourth rows show the

confidence images D
(

x, y
)

and H
(

x, y
)

. The fifth and sixth rows
show the resultant blue and brown segmentations generated by
segmenting the confidence images. Blue and brown regions are
robustly detected for a variety of color variations and staining
intensities. However, for images with DAB overstaining (a,d),
the brown segmentation contains both overstained Ki67− nuclei
and background staining. In the blue region, negative nuclei that
absorbed DAB stain have not been detected. Inaccuracies in stain
detection can impede nuclei detection.

To remove backgroundDAB overstaining, the brown region is
segmented by the adaptive threshold T∗ obtained by the balanced
histogram approach as shown in the seventh row of Figure 6. In
the DAB channel, background overstaining regions have been
suppressed in the new segmentation result, and Ki67− nuclei
have been excluded. Regions of interest with larger amounts
of background DAB staining generates a larger threshold thus
removing some of the overstained regions. In Figure 6c, T∗ was
found to be <0 since there is low amounts of background DAB
staining and H dominates the image. In this case, the threshold
was constrained to be T∗ = 0. The eighth row illustrates
the balanced thresholding method of Tblue = Tbrown = T∗,
exemplifying that H nuclei are robustly detected, regardless of the
level of overstaining. The gradient based nuclei detection method
is used to detect nuclei in D

(

x, y
)

and H
(

x, y
)

to count Ki67+
and Ki67− nuclei, respectively, for automated PI calculation.
Example nuclei detection results, alongside the annotations, are
shown in Figure 5.

Automated Radius Estimator and Optimal
Threshold
The following section validates two vital components for the
framework: cell radius estimator and IHCCH thresholding
technique. Cell nuclei detection was evaluated across the
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FIGURE 6 | 1st Row: Region of interest from Ki67 TMA. 2nd Row: IHCCH, 3rd and 4th row: DAB and H confidence maps for Tblue = Tbrown = 0. 5th Row: Brown

region (DAB) segmentation with Tbrown = 0. 6th Row: Blue region (H) segmentation with Tblue = 0. 7th Row: DAB segmentation using adaptive threshold

Tbrown = T*. 8th Row: H segmentation using adaptive threshold Tblue = T*.
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OVC dataset for each stain type independently. Arbitrary
radii estimates were selected to represent a range of possible
values selected by a user and were then compared against
the results obtained via the automatic cell radius estimator
framework. Nuclei detection performance was assessed through
calculation of an F1 score between the automated and
manually detected nuclei from the DAB and H channel
separately. Cell radii estimates were validated using a circular
validation window with diameter equal to 2X the automatically
determined radius.

The F1 score for various user defined cell radius estimates
were observed for the achromatic boundary: Tblue = Tbrown =

0, the “overstaining” threshold: Tblue = Tbrown = T∗, which are
both compared to Otsu’s threshold a well-known histogram
thresholdingmethod (Otsu, 1979). Figure 7A (top) illustrates the
F1 performance score of each threshold per stain. The F1 score
performance for both Ki67 and hematoxylin are for the automatic
cell radius estimated and eight possible user selected parameters
ranging from 0.5 to 4µm. For both stains, the balanced threshold
(Tblue = Tbrown = T∗) outperforms the achromatic and Otsu
thresholds. With the “balanced” threshold, the user selected
nuclei estimates yielded average TMA F1 scores of 0.67 and 0.57
for Ki67 and H, respectively, while the automatic cell radius

estimate produced F1 scores of 0.73 and 0.63, respectively. The
automatic cell radius estimator achieved a higher F1 performance
score, affirming that the optimized balanced threshold with
automatic radius estimation achieves optimal results. This avoids
user input, which can be tedious, time consuming, and subjective.
Automated cell radii estimator can also detect cells at different
magnification levels.

Thresholds were evaluated using the OVC dataset for
each stain type independently and performance was measured
through the F1 score for the nuclei detected in H and DAB
channels as shown in Figure 7B (bottom). Each threshold is
examined according to ranges of PI: low (<10%), medium (10–
30%) and high (>30%). Box plots are used to demonstrate
the distribution and consistency of F1 score per threshold.
Otsu’s method achieved moderate F1 score for the Ki67
stain over all PI ranges, but has a large F1 variance, which
reveals that the method is not reproducible or consistent in
the Ki67+ stain. In the medium and high PI levels, the
achromatic threshold (T = 0) and balanced threshold achieve
similar F1 scores. For high PI values, the balanced threshold
obtains a high F1 score with the lowest variation over the
other methods, indicating reliability and consistency. Similar
results are shown in the H channel. The optimized threshold,

FIGURE 7 | F1 scores for nuclei detection for each threshold, per stain. (A) F1 scores comparison of automatic cell radius estimator per thresholding condition. (B) F1

performance of automatic thresholding condition, in ranges of low, medium, and high PI.
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FIGURE 8 | Scatter plot (left) and Bland Altman plot (right) of each experimental thresholding condition’s PI results, with corresponding Spearman’s coefficient.

Tblue = Tbrown = T∗, is optimal since it has highest and most
consistent F1 performance.

A scatter plot of the agreement in PI between manual and
automated approaches for each threshold is shown in Figure 8.
The corresponding R2 and Spearman correlation were calculated,
and the balanced histogram approach (Tblue = Tbrown = T∗)
achieved the highest Spearman’s correlation coefficient of 0.944,
with an R2 = 0.8667. This reveals a strong relationship between
the automatic Ki67(+) PI estimator and themanually counted PI.
The corresponding Bland-Altman plots based on the difference
in PI between automated andmanual approaches were computed
and shown in Figure 8. The optimal threshold is the one with the
lowest mean PI difference along with tight limits of agreements

(LoA). Although the “natural boundary” (Tblue = Tbrown =

0) have relatively low PI differences and LoAs, the balanced
histogram threshold for overstaining achieves optimal results.

Figure 9A is a boxplot of the difference between manual and
automatic PI estimates of each threshold, with the corresponding
levels of proliferation activity, i.e., low (<10%), intermediate (10–
30%), and high (>30%) levels. Over all levels, the achromatic
threshold obtained an average PI difference of 3.73% and the
optimal balanced threshold (T∗) for overstaining achieved an
average difference of 3.3%. Otsu’s thresholding method was
excluded due to its low performance. The percentage error
of the balanced histogram approach is lower for all three
levels of proliferation activity levels, in comparison to the
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FIGURE 9 | (A) Boxplot comparing PI difference performance between thresholds for low (<10%), intermediate (10–30%), and high (>30%) PI levels. (B) Correlation

between PI difference and manual PI estimates for the balanced histogram approach and automated radii calculator.

opposing methods. Despite slightly lower performance for the
F1 score for Ki67+ nuclei detection, the PI estimates for
the low PI range are still comparable to the manual ground
truth and the variance is low too, indicating consistent and
reliable performance.

Using the optimized threshold (T∗) and the automated
nuclei radius estimator on OVC data, the ground truth PI
vs. the PI difference is plotted based in Figure 9B. As can
be seen the error is below 8% except for one outlier. This
further illustrates that the optimal thresholding method obtained
accurate results in the presence of staining protocol variability,
variable image resolutions, varied levels of biomarker expression,
and scanner/stain color variation.

The intra-class correlation coefficient (ICC) (Fleiss and
Cohen, 1973) for Ki67 PI quantification was lastly computed
to quantify consistency and reproducibility of each method.
The achromatic threshold achieved an ICC value of 0.943 and
the optimized threshold for overstaining achieved the highest
ICC value of 0.964. The overstaining threshold automatically
produces an automatic PI with the closest correlation to the
manually annotated PI values.

Protein Atlas Data Validation
To test the validatedmethod (balanced threshold with automated
radii estimator), 50 Ki67 TMAs from Protein Atlas were used.
The Protein Atlas dataset for Ki67 was manually annotated
using a range, where each TMA was manually annotated with
either low (< 25%), intermediate (25–75%) or high (>75%). The
automated PI will be compared with the range of the ground
truths. Figure 10 shows the PI estimate plotted as a function of
the ground truth range. As can be seen the estimated PI falls into
the range of the ground truth PI in many of the cases. Of the 50
TMA core images, five images were classified outside the given
range, achieving an accuracy of 90% (45/50). Several example
images are shown in Figure 10. Clearly, the proposed method is
generalizing to new data.

Comparison to Color Deconvolution
Methods
Majority of quantification algorithms for digital pathology utilize
CD for stain separation. As discussed, CD is not a reliable tool
for color separation of DAB and H stains, since these stains do
not abide by BL law of absorption for all stain levels.

To further investigate, the validated method is compared to
the performance of two color deconvolution methods using the
OVC dataset. In particular, the open source Immuno-Ratio Ki67
calculator (Tuominen et al., 2010) and ImageJ’s CD method
(Schneider et al., 2012) are used. ImmunoRatio uses color
balancing, background subtraction and CD as preprocessing
steps to obtain DAB and H images. The stain separated images
are then postprocessed in order to segment nuclei, usingmethods
such as particle filtering and the watershed algorithm. Finally,
proliferation index is quantified, percentage of DAB-stained area
over total nuclear area. For the ImageJ method, the built in color
vectors for DAB and H stains were used to separate stains and
each was saved as an individual image. The automated nuclei
detector is then employed to detect nuclei in the DAB and H
stains and calculate the PI.

Table 1 compares the average PI difference, linear correlation,
and intra-class correlation coefficient of the other frameworks on
the OVC data, compared with the performance of the balanced
histogram threshold for overstaining. Table 1 shows that the
ImageJ method has the largest mean PI estimate difference of
10.04%, while Immuno-Ratio has a mean PI difference of 4.65%,
and the proposed method has the lowest PI difference of 3.25%.
Similarly, the linear correlation, and ICC were higher for the
proposed method. The proposed method acquired the highest
linear correlation coefficient of 0.93 and the highest ICC value
of 0.96, indicating a near perfect calculation of the PI values.

Figure 11 serves as a visual representation of the issues related
to utilizing CD as a stain separation method for proliferation
quantification purposes. PI difference as a function of PI range,
and estimated PI for the proposed and CD-based methods, is
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FIGURE 10 | (Top) Automated PI results for Protein Atlas Dataset as a function of ground truth PI range. (Bottom) TMA core images from Protein Atlas with predicted

PI values and corresponding ground truth ranges.

TABLE 1 | Performance comparison to similar works.

ImageJ Immuno-Ratio IHCCH (Tblue =

Tbrown = T*)

Mean PI difference 10.04 4.64 3.25

Linear correlation r 0.52 0.9 0.93

Intra-class correlation (ICC) 0.682 0.937 0.96

shown in Figure 11A. As the proliferation activity increases, the
CD methods are less accurate probably due to stain variability,
overstaining and breakdown of the Beer Lambert law. The
balanced histogram method has the lowest variability and
median when comparing PI differences. Figure 11B displays PI
as a function of patient on the OVC data. Each line corresponds
to the ground truth, or one of the methods being compared. Note
that Figure 11B was sorted from lowest PI to highest based on
the ground truth data, in order to visualize trends. The balanced
histogram method is the closest in accuracy (most similar to
ground truth line), in comparison to the CD algorithms which
exhibit wide variation across the dataset, especially for higher
PI values.

To examine results in relation to DAB’s light scattering
characteristics, Figures 11C,D contains the average percentage
PI difference for each stain and method, plotted vs. the mean
b∗ value from the L∗a∗b∗ color space. The mean value of the
b∗ channel, per image for each stain quantifies the dominating
color in each of the channels. The background was excluded
from the calculation of the mean b∗ channel value, to achieve
an objective comparison. Therefore, it is possible to examine
algorithms’ performances as a function of color, in an essence.
Overall average b∗ values, the proposed method achieves the
lowest percentage error in PI estimation, and the slope of the line
is low, indicating some consistency for a variety of colors. This
is in contrast to the CD-based methods, such as the ImageJ CD
method, which has large PI differences over all average b∗ values,
or the ImmunRatio method, which has a high slope indicating
large variabilities for small or large average b∗. Therefore, as b∗

increases, the percentage error significantly increases in both CD
methods which could be a result of the light scatter characteristics
of the BL law in IHC. The balanced threshold has a consistent
minimal percentage error in both stains, H and Ki67 (DAB),
further illustrating the quantitative accuracy and robustness of
the proposed method.
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FIGURE 11 | (A,B) PI difference and PI estimate comparison of all methods, including manual, ImageJ and Immuno-Ratio methods and balanced histogram (T = T*).

(C,D) Percentage error in relation to the b* Channel within the L*a*b* Color space per stain, Hematoxylin (A,C) and Ki67 (+DAB) (B,D).

Comparison to Machine Learning
Classifiers
In this section, the performance of the unsupervised, proposed
method, is compared to several supervised machine learning
classifiers: Gaussian Naïve Bayes (NB), K-Nearest Neighbor
(KNN), Logistic Regression (LR), Stochastic Gradient Descent
(SGD), Support Vector (SVM), and Linear Support Vector
(LSVC) Classifier. Both the OVC and Protein Atlas data were
used for these experiments, and for consistency, the OVC data’s
PIs were converted into ranges to match that of the Protein
Atlas, i.e., low (<25%), medium (25–75%), and high (>75%).
These three labels are used as ground truth for training and
testing. Therefore, in total, there are 80 TMA images with class
labels that correspond the PI range. Classification accuracy is
determined by the average classification performance over all
three classes.

To compare the supervised and proposed unsupervised
method fairly, the same preprocessing steps are completed for all
implementations. Namely, the data is VMF filtered, background
subtracted, and the color image is converted into a b∗ channel
image from the L∗a∗b∗ space, and the histogram of the b∗ channel
is computed. The b∗ histogram is used as the input to themachine
learning algorithms to train and test the classifiers. In an essence,
if the ML algorithms can correctly discriminate between classes,

they are indirectly learning the optimal boundary between classes
in this histogram to find the PI.

To minimize issues with small dataset sizes, cross validation
(CV) (Efron and Tibshirani, 1997; Saeb et al., 2017; Willis
and Riley, 2017) is used. This divides the data into k sub-
datasets, performs training and testing on each fold and gets
average classification performance. In this work, we varied k and
learning experiments were conducted, where a single randomized
sub-dataset was utilized as the testing data. The accuracy rates
of each k runs were stored and analyzed. The mean accuracy
of each classifier was calculated for a range of k values, k =

2–10, similar to Saeb et al. (2017). Figure 12A, illustrates the
convergence of the mean accuracy value, after k = 6. In order
to select a value of k, we must consider bias-variance tradeoffs.
According to James et al. (2013) and Kuhn and Johnson (2013)
k = 5 or k = 10 are common values that achieve optimal test
errors which while minimizing variance and bias, therefore, the
CV method utilized k= 10 sub-datasets, which is also supported
by the experimental results in Figure 12A (Delen et al., 2005;
Polat and Güneş, 2007).

The boxplot, shown in Figure 12B, represents the
classification accuracy of each classifier for k = 10, alongside
the balanced threshold (T = T∗) for all 80 TMAs. The highest
accuracy obtained from the different supervised classification
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FIGURE 12 | Comparison of six machine learning classifiers to the unsupervised approach on a multi-institutional dataset of 80 Ki67 TMAs. (A) Mean classification

accuracy of all six classifiers as a function of k in for CV. (B) Classification accuracy for each classifier. (C) Array of ROI images from misclassified TMAs with labels and

the predicted classification.

TABLE 2 | Performance comparison to machine learning classifiers.

K = 10 Gaussian

Naïve Bayes

K-Nearest

neighbor

Logistic

regression

Stochastic

gradient

descent

Support

vector

Linear

support

vector

Balanced

histogram

(T = T*)

Accuracy 0.5464 0.6839 0.7089 0.7089 0.7089 0.7089 0.925

Standard deviation 0.207512 0.113796 0.125013 0.158124 0.125013 0.125013 –

methods in combination with CV was 70.9% and that is
for the LR classifier. The NB and SGD classifiers have the
lowest classification accuracy and largest variation, indicating
lower consistency across the datasets. Although KNN, LR,
SGD, SVM, and LSVC have better classification accuracy
and are less variable, in general, each classifier has poor
to moderate classification performance with wide variance,
indicating the classifiers may have trouble generalizing to
multicentre data. Figure 12C, illustrates an array of a few
of the misclassified ROIs, along with the corresponding ML
classifiers and predictions. Notice, each ROI has a different
level of biomarker expression, Ki67 staining, as well as different
variations of background stromal staining. Compared to the
total percentage of correctly classified TMA images using the

proposed unsupervised algorithm, the classification accuracy
is 92.5%, which is significantly higher than all the supervised
methods. Additionally, the variance of the proposed approach
is low, demonstrating high reliability and reproducibility of
the method.

These results are further summarized in Table 2, which
presents the average accuracy rate along with standard deviation
for all supervised methods and the proposed, unsupervised
method. The standard deviation represents the overall
distribution of the results obtained per run (k = 10). The
lowest standard deviation achieved by the ML classifiers was
0.11, KNN, which reveals that KNN had the lowest amount of
variation and therefore higher reproducibility over the other
ML methods.
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The proposed method does not have a standard deviation
since CV was not necessary, therefore the framework was only
run on the entire dataset once, in comparison to the ML
classifiers which were run 10 times. Furthermore, the balanced
histogram method achieved the highest results without being
computationally expensive and on a minimal dataset, which
is beneficial to the consumer. This allows users to utilize the
framework without prior training methods, on singular data, and
at a faster computation rate. Evidently, the balanced threshold
algorithm has benefits in accuracy, not requiring labeled data and
is computationally efficient.

DISCUSSION

A novel color separation methodology was proposed as an
alternative method to current stain separation methods in
combination with an automatic cell radius estimator. The
proposed framework is fully reproducible as it does not require
user defined parameters or color vector estimates to achieve
stain separation and nuclei detection. The framework can also be
applied to entire tissue micro-arrays (TMA) and therefore does
not need a region of interest cropped image, hence, minimizing
user interface interactions.

The addition of a cell radius estimate to Qi et al. (2012)
allowed for a fully objective nuclei detection method that

eliminates the requirement for user defined feature selection.
This selection in combination with the color separated images
resulted in a stain specific cell radius estimate. Since tumor cells
are often associated with larger morphological characteristics, the
selection of a unique radius estimate generates a more accurate
nuclei detection procedure, opposed to assuming a single radius
for all cells in an image. The adaptive cell radius estimator
was able to achieve a comparable result to arbitrarily selected
parameters. Although performance was slightly lower than the
ideal estimates, reliance on a potentially inaccurate user defined
parameter increases the risk of unreliable and subjective results.
Automatic cell radius generation ensures a more robust analysis,
however, identification of smaller or elongated nuclei remains
a challenge for this detection technique. Nuclear boundaries
are not considered for this work as identification would greatly
increase computational requirements and nuclear boundaries do
not contribute to nuclei count based PI calculations.

Color separated images were created to model stain
concentrations in Ki67 and hematoxylin stained images. The b∗

color channel from the L∗a∗b∗ color space was able to effectively
differentiate stain content in a way that mimics the HVS
perception of color content. An important feature of the color
separation method is that the range of color intensities observed
in the b∗ channel define the maximum values observed in the
color separated images. By normalizing the confidence images to

FIGURE 13 | Color separation framework applied to Ki67, ER, and HER2 images with associated confidence and color separated images.
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the maximum staining intensity observed in the current image,
the proposed algorithm is robust to staining variations common
to histopathology images. This is especially important for Ki67
staining because positive Ki67 identification is not dependent on
the overall amount of staining intensity. For images with low
stain representations, an object with very light Ki67 staining may
be considered positive by a pathologist opposed to an image
containing high Ki67 content where the same light staining may
be associated with stromal or other background content.

The proposed algorithm has the ability to robustly
analyze various types of staining, i.e. over/under staining,
by adaptively selecting a threshold that compensates accordingly.
However, the although color content may be the most clearly
identifiable factor in IHC analysis, the algorithm does not
examine additional factors a pathologist may consider when
performing nuclei classification. Additionally, due to stain
mixing some nuclei containing both Ki67 and hematoxylin result
in grayscale content, leading to low representation of the color
intensity images.

The outlier image, in the OVC dataset, contained very high
levels of Ki67 stain content characteristics of over staining,
making it difficult to identify healthy and abnormal nuclei
without additional considerations such as cell morphology. The
outlier image’s ground truth PI value was directly compared
to the proposed method, natural threshold, Otsu method, CD
methods, and ML algorithms’ obtained PI quantification. Of
the comparing methods, the proposed algorithm achieved the
lowest PI difference. Despite these challenges, the proposed color
separation technique was able to attain accurate PI estimates
for all images that have a variety of PI values. Combining the
OVC and Protein Atlas datasets, a total of 80 TMA images, the
proposed algorithm was able to achieve an overall accuracy rate
of 92.5%.

The robustness of the color separation also allows for potential
implementation for other IHC stains. The proposed color
separation method is shown for ER and Her2 stained images,
as seen in Figure 13. These images are from different scanners,
which contain different staining intensities, concentrations,
and utilize different biomarkers. Despite these differences, the
color separation framework is able to effectively separate the
hematoxylin content from the respective IHC stain.

Future works on improving this framework include adapting
a fuzzy membership and a moving window methodology, into
the color thresholding algorithm, alongside an interactive GUI
for pathologists’ optional technical input. Implementation of
the proposed algorithm in clinical practice would limit the
subjectivity within standard scoring systems, help define robust

cut-off thresholds for patient treatment options, and assist the

pathologist in forming a complete and robust prognosis. Overall,
the proposed framework would improve patient quality of care by
allowing pathologists to accurately complete prognosis for every
patient within minimal time.

CONCLUSION

The proposed unsupervised Ki67 PI calculator provides robust
and accurate results with multi-institutional TMA core images.
The framework accurately analyzed 80 TMA Ki67 stained
images, from two contrasting continental laboratories and three
different whole-slide scanners with variable image magnification.
The images consisted of wide ranges of color variability
due to various scanning hardware, compounds, vendors,
tissues, and different levels of biomarker expression. An
average proliferation index difference of 3.25% from 30
OVC TMAs and an accuracy rate of 90% for 50 Protein
Atlas TMAs was achieved. As a whole, the total framework
achieved an accuracy rate of 92.5%, over 80 TMA images,
which outperformed six machine-learning algorithms and two
popular color deconvolution (CD)-based Ki67 PI quantification
methods. The proposed framework is an effective measure
of proliferation activity that is robust to stain variation
between images.
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