
RACK1 Is a Ribosome Scaffold Protein for b-actin mRNA/
ZBP1 Complex
Marcello Ceci1, Kristy Welshhans2, Maria Teresa Ciotti3, Rossella Brandi1, Chiara Parisi1,

Francesca Paoletti1, Luana Pistillo1, Gary J. Bassell4, Antonino Cattaneo1,5*

1 European Brain Research Institute (EBRI), Rome, Italy, 2 Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America, 3 Institute of

Neurobiology and Molecular Medicine-CNR, Rome, Italy, 4 Departments of Cell Biology, Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of

America, 5 Scuola Normale Superiore di Pisa, Pisa, Italy

Abstract

In neurons, specific mRNAs are transported in a translationally repressed manner along dendrites or axons by transport
ribonucleic-protein complexes called RNA granules. ZBP1 is one RNA binding protein present in transport RNPs, where it
transports and represses the translation of cotransported mRNAs, including b-actin mRNA. The release of b-actin mRNA
from ZBP1 and its subsequent translation depends on the phosphorylation of ZBP1 by Src kinase, but little is known about
how this process is regulated. Here we demonstrate that the ribosomal-associated protein RACK1, another substrate of Src,
binds the b-actin mRNA/ZBP1 complex on ribosomes and contributes to the release of b-actin mRNA from ZBP1 and to its
translation. We identify the Src binding and phosphorylation site Y246 on RACK1 as the critical site for the binding to the b-
actin mRNA/ZBP1 complex. Based on these results we propose RACK1 as a ribosomal scaffold protein for specific mRNA-RBP
complexes to tightly regulate the translation of specific mRNAs.
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Introduction

The localization and translation of mRNAs in specific regions of

the cell is an evolutionarily conserved mechanism to regulate the

quantity of proteins within specific cellular compartments [1]. In

neurons, the dendritic localization of mRNAs and subsequent

translation at stimulated synapses is believed to be responsible for

long term synaptic plasticity [2,3]. The mRNAs are transported to

distal dendrites in a translational silent manner by binding to

RNA-binding proteins (RBPs) within specific ribonucleic particles,

called transport RNPs. In these particles, the RBPs show a dual

function: they act both as mRNA transport factors and as

translation repressors. At their destinations, neuronal activity

stimulates post-translation modifications of RBPs, which promote

the release and translation of associated mRNAs.

The Zipcode binding protein 1 (ZBP1) is one of several RBPs

found in RNPs whose translational regulation has been extensively

studied. ZBP1 binds a wide variety of mRNAs, but only its binding

to 39UTR of b-actin mRNA has been characterized. During

growth cone turning, ZBP1 binds the b-actin mRNA, represses its

translation and transports it to growth cones [4]. The phosphor-

ylation of ZBP1 by Src, stimulated by Brain-Derived Neutrophic

Factor (BDNF), determines the release and the local translation of

b-actin mRNA favoring the growth cone [5,6].

The local translation of mRNAs at final destinations is fast and

tightly controlled to avoid aberrant protein expression, but the

molecular mechanisms that regulate the process are not under-

stood yet. The release of mRNAs occurs on transport RNPs [5],

which contain, besides RBPs, also eukaryotic initiation factors

(eIFs) and ribosomes [5,7,8]. So far it has been established that

many RBPs associate to ribosomes, but whether the binding of

mRNA-RBP complexes to specific ribosomal proteins is critical to

stimulate the post-translatonal modifications of RBPs and,

consequently, the release and translation of the associated mRNAs

has not been determinated yet.

The role for many ribosomal proteins is mainly structural,

whereas for others a double role is emerging: they also participate

in the control of specific pathways, as reported by the interaction

of some large and small ribosomal proteins with the tumor

suppressor p53 [9]. Associated to ribosomes, there are also several

proteins whose function is not clear yet. The Receptor Activated C

Kinase 1 (RACK1) protein is one example. RACK1 has been

isolated as a scaffold protein for the activated PKCbII [10], but

several reports have demonstrated its involvement in multiple

biochemical pathways [11,12,13]. The presence of RACK1 on

ribosomes is well documented in mammalian as well as in yeast

cells [14,15,16]. Moreover by crystallographic studies of Saccha-

romyces cerevisiae subunit and of Tetrahymena thermophila 40S

ribosomal subunit show that RACK1 localizes at head the back of

40S head region and makes direct contact with the ribosomal

RNA [17,18]. RACK1 has been also demonstrated to be recruited

in stress granules (SGs) [19]. These structures appear in the

cytoplasm in response to stress conditions (heat stress, glucose

deprivation, hypoxia) and are constituted by 40S ribosomal

subunits, eIFs and many RBPs, such as ZBP1, FMRP and Staufen

[20,21]. Despite the evidence showing RACK1 associated to
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ribosomes, its possible role in protein synthesis has not been

identified. In this study, we show that RACK1 represents a

docking site on ribosomes for the b-actin mRNA/ZBP1 complex

and that the binding of this complex to RACK1 is critical to the

release and translation of b-actin mRNA. This study defines

RACK1 as a ‘‘ribosome receptor’’ and provides a new insight into

the molecular mechanism for translational control and the release

of b-actin mRNA

Results

RACK1 colocalizes on transport RNPs in vivo and in vitro
RACK1 has been found to be abundantly and widely expressed

in almost all areas of the central nervous system. Many studies

concerning its scaffold function have been carried out on neuronal

tissue [22]. Thus, to investigate its potential role in translational

control, we studied RACK1 in neuronal cultures. Previous

works showed that RACK1 was distributed in cell bodies and

along dendrites of adult tissue mouse [14,22]. Immunofluores-

cence studies conducted on cultured embryonic cortical neurons

confirmed the sub-cellular localization of RACK1 in soma

(Fig. 1A) and along dendrites and axons as shown by colocalization

with MAP2 and Tau proteins respectively (Figure S1A and S1B)

Moreover, RACK1 appeared in the form of granules in cell body

and in neurites (Fig. 1A). To verify whether this granular pattern

was also visible in vivo, we immunostained slices of adult mouse

hippocampus by anti-RACK1 antibody. In adult tissue, RACK1

showed a granular distribution identical to that in cortical neurons

(Fig. 1B). This demonstrated that RACK1 distributed in granular

form both in vitro and in vivo.

To verify whether the distribution of RACK1 was affected by

neuronal activity, cortical neurons were depolarized with 50 mM

KCl for 15 min and, next, immunostained by anti-RACK1

antibody. KCl significantly increased the number of granules

labeled by RACK1, indicating the sensitive of its distribution to

membrane depolarization (Figure S2). Many RBPs and ribosomal

proteins of transport RNPs show a pattern similar to that observed

by RACK1. Moreover, they redistribute as RACK1 in response to

KCl stimuli [23]. Thus, we verified whether RACK1 might be

part of transport RNPs. A co-immunostaining analysis in primary

cortical neurons with anti-RACK1 and anti-ZBP1 antibodies, a

specific marker for transport RNPs [24] revealed an extensive co-

localization of RACK1 and ZBP1 proteins in the soma. Along

neurites some particles stained by RACK1 were also positive for

ZBP1, while others are located next to each other (Fig. 1C). To

further confirm the localization of RACK1 on transport RNPs, the

granular pattern of RACK1 was investigated in cortical neurons

transfected with GFP-ZBP1, which is known to be recruited in

RNPs [5]. We found that, in transfected neurons, the particles

stained by RACK1 strongly colocalized with those of GFP-ZBP1

in soma and in neurites (Fig. 1D). Taken together, these results

confirmed the localization of RACK1 on transport RNPs of

cortical neurons.

RACK1 interacts with ZBP1 through its Src
phosphorylation and binding site (Y246)

The strong colocalization of RACK1 with ZBP1 on transport

RNPs prompted us to investigate whether RACK1 might interact

with ZBP1. To this aim, human SH-SY5Y neuroblastoma cells,

expressing low amount of ZBP1 (data not shown), were transfected

with Flag-ZBP1 cDNAs and a co-immunoprecipitation assay was

performed from total lysates. As revelead by western blotting

analysis on eluted protein from Flag and Flag-ZBP1 immunopre-

cipitation, RACK1 associated to Flag-ZBP1 (Fig. 2A), indicating a

specific interaction with ZBP1.

Next, we asked how the interaction of RACK1 with Flag-ZBP1

might be regulated. It has been reportd that RACK1 is

phosphorylated by Src kinase and that this phosphorylation is

critical for the binding of Src to RACK1. Moreover, we previously

reported that ZBP1 protein is a substrate of Src tyrosine kinase

[6,13]. Thus, we postulated that Src kinase might control the

RACK1-ZBP1 interaction. We studied the binding of RACK1 to

ZBP1 in response to treatments known to activate Src, such as

dibutyl-cAMP (db-cAMP), Pituitary Adenylate cyclase-activating

polypeptide (PACAP) or BDNF [25,26] in presence of the specific

Src inhibitor, PP2. In the db-cAMP or PACAP stimulated cells, we

found that the interaction of RACK1 to Flag-ZBP1 was reduced,

while PP2 restored the complex at levels comparable to control

cells (Fig. 2C). On the contrary, BDNF increased the binding of

RACK1 to Flag-ZBP1, while PP2 reduced the association between

the proteins (Fig. 2D). These results indicated that Src may

associate/dissociate the Flag-ZBP1/RACK1 complex, depending

on which extracellular signal stimulates its kinase activity.

To further investigate how Src may regulate the interaction of

RACK1 with ZBP1, we co-expressed, in SH-SY5Y cells, Flag-

ZBP1 with GFP-RACK1wt, which is reported to inhibit the Src

kinase activity [11,13], or with GFP-RACK1 mutated in Src

phosphorylation and binding site (tyrosine 246, Y246 changed in

phenyalanine, Y246F), which on the contrary does not inhibit Src

activity [11,13]. If Src controls the association/dissociation of

RACK1-ZBP1 complex, the overexpression of GFP-RACK1wt

should inhibit the association or the dissociation of complex after

Src activation. While the overexpression of mutated RACK1

should stimulate it. As shown by immunoblotting for Flag-ZBP1

on proteins eluted in GFP-immunoprecipitation, GFP-RACK1wt

binds Flag-ZBP1 in untreated control conditions (Fig. 2D).

Surprisingly, in GFP-RACK1Y246F/Flag-ZBP1 co-expressing cells,

GFP-RACK1Y246F associated with Flag-ZBP1 less than GFP-

RACK1wt, suggesting that RACK1 and ZBP1 interacted through

the Src binding site of RACK1.

RACK1Y246F inhibits recruitment of ZBP1 on ribosomes
and reduces the release and translation of b-actin mRNA

It has been described that the Src-binding site of RACK1

remains exposed when it is associated with the 40S subunit

[17,18]. Moreover, Src removes the translational repression on b-

actin mRNA by phosphorylating ZBP1 at Tyr396 [6]. The results

presented so far establish that the Src phosphorylation and binding

site Y246 of RACK1 is critical for the association of RACK1 to

ZBP1. Therefore, we asked whether, through this site, RACK1

may represent a scaffold protein for b-actin mRNA/ZBP1

complex on ribosomes. To verify this hypothesis, we investigated

the localization of Flag-ZBP1 on ribosome in GFP-RACK1Y246F

overexpressing cells. Ribosomal profiles were conducted on

neuroblastoma cells co-expressing Flag-ZBP1 with GFP, GFP-

RACK1wt or with GFP-RACK1Y246F cDNAs. Immunoblotting

with Flag, GFP and RACK1 antibodies, assessed on collected

fractions, revealed that Flag-ZBP1, GFP-RACK1WT and GFP-

RACK1Y246F co-sedimented in free ribosomes and polysomes as

endogenous RACK1. As expected, the presence of GFP-

RACK1Y246F on ribosomes greatly reduced the amount of Flag-

ZBP1 on fractions corresponding to 40S and 60S/80S subunits

(fractions 2–4 in Fig. 3A, and graphic in 3B). Since the Y246F

mutation did not affect GFP-RACK1Y246F nor endogenous

RACK1 levels in ribosomal fractions (Fig. 3A), the low amount

of Flag-ZBP1 on ribosome subunits was be dependent on the

decrease of its binding to GFP-RACK1Y246F.

Src Regulates RACK1/ZBP1 Complex on Ribosomes
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Given that Src may regulate the RACK1/Flag-ZBP1 complex

formation, we evaluated whether GFP-RACK1Y246F expression

also impaired the localization of Src on ribosomes. An active role

of Src in translational control has been documented [27,28], but

its direct association to translational machinery has not been

demonstrated yet. Ribosomal profiles of SH-SY5Y cells, showed

that Src co-sedimented in the same fractions containing eIF4E, an

eukaryotic factor of 48S complex [29] (Figure S4A). Moreover, the

binding of Src to the translational machinery was confirmed by its

co-purification with RACK1 and polyA-binding protein (PABP),

in an oligo-dT pull down assay as performed in Text S1 (Figure

S4B). In SH-SY5Y co-expressing Flag-ZBP1 and GFP-

RACK1Y246F cells, the localization of Src on ribosomes was

reduced, indicating that the GFP-RACK1Y246F on ribosomes also

impaired the binding of Src to 40S/60S and to 80S monosomes

(Fig. 3A and graphic in 3C).

The binding of the b-actin mRNA to ZBP1 [5,6] and the

impairment of association of Flag-ZBP1 to GFP-RACK1Y246F at

the ribosome level led us to investigate whether the amount of b-

actin mRNA bound to ribosomes and its translation were also

affected. To this aim, the level of b-actin mRNA was measured by

qRT-PCR on total RNA purified from translationally inactive

(fractions 2–3 of ribosomal profile in Fig. 3A) and translationally

active fractions (polysomal fractions 5–8). The assay was

performed in Flag-ZBP1 overexpressing cells transfected with

GFP, GFP-RACK1wt or GFP-RACK1Y246F cDNAs. In cells co-

expressing Flag-ZBP1 and GFP-RACK1wt the amount of b-actin

mRNA was increased in both translationally inactive and in

polysomal fractions (Fig. 3D). The GFP-RACK1Y246F overexpres-

sion greatly reduced the level in both fractions compared to those

of GFP-RACK1wt, indicating a low rate of translation. Moreover,

the total b-actin expression mRNA was not affected by the GFP-

Figure 1. RACK1 localizes on RNA transport granules in cortical neurons. A, RACK1 appears in granular forms in rat cortical neurons
immunostained with anti-RACK1(green) and DAPI (blue). Scale bar 20 mm. Enlarged view indicates neurite of cortical cells. B, RACK1 also appears in
granular forms in vivo. Hippocampal tissue of adult mouse immunostained with RACK1 (green). Enlarged view shows the soma of neurons. Arrows
indicate the granules stained by RACK1 antibody. Scale bar 20 mm. C, RACK1 colocalizes with endogenous ZBP1 transport RNPs. Cortical neurons
were immunostained with RACK1 (red) and ZBP1 (green) antibodies. Scale bar 40 mm. Arrows in enlarged images indicate granules where RACK1 co-
localizes with endogenous ZBP1 along neurites. D, RACK1 and GFP-ZBP1 co-localize on transport RNPs of GFP-ZBP1 transfected neurons. Cortical cells
were transfected with GFP-ZBP1 cDNA and after 24 hours fixed and processed for anti-RACK1. The arrows in enlarged view (a) indicate the granules
where GFP-ZBP1 and RACK1 colocalize. Scale bar 20 mm.
doi:10.1371/journal.pone.0035034.g001
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RACK1WT and GFP-RACK1Y246F overexpression (Figure S5).

These results demonstrated that the decrease of b-actin mRNA on

ribosomes and of its translation was not dependent on transcrip-

tional control, but on the decrement of GFP-RACK1Y246F/Flag-

ZBP1 complex on ribosomes

The release of b-actin mRNA from ZBP1 is an essential step

for its translation. Therefore, we asked whether GFP-

RACK1Y246F might also affect the release of b-actin mRNA

from ZBP1. We quantified the amount of b-actin mRNA bound

to Flag-ZBP1 by qRT-PCR assay on RNA purified by Flag-

ZBP1 immunoprecipitation. We conducted the assay on Flag-

ZBP1 overexpressing cells transfected with GFP, GFP-RACK1wt

and GFP-RACK1Y246F cDNAs. The level of b-actin mRNA

associated to Flag-ZBP1 in cells co-transfected with GFP-

RACK1Y246F and Flag-ZBP1 cDNAs was greater than that in

cells co-transfected with Flag-ZBP1 and GFP or GFP-RACK1wt

cDNAs (Fig. 3E). This suggested that the b-actin mRNA

accumulated on Flag-ZBP1 protein and its release from Flag-

ZBP1 was impaired.

Taken together, these results showed that GFP-RACK1Y246F,

affecting the binding of ZBP1 and of Src to ribosomes, reduces the

release of b-actin mRNA from Flag-ZBP1 and, consequently, its

translation

Figure 2. Src kinase regulates the RACK1/ZBP1 complex and the Y246 of RACK1 is critical for the binding with ZBP1. A, Endogenous
RACK1 interacts with Flag-ZBP1 in an anti-Flag immunoprecipitation assay from total lysate of neuroblastoma Flag-ZBP1-transfected cells. Western
blotting for endogenous RACK1 and Flag-ZBP1 on proteins eluted from anti-Flag immunoprecipitation assay. Flag transfected cells were used as
negative control. Input represents 5% of total lysate. B and C, Src activity regulates the RACK1-ZBP1 complex formation. B, db-cAMP or PACAP
treatments of Flag-ZBP1 transfected cells reduced the binding between RACK1 and Flag-ZBP1, whereas PP2 restored the binding, as in untreated
cells. C BDNF treatments increased the binding of Flag-ZBP1 to RACK1 in Flag-ZBP1 transfected cells. Src inhibition by Src inhibitor PP2 reduced the
RACK1-ZBP1 complex stimulated by BDNF. The density value of immnoprecipitated RACK1 is normalized to that of immunoprecipitated Flag-ZBP1
and summarized in both graphics. Data are graphed as means plus S.D. D, The Src binding and phosphorylation site (Y246) of RACK1 is critical for
complex formation. Flag-ZBP1 protein co-immunoprecipitated with GFP-RACK1wt and GFP-RACK1Y246F in immunopreciptation assays using anti-GFP
antibody, but in the presence of GFP-RACK1Y246F the binding was reduced. The figures are representative of three independent experiments. The
density value of co-immnoprecipitated Flag-ZBP1 is normalized to that of immnoprecipitated GFP-RACK1wt or GFP-RACK1Y246F and summarized in
both graphic. Data are graphed as means plus S.D.
doi:10.1371/journal.pone.0035034.g002
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The translation of b-actin mRNA in the growth cone is
reduced by RACK1Y246F

The release and the translational control of b-actin mRNA by

Src phosphorylation of ZBP1 plays a critical role in growth cones

[6]. The results in neuroblastoma cells indicate that the decrease

of the binding of b-actin mRNA/ZBP1 complex to GFP-

RACK1Y246F on ribosomes reduces the release of b-actin mRNA

from ZBP1 and, consequently, its translation. Thus, we asked

whether GFP-RACK1Y246F overexpression also affected the

release and translation of b-actin in growth cones. To this aim,

cortical neurons were co-transfected with Flag-ZBP1 and GFP-

RACK1wt or GFP-RACK1Y246F cDNAs. The growth cones were

analyzed by FISH, to evaluate the amount of b-actin-mRNA, and

by immunofluorescence, to detect the level of endogenous b-actin

protein (as reported in Materials and Methods and in Text S1).

Quantitative fluorescence analysis showed that FISH signals

(Fig. 4A) in growth cones of neurons co-expressing GFP-RACK1wt

and Flag-ZBP1 were similar to those of neurons co-expressing

GFP and Flag-ZBP1 (control neurons). In contrast, a significant

increase of the mRNA fluorescence intensity, with respect to

Figure 3. RACK1Y246F impairs the binding of ZBP1 and Src kinase to ribosomes and reduces the release and translation of b-actin
mRNA. A, ZBP1 and Src are less abundant in ribosomal profile fractions collected from stable GFP-RACK1Y246F overexpressing cells, transfected with
Flag-ZBP1 cDNA. The histograms in B and in C summarize the ratio of density values between Flag-ZBP1 B or Src C and GFP-RACK1wt or GFP-
RACK1Y246F immunoblots in 2–4 ribosomal fractions. D, The level of b-actin mRNA, measured by qRT-PCR, on RNA isolated from non translating
fractions (fractions 2–3 of ribosomal profile reported in A) and from polysomal fractions (fractions 5–8) was decreased in GFP-RACK1Y246F/Flag-ZBP1
cells, as compared to that of GFP-RACK1wt/Flag-ZBP1 expressing cells. E, GFP-RACK1Y246F induced an increase of b-actin mRNA associated to Flag-
ZBP1, as measured by qRT-PCR on RNA isolated from Flag-ZBP1 immunoprecipitation of GFP-RACK1Y246F/Flag-ZBP1 cells. In D and E, the values were
normalized to those of 18S rRNA and the data are graphed as mean 6 S.D.* = p,0,05, # and 1 = p,0,01 second t-test student. In A and D the
transfection efficiency was normalized with respect to the amount of Actin protein (Figure S3). In E, the transfection efficiency was normalized with
respect to immunoprecipitated Flag-ZBP1 proteins as in Figure 2B.
doi:10.1371/journal.pone.0035034.g003
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control neurons, was observed in growth cones of neurons co-

expressing GFP-RACK1Y246F and Flag-ZBP1. This showed that

there was an accumulation of b-actin mRNA in the growth cones

of neurons expressing GFP-RACK1Y246F, probably as a conse-

quence of an impaired release from Flag-ZBP1, as observed

neuroblastoma cells (Fig. 3E). The quantification of immunoflu-

orescence experiments (Fig. 4B) confirmed, at the protein level, the

results of FISH studies. In fact, a strong decrease of fluorescence

signal for endogenous b-actin protein was observed in growth

cones of neurons co-transfected with GFP-RACK1Y246F and Flag-

ZBP1 cDNAs. This indicated a reduction of endogenous b-actin

protein. which might affect the incorporation of b-actin protein

into actin filament and, consequently impair the growth cones.

Thus, the results from growth cones of cortical cells, as well as in

neuroblastoma cells indicated that, the release from Flag-ZBP1

and the translation of b-actin mRNA were inhibited by GFP-

RACK1Y246F.over-expression.

The overexpression of GFP-RACK1 stimulates the
dendritic branching out in cortical neurons

The results obtained in growth cones prompted us to investigate

the overall morphological effects induced by RACK1Y246F in

neurons. The dendritic morphology of cortical neurons transfected

with either GFP-RACK1wt or GFP-RACK1Y246F, revealed by

anti-GFP immunofluorescence (Fig. 5A), was very striking.

Quantitative analysis of dendritic morphology measured by Sholl

analysis (as reported in Text S1) showed greater neurite branching

in GFP-RACK1wt expressing cells than in GFP and GFP-

RACK1Y246F transfected neurons. There was a higher number

of thin dendritic arborizations in GFP-RACK1wt expressing cells.

In some cells, the arborizations departed directly from the soma

and in others from the principal dendritic processing (Fig. 5A and

graphic in B). These results demonstrate that, although the Src site

on RACK1 protein is fundamental to regulate the dendritic

outgrowth by controlling the b-actin mRNA translation, RACK1

may contribute to the dendritic arbors through regulation of other

pathways.

Discussion

In this study we show that RACK1 functions as a scaffold

protein on ribosomes for the b-actin mRNA/ZBP1 complex. We

found that the binding of RACK1 to ZBP1 on ribosomes is critical

for the release of b-actin mRNA from ZBP1 and, consequently, for

its translation. The presence of RACK1 on ribosomes has been

reported by several studies [14,15]. Despite the protein sequence

of RACK1 is lacking of RNA-binding domain, the disruption of

yeast RACK1 ortholog’s (Asc1p) position at 40S ribosomal subunit

results in failure of the mRNA binding protein Scp160 to associate

Figure 4. RACK1Y246F induces accumulation of b-actin mRNA in growth cones of cortical cells and reduces its translation. A, Growth
cones of cortical cells co-transfected with Flag-ZBP1wt and GFP-RACK1Y246F show increased levels of b-actin mRNA as measured by Q-FISH. The
method to quantify the signal is reported in supplemental information and the values are summarized in the histogram in the left. B, The translation
of b-actin protein in growth cones of cortical neurons co-transfected with Flag-ZBP1wt and GFP-RACK1Y246F was reduced, as indicated by in Q-IF. All
data are reported as mean 6 s.e.m. Significance was set as p#0.05. When significance was adjusted, it is referred to as alpha. b-tubulin
immunofluorescence is shown as a marker for growth cone morphology. Scale bar 10 mm.
doi:10.1371/journal.pone.0035034.g004

Src Regulates RACK1/ZBP1 Complex on Ribosomes

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e35034



with ribosomes [16]. Recently, it has been reported that RACK1

can contribute to the association of miRNA complex to the

translating ribosomes [30,31]. Recent papers on the three-

dimensional structure of eukaryotic 40S and 80S demonstrate

that RACK1 could be available for simultaneous binding to

ribosomes and Src and/or PKC [17,18]. Indeed, in the structure

of RACK1 bound to 40S ribosome subunit, the Src binding and

the PKC binding domains of RACK1 are exposed. Thus, in this

context, it is plausible to identify the function of RACK1 on

ribosomes through the interaction with Src substrates such as

ZBP1.

Here, we demonstrate that RACK1 binds the b-actin mRNA/

ZBP1 complex through the Src phosphorylation and binding site

Y246. It is well established that phosphorylation of this site by Src

is a prerequisite for the binding of Src to RACK1 and for kinase

inhibition [11,32]. Our results suggest that, in presence of ZBP1,

ribosomal RACK1 preferentially binds ZBP1 at the Y246 site.

This interpretation is confirmed by release of b-actin mRNA from

Flag-ZBP1 in cells and in growth cones expressing GFP-

RACK1wt. In fact, the expression of GFP-RACK1wt, demonstrat-

ed to inhibit Src kinase activity [11,32], increases the release of b-

actin mRNA from Flag-ZBP1 and, consequently, its translation,

compared to those of GFP-RACK1Y246. This indicates that Src

can phosphorylate ZBP1 to remove the repression on b-actin

mRNA, and demonstrates that Src is active and dissociated from

GFP-RACK1wt. This model is fully in agreement with ZBP1

phosphorylation by Src to remove the translational repression at

b-actin mRNA in specific sites of neurons [33]. Indeed, the

localization of endogenous RACK1 and ZBP1 on transport RNPs

(Fig. 1c and D) may repress the translation of b-actin mRNA

during transport to specific sites. At local destinations, activated

Src removes the translational repression by phosphorylating ZBP1.

The role of Src in this molecular mechanism may be distinct

depending on which extracellular stimuli induce its activity.

The BDNF-activated Src may directly stimulate the association of

ZBP1 to RACK1, through a direct binding to both proteins,

whereas PACAP38-activated Src may indirectly induce the

dissociation of ZBP1-RACK1 complex, through the activation of

PKA (Fig. 6B). This latter hypothesis is supported by findings that

PKA is activated by Src, following PACAP signalling [26] and by

the presence of phosphorylation consensus site for PKA on ZBP1

[34]. Further studies will be essential to establish whether the

regulation of ZBP1/RACK1 complex by Src kinase is a further

mechanism for translational control of other mRNAs bound to

ZBP1.

The translational control by Src activity has been well

documented. It has been reported that Src acts on eIFs regulating

the mTOR kinase [27,28,35,36]. However, in this mechanism, Src

controls the translation of all cap-mRNAs and of the overall

protein synthesis. Instead, in the translation of b-actin mRNA, Src,

by phosphorylating ZBP1, directly acts on the translational control

of specific mRNAs. Our findings show that Src localizes on

ribosomes, suggesting that it may act at ribosomal level to control

the translation of specific mRNAs. In the absence of ZBP1, Src

may bind to ribosomes through the binding and phosphorylation

site of RACK1, in agreement with proposed model in crystallo-

graphic studies on ribosomal RACK1 [17,18]. In this case, we

speculate that, in correlation with the ability of RACK1 to inhibit

the Src kinase [13], the binding of Src to RACK1 on ribosome

may be necessary to avoid aberrant phoshorylations of some

components of translational machinery. The presence of Src on

ribosomes opens the possibility to consider new potential Src

ribosomal substrates in the regulation of translation.

Figure 5. The dendritic branching out induced by GFP-RACK1wt. A, Immunofluorescence for GFP in cortical neurons transfected with GFP, or
GFP-RACK1wt or GFP-RACK1Y246F. GFP-RACK1Y246F reduced the dendritic arbors indeced by GFP-RACK1wt overxpression Scale bar 20 mm B, Graphic
reporting the values of dendritic branching seen in A. The values were measured as means of the number of neurite intersections measured by Sholl
analysis. Data are graphed as mean 6 S.D.
doi:10.1371/journal.pone.0035034.g005
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Figure 6. Molecular mechanism of RACK1/ZBP1 complex regulating the release and translation of b-actin mRNA. A, Schematic figure
showing the interaction of RACK1 with the b-actin mRNA/ZBP1 complex through its Src binding site (Y246) on 40S ribosome subunit of RNPs (left). In
presence of the mutation Y246F (right), RACK1 on ribosomes fails to recruit the b-actin mRNA/ZBP1 complex and Src. This impairment blocks the
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Several evidences in neurons have shown that RACK1 is

involved in multiple neuronal functions by the association to a

variety of proteins, such as kinases, phosphatases and critical

membrane receptors [23]. In neurons, RACK1 has been localized

in cell bodies and along dendrites [14,22]. Here, we show that

both in vitro and in vivo RACK1 appeared in granular forms

corresponding to transport RNAs. Our study on RACK1

overexpression in cortical neurons indicate that it may regulate

the dendritic branching out. We propose that the scaffold

properties of RACK1 may favor the binding on ribosomes,

besides of ZBP1, also of other protein regulating this neuronal

processing. This is corroborated, as seen above, by structural

studies which show that RACK1 bound to 40S subunit might bind

not only Src kinase, but also PKC kinase. Although it is possibile

that RACK1 may regulate the branching out through the

interaction with other proteins, the results observed on overex-

pression of RACK1 are in agreement with the critical role of ZBP1

in dendritic arborization development in hippocampal neurons

[37]. The identification of which other specific mRNA/RBPs

complexes are associated to RACK1 and which other mRNAs are

translational controlled by RACK1 will help to elucidate the

function of RACK1 in neuronal cells.

Materials and Methods

Cell Culture, transfections and stable clones
Human neuroblastoma SH-SY5Y cells, obtained from Amer-

ican Type Culture Collection (ATCC, Rockville, MD) were

cultured in DMEM/F12 medium containing 10% of FBS and

antibiotics (50 U/ml penicillin and 50 mg/ml streptomycin) at

37uC in 5% CO2/95% air. Cortical and hippocampal neuron

cultures were prepared from Sprague-Dawley E18 embryos, as

previously described [6,38]. For transfections, SH-SY5Y cells were

transfected with Flag, Flag-ZBP1, pEGFP, GFP-RACK1wt and

GFP-RACK1Y246F cDNAs using the manufacturer’s protocol of

Lipofectamine 2000 (Invitrogen). Stable SH-SY5Y clone cells for

pEGFP, GFP-RACK1wt and GFP-RACK1Y246F were produced

by selecting transfected cells resistant at 450 mg/ml G418

(Gentamycin, Sigma). Neurons were transfected with the rat

Amaxa nucleofection kit (Lonza) or Lipofectamine 2000 (Invitro-

gen). In Amaxa nucleofection, 56106 neurons were transfected

with 1.5 mg of Flag-ZBP1 and 1.5 mg of a GFP plasmid (pEGFP,

GFP-RACK1wt, GFP-RACK1Y246F, GFP-ZBP1). For Lipofecta-

mine 2000, neurons were processes as indicated by the

manufacturer’s protocol, using 1.5 mg of Flag-ZBP1 and 1.5 mg

of GFP plasmids.

For pharmacological treatments, SH-SY5Y Flag-ZBP1 trans-

fected cells were starved 24 hrs and then treated with 100 ng/

ml BDNF (Alomone),1 mM dibutyryl-cAMP. (db-cAMP, Sigma)

or 100 nM Pituitary adenylate cyclase-activating polypeptide

(PACAP, Sigma) for 30 min at 37uC. Where required, 10 mM

Src inhibitor PP2 (Calbiochem) or vehicle were added to the

medium for 30 min at 37uC. For cortical embryonic cells,

50 mM KCl was added to Neurobasal B27 15 min before

fixation.

Fluorescent In Situ Hybridization (FISH) and
Immunofluorescence (IF)

Q-FISH was performed as previously described in text S1 and

in [6]. One digoxigenin-labeled oligonucleotide probe was used

to detect rat b-actin mRNA. The sequence of this probe was: 59-

TGAGGAAAGTAGGGTTGATGAGGCCAGCTTGGCCAG

GTGTCAGGGAGATACCTTC-39 As controls, neurons were

hybridized with a DIG-labeled scrambled oligonucleotide probe

Immunofluorescence (IF) experiments
IF experiments were performed essentially as previously

described in Text S1 and in [6], and the following primary

antibodies were used: mouse anti-RACK1 (BD biosciences, 1:100),

polyclonal anti-ZBP1 mouse [39] anti-tubulin (E7, Developmental

Studies Hybridoma Bank; 1:1500), rabbit anti-tubulin (Sigma;

1:1000), mouse anti-b actin (AC15, Abcam; 1:1500), rabbit anti-

Flag (Sigma; 1:1000), polyclonal anti-GFP (Text S1, 1:2000).

Immunohistochemistry
Three-months-old mice were anesthetized with an excess of

2,2,2-tribromethanol (400 mg/kg) and intracardially perfused with

a 4% solution of paraformaldehyde in PBS. Brains were processed

for immunohistochemistry to detect RACK1 using the primary

antibody seen above. Immunohistochemistry was performed

according to the protocols previously described [40].

All experiments were conducted according to national and

international laws for laboratory animal welfare and experimen-

tation (EEC Council directive 86/609, OJ L 358, 12 December

1987. Experimentation was approved by Italian Department of

health (approval n. 9/2006).

Ribosome profiles, immunoprecipitations and western
blotting

For ribosome profiles, wild type or transfected SH-SY5Y cells

were lysed in polysomal buffer (10 mM Tris-HCl, 50 mM KCl,

10 mM MgCl2 and 0,5% NP-40). MgCl2 was substituted with

10 mM EDTA, for ribosome profile in the presence of EDTA.

Total lysate was clarified by centrifugation at 14,000 r.p.m. for

5 min at 4uC and the supernatanat was loaded on a continuous

sucrose gradient 15–50% in 10 mM Tris-HCl, 50 mM KCl,

10 mM MgCl2 or 10 mM EDTA. After ultracentrifugation

(Beckman) at 37,000 rpm for 2 hrs at 4uC, sucrose gradient was

collected in fractions and the profile was obtained by total RNA

analysis at 254 nm in Bio-radBiologic LP Half amount of collected

fractions was used to precipitate proteins with 10% trichloroacetic

acid (TCA) and the other half used to isolate total RNA.

Immunoprecipitations were conducted in polysomal buffer and

SH-Y5Y transfected cells were lysate and clarified as seen for

ribosome profiles. Next, the supernatant was incubated overnight

either with polyclonal-GFP, produced as in Text S1, (1:100) or

30 ml mouse anti-Flag M2 (Sigma-Aldrich) at 4uC. For GFP

immunoprecipitation, pre-equilibrated 30 ml of protein G and

30 ml of protein A sepharose resin (GE healthcare) were added and

incubated for 1 hour at 4uC. The resins were extensively washed

with polysomal buffer and total RNA or proteins were eluted for

RNA isolation or for western blotting.

release of b-actin mRNA from ZBP1 and its translation. B, Src can be activated by BDNF or by PACAP treatments. In BDNF stimulation, Src, activated
through TrkB, may directly bind, and phosphorylate, both free or ribosomal bound RACK1 and free b-actin mRNA/ZBP1 complex. Next, RACK1 and b-
Actin mRNA/ZBP1 associate on ribosomes and the b-actin mRNA is released to be translated. Instead, PACAP-activated Src stimulates PKA kinase
which in turn may induce the dissociation of the b-actin mRNA/ZBP1-RACK1 complex by phosphorylating ZBP1.
doi:10.1371/journal.pone.0035034.g006
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For western blotting, proteins were loaded on SDS-PAGE 10%

and transferred on PVDF (Millipore) membrane and the following

primary antibodies were used: mouse anti-RACK1 (1:2000),

mouse anti-ZBP1 (Huttelmaier 2005, 1:1000), polyclonal anti-

GFP (1:1000), mouse anti-Actin (Sigma, 1:1000), polyclonal anti-

Src ,polyclonal anti-eIF4E, polyclonal anti-PABP (alls from Cell

signalling, 1:1000) and mouse anti-GAP43 (1:2000), polyclonal

anti-p27BBP/eIF6 (kindly provided by prof. Biffo Stefano, 1:1000).

Secondary HRP-coniugated anti-mouse or anti-rabbit antibodies

and ECL reagent (GE healthcare) were used. For RACK1, mouse

HRP-coniugated anti-IgM was used.

RNA isolation and qRT-PCR
Total RNA was purified from immunoprecipitates and

ribosomal fractions with TriReagent (Invitrogen) according to

manufacturer’s protocol. The purified RNA was used for qRT-

PCR. The first strand cDNA template was synthesized from

500 ng of total RNA using random primers and Superscript

III reverse transcriptase (Invitrogen, USA). All reactions were

performed with SYBR Green PCR Master Mix (BioRad) and

carried out in the iCycler (BioRad). Primers for Quantitative PCR

(QTR-PCR) analysis were designed with the assistance of

Universal Probe Library Software (Roche Applied Science). The

following primers were selected to amplify: Homo sapiens b-actin,

(ACTB) forward 59-TCCCTGGAGAAGAGCTACG-39 and

reverse 59-GTAGTTTCGTGGATGCCAC; Homo sapiens

RNA, 18S (ribosomal 1 forward) 59-AGGGCAGGGACTTAAT-

CAACGC-39 and reverse 59-GTTGGTGGAGCGATTTGTC

TGG-3. Relative change of mRNA amount was calculated based

DCt method, as described in [41].

Supporting Information

Figure S1 RACK1 along dendrites and axons of embry-
onic cortical cells. Co-immunostaining of MAP2 (A, green) or

Tau (B, green) and RACK1 (red) indicated the localization of

RACK1 in dendrites and axons. Scale bar 20 mm.

(TIF)

Figure S2 Neuronal activity reorganizes the distribu-
tion of RACK1. 50 mM KCl for 15 min increases the number of

granules stained by RACK1. In the graphic are summarized the

results observed in immunofluorescence in right Scale bar 20 mM.

(TIF)

Figure S3 Transfection efficiency. Western blotting for

GFP, GFP-RACK1, Flag-ZBP1, RACK1, Src and Actin on total

lysate from SH-SY5Y cells co-expressing Flag-ZBP1 and GFP,

GFP-RACK1wt or GFP-RACK1Y246F protein.

(TIF)

Figure S4 Src is part of the translational machinery. A,

Src, as well as eIF4E and RACK1, localized in fractions at the top

of the gradient, where 40S accumulated in the EDTA sucrose

gradient from SH-SY5Y cells. B, Oligo-dT assay in cortical cells

which specifically purifies proteins associated to mRNAs such as

RNA binding proteins, 40S, 80S, polyribosomes and translational

factors (ref 1 in Text S1). Src was specifically isolated as RACK1

and PABP proteins. p27BBP/eIF6, which binds only 60S ribosomal

subunit and does not bind mRNAs, was not purified, indicating

that the assay was specific for proteins associated to mRNAs. The

figure shows the western blots on three independent experiments.

(TIF)

Figure S5 The b-actin mRNA expression in GFP-
RACK1wt and GFP-RACK1Y246F overexpressing cells.
Total b-actin mRNA, measured by qRT-PCR and normalized

to 18S rRNA, is not affected by overexepression of GFP-

RACK1wt and GFP-RACK1Y246F.

(TIF)

Text S1

(DOC)
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