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Abstract As we age, there is an age-related loss in

skeletal muscle mass and strength, known as sarcope-

nia. Sarcopenia results in a decrease in mobility and

independence, as well as an increase in the risk of

other morbidities and mortality. Sarcopenia is there-

fore a major socio-economical problem. The mecha-

nisms behind sarcopenia are unclear and it is likely

that it is a multifactorial condition with changes in

numerous important mechanisms all contributing to

the structural and functional deterioration. Here, we

review the major proposed changes which occur in

skeletal muscle during ageing and highlight evidence

for changes in physical activity and nutrition as

therapeutic approaches to combat age-related skeletal

muscle wasting.
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Skeletal muscle ageing

Sarcopenia is defined as the loss of muscle mass and

function as we age (Rosenberg 1989). In humans,

sarcopenia affects individuals from approximately the

4th decade of life (Lexell et al. 1988), with a decrease

of 30–50% in skeletal muscle mass and function by the

time individuals reach approximately 80 years of age

(Akima et al. 2001) and this is worsened by unloading

of muscle in inactive old people (Bamman et al. 1998;

Breen et al. 2013).

The mechanisms that underlie sarcopenia are not

completely understood and it is likely that it is a

multifactorial condition with a network of interacting

dysfunctional systems (Fig. 1). Among several pro-

posed processes are: decrease in protein synthesis

(Welle et al. 1993), infiltration of fat tissue and

connective tissue into skeletal muscle (Brack et al.

2007; Addison et al. 2014), dysregulation of protea-

somal degradation pathways (Chondrogianni et al.

2000; Cuervo and Dice 2000), mitochondrial dys-

function (Short et al. 2005; Sakellariou et al. 2013),

reduced number of satellite cells (Shefer et al. 2006),

increased ROS production (Broome et al. 2006;

Palomero et al. 2013) and increased inflammation

(Fagiolo et al. 1993). These processes are proposed to

lead to a decrease in muscle fibre number, decreased

muscle cross-sectional area and defective regeneration

observed in older humans (Lexell et al. 1988; Carlson

et al. 2001). Fibre type changes have been proposed to
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be one of the important mechanisms of loss of muscle

function with ageing, with type II fibres being more

susceptible than type I fibres to atrophy (Larsson et al.

1978; Lexell et al. 1988; Nilwik et al. 2013). There is

also evidence for increases in the ratio of type I to type

II fibres in humans (Larsson et al. 1978; Larsson 1995;

Andersen 2003; Lee et al. 2006). However, conflicting

data exists demonstrating no difference in the per-

centage of type I and type II fibres with age in humans

(Lexell et al. 1988). The reasons for these contradict-

ing findings are unclear however it may be due to the

age range of participants in Lexell’s study being

slightly younger than the other studies. Furthermore,

the demographics and lifestyles of the participants are

not stated in the majority of the studies, therefore it is

possible this may affect results. For example, the level

of activity may have been lower in the younger

individuals, and higher in the older participants than

those in other studies in Lexell’s study.

Changes in satellite cells during sarcopenia

Satellite cells are stem cells present in adult muscle

and are necessary for skeletal muscle to regenerate

following injury (Shafiq and Gorycki 1965; Fry et al.

2015). During ageing, the number of satellite cells

have been shown to decline in mice (Day et al. 2010;

Chakkalakal et al. 2012) in a fibre type specific

manner; in humans a decrease in satellite cells in type

Fig. 1 Summary of changes that occur within the aged skeletal muscle and the role they play in sarcopenia
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II fibres, with no differences seen in type I fibres have

been shown in humans (Verdijk et al. 2014). Further-

more, a decline in the satellite cell content of extensor

digitorum longus (EDL) muscle (primarily type II

fibre) of mice is seen at 1 year of age, whereas this

decline was not seen in the soleus muscle (predom-

inately type I fibre) until mice were 2.5 years old

(Shefer et al. 2006). Remarkably, this study also

showed the presence of whole myofibres with no

satellite cells present in 2.5 year old mice (Shefer et al.

2006). However, a study by Carlson et al. (2001)

showed that satellite cell number was increased in

muscles of old rats suffering from hind-limb neuropa-

thy (Carlson et al. 2001). These studies used different

species as well as different muscles and suggest that

changes in satellite cell number may be specific to the

muscle and species used. Ballak et al. showed that

proteins involved in satellite cell proliferation from

mice were not grossly affected during ageing (Ballak

et al. 2015), however in a study by Shefer et al. the

initial proliferation rate of isolated satellite cells from

old mice in culture was lower than in cells isolated

from younger mice (Shefer et al. 2006).

Satellite cells normally self-renew the quiescent

pool of satellite cells (Zammit et al. 2004). During

ageing the ability of satellite cells to self-renew is

reduced (Shefer et al. 2006) due to the increase in

proliferation (Chakkalakal et al. 2012) which can lead

to apoptosis or senescence (Sousa-Victor et al. 2014).

This may contribute to sarcopenia development and is

associated with poor regeneration of muscle of aged

animals (Carlson et al. 2001). Furthermore, the loss of

satellite cells has been associated with neuromuscular

degeneration during ageing (Liu et al. 2017).

The role of altered properties of satellite cells as an

underlying cause of sarcopenia is unclear, as depletion

of satellite cells from muscles of old mice had no

effect on the cross-sectional area of the muscle (Fry

et al. 2015) or on muscle growth after unloading

(Jackson et al. 2012). Moreover, parabiosis studies

showed that muscle of old mice can regenerate

successfully when placed in a young host (Carlson

and Faulkner 1989; Conboy et al. 2005). In vitro

studies have also shown that satellite cells isolated

from old mice can differentiate into mature myotubes

(Shefer et al. 2006) and when supplemented with

fibroblast growth factor (FGF), no difference was

shown in the ability of satellite cells from adult and old

mice to proliferate ex vivo. These data suggest that the

changes in the satellite cell environment, rather than

loss of function within satellite cells, during ageing are

likely to cause the dysfunction of satellite cells

(Shefer et al. 2006; Lee et al. 2013). However, the

ablation of satellite cells results in increased fibrosis

suggesting satellite cell function may play a role in

preventing fibrosis. Further studies have also shown

that satellite cells are essential for regeneration

following damage in muscle since ablation of these

cells had profound effects on the ability of muscles to

successfully regenerate in mice (Fry et al. 2015).

Some of the major pathways associated with these

changes in satellite cells during ageing include Notch

and Wnt signalling. Notch signalling is associated

with the proliferation of satellite cells whereas

canonical Wnt signalling is associated with the

differentiation of muscle cells (Brack et al. 2007),

however the involvement of Wnt in muscle differen-

tiation is debated (Murphy Malea et al. 2014). During

ageing there is a decrease in Notch signalling (Carey

et al. 2007) and a switch from the canonical Wnt

signalling to non-canonical Wnt signalling, this results

in the prevention of the self-renewal ability of satellite

cells that is seen in the aged satellite cell (Florian et al.

2013). Key genes which regulate skeletal muscle

development, MyoD and Myf5 are also increased in

the aged muscle in humans, mouse and rats (Hameed

et al. 2003; Raue et al. 2006; Chakkalakal et al. 2012).

Changes in protein synthesis during sarcopenia

A balance between protein synthesis and degradation

is vital to maintain muscle mass and the relevant gains

or losses in protein synthesis and degradation rates are

required for hypertrophy and atrophy. Studies of basal

levels of protein synthesis have shown contradicting

results with some studies demonstrating decreased rate

of overall protein synthesis in the muscle of old

compared with adult humans (Hasten et al. 2000) and

other studies showing no difference in protein synthe-

sis in muscles of old humans compared with muscles

of adults (Volpi et al. 2001; Wall et al. 2015; Francaux

et al. 2016). Thus, there is a lack of consistent evidence

for differences in basal protein synthesis between

young and old people. Therefore, research has focused

on studying post-prandial state protein synthesis to

identify whether older people can utilise protein as

efficiently as younger people. These studies have
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shown that older people have a blunted protein

synthesis response to nutrients (Cuthbertson et al.

2005; Wall et al. 2015) and to exercise (Fry et al.

2011); this is known as anabolic resistance. Data by

Koopman et al. (2009) demonstrated that there was no

difference in either digestion or absorption of proteins

between the old and young people therefore anabolic

resistance was proposed to result from an increase in

the amount of protein required to reach a ‘threshold’

for protein synthesis to occur (Koopman et al. 2009).

This is further evidenced by studies that show blunted

mTOR activation following protein intake in the

muscle of older people (Cuthbertson et al. 2005).

Although anabolic resistance is likely to contribute to

the onset of sarcopenia, it is unlikely that it contributes

to the continuous decrement in muscle mass seen in

sarcopenia as an increase in anabolic resistance did not

have any detrimental effect on muscle mass (Smeun-

inx et al. 2017).

Changes in protein degradation during sarcopenia

The appropriate quality control of protein is vital for

the correct functioning of the cell. Two common

mechanisms responsible for this are the proteasomal

degradation pathway and autophagy. These two path-

ways are dysregulated in a host of tissues during

ageing and therefore are hypothesised to contribute to

the loss of muscle mass with age.

Proteasomal degradation during sarcopenia

The role of the ubiquitin–proteasome system (UPS) is

to regulate protein degradation and maintain protein

homeostasis. Proteins are labelled with ubiquitin

molecules for degradation and are passed to the

proteasome where they are degraded.

There are numerous ligases able to carry out protein

degradation; however Atrogin-1 and muscle RING-

finger protein-1 (Murf1) are muscle specific ligases

that play a role in numerous models of muscle atrophy

(Bodine et al. 2001). Despite the evidence for a role of

the UPS in muscle atrophy, the role of the UPS in

sarcopenia is controversial. Some studies have shown

the upregulation of both Atrogin-1 andMurf1 levels in

the muscle of old rats (Clavel et al. 2006), whilst others

have shown no difference or downregulation between

the age groups (Gaugler et al. 2011) or the upregula-

tion of only one of the atrogenes (Altun et al. 2010).

The contrasting results in these studies maybe due to

the transient nature of these two atrogenes making it

difficult to accurately identity changes in their expres-

sion levels (Bodine et al. 2001; Sacheck et al. 2007).

Autophagy during sarcopenia

Autophagy is the process of ‘‘self-eating’’ and is

crucial for the turnover of cell components, both in

normal circumstances as well as during cellular stress

such as starvation (Pfeifer and Warmuth-Metz 1983).

As opposed to the UPS which is only able to degrade

proteins, the lysosomal system is able to incorporate

protein aggregates, macromolecules and whole orga-

nelles (Korovila et al. 2017). Reduced autophagy has

been seen in many cell types and tissues during ageing

(Cuervo and Dice 2000; Kiffin et al. 2007) and there is

evidence that autophagy is dysregulated in the muscle

of old rodents (Russ et al. 2012; Joseph et al. 2013b;

Russ et al. 2015a). Studies in Drosophila have shown

accumulation of protein aggregates in muscle that was

associated with impaired muscle function (Demontis

and Perrimon 2010), providing evidence for autopha-

gic dysregulation in the development of sarcopenia.

Impairment of mitophagy (autophagy of the mito-

chondria) is detrimental to muscle homeostasis, and

leads to the accumulation of damaged and dysfunc-

tional mitochondria (Grumati et al. 2010). Dysfunc-

tional mitophagy has been shown to occur in the

muscle of old men (Gouspillou et al. 2014) and women

(Drummond et al. 2014) and is therefore hypothesised

to play a role in the mitochondrial dysfunction seen in

sarcopenia.

Infiltration of fat and fibrosis during sarcopenia

Fibrosis is the accumulation of extracellular matrix

(Alnaqeeb et al. 1984; Goldspink et al. 1994) and

during sarcopenia both fibrosis and the infiltration of

fat into skeletal muscle occurs (Evans et al. 1995;

Song et al. 2004). This decrease in the quality of

skeletal muscle is thought to contribute to the age-

related impairment in force generation, particularly in

lateral transfer of force throughout the muscle fibres

(Ramaswamy et al. 2011).
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The accumulation of extracellular matrix particu-

larly collagen, seems to be the result of incomplete

repair of muscle following damage (Serrano and

Munoz-Canoves 2010). Skeletal muscle regeneration

following injury depends upon a series of well-co-

ordinated events involving numerous cell types that

modify the microenvironment of the damaged muscle

which is essential for normal muscle regeneration to

preserve muscle architecture. During ageing, this

remodelling becomes dysregulated. Dysfunction in

remodelling is coupled with a switch in myogenic

progenitor cells from a myogenic to fibrotic fate

(Shefer et al. 2006; Brack et al. 2007) or an adipogenic

fate (Vettor et al. 2009; Pisani et al. 2010) suggesting

satellite cells as a possible source of intramuscular

fibrotic and fat deposition. This change in cell fate is

possibly due to changes in the Wnt signalling pathway

which has been shown to be involved in the myogenic

fate of satellite cells and increased Wnt signalling has

been shown to occur in ageing muscle (Vertino et al.

2005; Brack et al. 2007). Alternatively, changes in the

inflammatory responses, such as those seen during

ageing, may also play a role in determining cell fate

(Wang et al. 2015).

Increases in collagen deposition lead to an increase

in advanced glycation end products (AGE) in skeletal

muscle in humans (Haus et al. 2007) and changes in

total muscle collagen and the endomysium and

perimysium have been shown to correlate with the

increase in stiffness of muscle and a decline in muscle

tension with age (Alnaqeeb et al. 1984). However,

Goldspink et al. showed no difference in the tran-

scription levels of collagen in the muscle of old mice

(Goldspink et al. 1994). Given that total collagen

levels are elevated in muscle of old mice these data

suggest that there may be a reduction in collagen

degradation possibly due to the increased collagen

crosslinking, making the collagen somewhat resistant

to degradation by collagenase.

Changes in the neuromuscular system

during sarcopenia

During ageing, a decrease in motor unit number in

various muscles of humans (Piasecki et al. 2015)

rodents (Ling et al. 2009; Sheth et al. 2018). A

decrease in the number of motor axons innervating

fibres has been observed in rodents (Ansved and

Larsson 1990) and humans (Tomlinson and Irving

1977). Denervation leads to the sprouting of axons of

existing functional nerves to innervate fibres in close

proximity. This is known as motor unit remodelling

and is evidenced by an increase in reinnervation is old

mice (Larsson 1995). Reinnervation is speculated to

cause some of the age-related fibre- type switching

that occurs (Larsson et al. 1978; Andersen 2003; Lee

et al. 2006), as slow motor neurons may be more

adapted to reinnervation which leads to an age-related

loss in fast motor neurons (Kadhiresan et al. 1996). If

reinnervation does not occur, it is likely that the

muscle fibre will eventually undergo cell death

(Borisov and Carlson 2000; Borisov et al. 2001;

Vasilaki et al. 2016). Research has provided evidence

that neuromuscular remodelling is a pre-requisite for

muscle atrophy (Deschenes et al. 2010; Sheth et al.

2018). Sheth et al. have shown that the decrease in

motor unit number occurred before the loss of muscle

function and the loss of motor unit connectivity seen

during ageing correlates with muscle size and con-

tractibility (Sheth et al. 2018). Deschenes et al. also

showed that denervation precedes muscle loss in rats

during ageing (Deschenes et al. 2010). However this is

still poorly understood, due to the confines to study the

neuromuscular system during ageing, one of these

limitations is that it is not always possible to use

human nerve and muscle tissues and these processes

are only able to be studied using in vivo animal models

or ex vivo co-cultures that require the use of spinal

cord explants from animal embryos as a source of

motor neurons. However, new developments in tech-

niques to derive functional motor neurons from human

pluripotent stems cells now allow development of

alternative approaches.

Increases in reactive oxygen species and alterations

in antioxidant defence systems during sarcopenia

Reactive oxygen species (ROS) are extremely reactive

molecules and have important roles in metabolism and

cell signalling (Thannickal and Fanburg 2000).

Though ROS have important functions in cells, when

in excess if not eliminated by the antioxidant defence

system, ROS can be damaging to cellular marco-

molecules such as lipids, proteins and DNA, leading to

cell death.
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ROS are increased in the satellite cells of older

subjects (Minet and Gaster 2012) which may con-

tribute to the loss of regeneration potential in muscles

of older animals and humans. The basal levels of ROS

are also increased in mouse muscle during ageing

(Palomero et al. 2013). This increase in ROS is

thought to be detrimental to skeletal muscle as it is

reflected by increases in markers of oxidative damage

such as an increase in protein carbonyl and malon-

aldehyde and oxidation of lipids, DNA and proteins in

the muscles of old mice (Mecocci et al. 1999; Broome

et al. 2006; Sakellariou et al. 2016). This modified

redox status has also been shown to be detrimental for

other processes such as calcium transport (Fulle et al.

2003) and increased degradation of important proteins

such as myogenic proteins, impaired autophagy

(Scherz-Shouval et al. 2007) and inhibition of differ-

entiation of muscle cells (Ardite et al. 2004; Sandiford

et al. 2014).

ROS are eliminated by the antioxidant defence

system. During ageing, it has been shown there is a

constituent upregulation of the antioxidant defence

system activity in skeletal muscle (Vasilaki et al.

2006; Palomero et al. 2013; Sullivan-Gunn and

Lewandowski 2013). Following a stress such as

muscle contraction, there is no further increase in

antioxidant defence enzyme activities in the muscle of

old humans and animals (Vasilaki et al. 2006; Ryan

et al. 2008) potentially leaving the cells exposed to

oxidative damage.

The contribution that ROS play in the muscle

ageing process remains unclear. Interestingly, over-

expression of copper/zinc (Cu/Zn) superoxide dismu-

tase (CuZnSOD) leads to muscle atrophy (Rando et al.

1998) whereas the deletion of CuZnSOD results in the

inability of muscle to adapt to stress and decreased

muscle force generation in mice (Muller et al. 2006;

Vasilaki et al. 2010; Larkin et al. 2011; Sakellariou

et al. 2014b) suggesting that the redox balance is an

important modulator of sarcopenia.

Dysfunction of mitochondria during sarcopenia

Mitochondria are essential for providing the ATP

required for muscle contraction and are also central to

the redox regulation and quality control of the cell and

therefore for the viability of muscle cells. Given this

essential role of mitochondria in skeletal muscle

maintenance and survival, alterations in mitochondria

are considered one of the primary contributors driving

the sarcopenic process.

The role of the mitochondria in sarcopenia was

proposed by Miquel et al. in the mitochondrial free

radical theory of ageing (Miquel et al. 1980). This

stated that mitochondrial dysfunction in ageing occurs

from the increase in ROS and blunted antioxidant

defences; these damaging effects change the redox

status of the cell which in turn leads to mutations in the

mitochondrial DNA (mtDNA) leading to the produc-

tion of dysfunctional components of the electron

transport chain (ETC). Impairment of the ETC leads to

compromised oxidative phosphorylation which causes

a further rise in ROS, causing a vicious circle which

exacerbates the ageing phenotype (Miquel et al. 1980).

This hypothesis was confirmed in skeletal muscle

by studies showing that during ageing there was an

increase in ROS, mtDNA deletions and mitochondrial

dysfunction which were associated with skeletal

muscle atrophy in non-human primates (Lee et al.

1998a) rodents (Wanagat et al. 2001) and humans

(Bua et al. 2006). Interestingly, these observations

were not seen in the phenotypical normal regions of

the muscle fibres. Furthermore mice which contain

error prone mtDNA polymerase accumulate high

levels of mtDNA mutations and show severe muscle

atrophy due to increased apoptosis (Kujoth et al.

2005). Further studies showed that mtDNA mutations

lead to increased ROS production (Logan et al. 2014)

and overexpression of antioxidants have been shown

to protect against some of the oxidative damage as

well as changes to mitochondrial respiration and ATP

production in skeletal muscle (Lee et al. 2010) which

prevent age related mitochondrial dysfunction. These

data suggest that both ROS and mitochondrial dys-

function are likely to contribute to sarcopenia. How-

ever, more recently the mitochondrial free radical

theory of ageing has become debatable as non-

mitochondrial sources of ROS generation have been

identified (Sakellariou et al. 2013, 2014a; Jackson and

McArdle 2016).

Mitochondria in the muscle of sarcopenic individ-

uals also show increased fusion and decreased fission

(Yoon et al. 2006) and impairment of mitochondrial

autophagic (Gouspillou et al. 2014) and proteasomal

machinery (Marzetti et al. 2008). The release of

damaged mitochondrial components into the extracel-

lular matrix correlates with increases in pro-
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inflammatory cytokines in the plasma of elderly

humans (Pinti et al. 2014). Mitochondria undergo

complex morphological changes during aging which

are also likely to affect their function (Leduc-Gaudet

et al. 2015) and thus give further evidence for a role for

dysfunctional mitochondria in sarcopenia.

Increased inflammation during sarcopenia

The inflammatory response is the secretion of pro-

inflammatory mediators in response to the appropriate

stimuli such as toxins, bacteria, foreign bodies or

infection and restores homeostasis and initiates repair.

The acute pro-inflammatory state is vital for the repair

of cells but too much for too long is thought to be

detrimental; for example chronic low grade inflam-

mation has been associated with ageing and has been

implicated in numerous conditions and diseases (La-

grand et al. 1999; Duncan et al. 2003; Frischer et al.

2009).

Low level chronic inflammation coupled with

immunosenescence, the decline in the function of the

immune system with age, that occurs in ageing has

been termed ‘inflamm-ageing’ (Franceschi et al.

2000). Inflamm-ageing has been associated with

numerous age-related diseases and conditions (Chung

et al. 2009) and has been implicated as a major

contributor to sarcopenia (Schaap et al. 2006, 2009).

Serum levels of TNF-a, IL6 and C-reactive protein
(CRP) are all increased in ageing and have been

proposed to be important mediators of sarcopenia as

changes are correlated with a decrease in muscle mass

(Pedersen et al. 2003; Aleman et al. 2011; Bian et al.

2017), performance (Thalacker-Mercer et al. 2010),

function (Bautmans et al. 2011), strength (Tiainen

et al. 2010; Norman et al. 2014) and fitness (Levinger

et al. 2010). As well as increasing myokine production

(Lightfoot et al. 2015). It should be noted however that

TNF-a, IL6 and CRP have all been shown to have

beneficial effects in skeletal muscle growth; IL6 and

TNF-a at low levels has been shown to cause satellite

cell proliferation and differentiation (Li 2003; Kur-

osaka and Machida 2013), therefore it is likely that the

effect of systemic inflammation on muscle mass and

function during ageing may only occur when it

surpasses a certain threshold and/or persists for an

extended period (Degens 2010).

The increase in inflammation leads to a further

increase in ROS production by skeletal muscle (Li

et al. 1998). As well as an increase in skeletal muscle

cell apoptosis (Phillips and Leeuwenburgh 2005),

inflammation has also been proposed to play a role in

the anabolic resistance described previously and high

levels of inflammation have been associated with

catabolism of skeletal muscle (Li et al. 1998; Cuth-

bertson et al. 2005).

Current therapies for sarcopenia

The ageing population is growing substantially with

617 million people worldwide currently 65 and over

and demographic analysis predict that this will

increase to 1.6 billion by 2050 (He et al. 2016).

Although there have been improvements in lifespan,

the same advances have not been made in health-span,

meaning that the extra years of living are under poor

health. Sarcopenia is a major contributor to frailty in

the older population resulting in further immobility

with a loss of independence, as well as increasing the

risk of other chronic diseases and morbidity (Coin

et al. 2013). This immobility and co-morbidities can

be further escalated through lifestyle choices such as a

sedentary diet and a poor diet. Thus sarcopenia has

major socio-economic costs—in 2000 the US spent

1.5% of their national budget ($18.5 billion) on

sarcopenia (Janssen et al. 2004), signifying the

importance of finding a treatment or preventative

therapy for sarcopenia. This section focuses on

modifiable lifestyle factors which are economically

resourceful compared with drug interventions.

Physical exercise and exercise

The importance of physical activity in preventing

sarcopenia has been shown in studies where people

who are less physically active have a higher chance of

developing sarcopenia (Lee et al. 2007). It is generally

thought that exercise and physical activity are bene-

ficial and can attenuate some of the detrimental effects

of unloading and bed rest on muscle loss in adult and

old individuals (Caiozzo et al. 2009; Belavy et al.

2014; McMahon et al. 2014; Valenzuela et al. 2018). It

is important to define the differences between exercise

and physical activity. Physical activity is defined as
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bodily movements that are produced by skeletal

muscles and result in energy expenditure; examples

of this include walking and house chores. Exercise is a

subset of physical activity that is planned, structured,

and repetitive and has as a final objective to improve or

maintain physical fitness (Caspersen et al. 1985). Life-

long exercise was shown to be associated with modest

improvements in muscle mass in the quadriceps of

mice (McMahon et al. 2014) and lifelong triathlon

training is able to preserve muscle mass in the mid-

thigh of humans (Wroblewski et al. 2011). However,

the benefits of exercise on muscle function are

controversial since lifelong exercise did not prevent

the loss of strength when it was shown that master

athletes still undergo a loss in strength, power and

endurance with age (Grassi et al. 1991; Kayani et al.

2008). Others have also shown no correlation between

physical activity and the maintenance of muscle mass

(Mitchell et al. 2003) and only a higher level of

physical activity and not ‘leisure-time’ activity are

able to prevent or delay some sarcopenic effects

(Raguso et al. 2006).

There are various different exercise programmes

that are recommended for the older population in an

attempt to combat sarcopenia.

Resistance training

Resistance training is the requirement to generate

force to move or resist weight such as weight

lifting/push ups/leg press. Numerous studies have

shown beneficial effects of resistance training in the

function of skeletal muscle of older people; increasing

muscle mass and strength (Fiatarone et al. 1994;

Maltais et al. 2015; Tsuzuku et al. 2018) as well as

cross-sectional area of myofibres (Fiatarone et al.

1994; Leenders et al. 2013; Ribeiro et al. 2017) and

motility (Fiatarone et al. 1994; Liu and Latham 2009).

Improvements in muscle function following resis-

tance training are thought to be due to an improved

neuromuscular system (Taaffe et al. 1999), increased

protein synthesis and attenuation of anabolic resis-

tance (Schulte and Yarasheski 2001) and this is

associated with an increase in the satellite cell content

of type II fibres (Verdijk et al. 2009a; Leenders et al.

2013). Resistance training has also been linked with a

decrease in catabolic and increase in anabolic path-

ways (Ribeiro et al. 2017).

Aerobic training

Aerobic training stimulates the heart and blood flow

and provides cardiovascular conditioning such as

running, cycling and swimming. Aerobic exercise

has been shown to result in increased cross-sectional

area of muscle fibres and hypertrophy of muscles of

older humans (Schwartz et al. 1991; Konopka et al.

2013). However, the effects of aerobic exercise are not

as well established as resistance exercise and it is

likely that the hypertrophic effects of aerobic exercise

depend on the frequency, intensity and length of

exercise.

The effects of aerobic exercise on skeletal muscle

are primarily through increases in mitochondrial

proteins such as cytochrome C and PGC-1a (Short

et al. 2003; Konopka et al. 2013). Increases in

mitochondrial biogenesis result in improved mito-

chondrial function, metabolic control and respiratory

capacity (Coggan et al. 1992; Short et al. 2003)

consequently increasing the endurance of the individ-

ual. Furthermore, long term aerobic exercise pro-

grammes have shown an ability to reduce ROS

production by muscle in old people (Ghosh et al.

2011). Aerobic exercise has also been shown to

decrease anabolic resistance through the upregulation

of protein synthesis through the Akt/mTOR pathway

(Fujita et al. 2007), as well decreasing inflammation

(Kohut et al. 2006).

Other forms of physical activity

Other forms of physical activity include power

training. Power declines at a rate of 3–4% per year

in older people and this is detrimental for everyday

activities such as climbing stairs. To improve power,

fast shortening resistance training is implemented.

Improvements in skeletal muscle power (Fielding

et al. 2002; Henwood and Taaffe 2005; Reid et al.

2008) and in the ability to carry out every day

activities in older people have been seen following

power exercise regimes (Henwood and Taaffe 2005).

These improvements are thought to be due to changes

in the neuromuscular junction that allow better

recruitment of the motor units and therefore an

increase in the firing rate of fast twitch fibres (Fielding

et al. 2002; Reid et al. 2008). Reid et al. have shown
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power training to be more effective than slow velocity

resistance training (Reid et al. 2008).

Many suggested physical activities may be too

intense for older adults to maintain over a prolonged

time. To combat this, less impact exercises such as

whole-body vibrations and whole body electro-myos-

timulation have been developed. These techniques use

impulses that cause involuntary contractions of the

muscles to preferentially recruit the fast twitch fibres

that are most affected by ageing and this approach has

been shown to increase maximum isometric strength

and muscle mass (Kemmler et al. 2010, 2014) and grip

strength in older women (Stengel et al. 2015).

Protein intake and calorie restriction

Protein and other nutrients are vital for the protein

synthesis required for muscle growth and mainte-

nance. Therefore it is proposed that nutritional intake

may play a role in sarcopenia and altering nutritional

intake may be able to relieve some symptoms of

sarcopenia.

Increase in protein intake

In addition to the anabolic resistance that occurs with

age, around 30–40% of women and 20–40% of men

over 50 do not reach the recommended daily intake of

protein and it is has been shown that a low protein diet

can be detrimental to muscle (Oumi et al. 2000; Balasa

et al. 2011; Tarry-Adkins et al. 2016). Therefore, a

considerable number of studies examining interven-

tions against sarcopenia have focused on increasing

protein intake.

Studies have shown that increasing the overall

amount of protein intake can at least overcome the

anabolic resistance in older people leading to an

increase in protein synthesis, muscle mass and

decreased proteolysis in rodents (Mosoni et al. 2014)

and humans (Genaro et al. 2015; Moore et al. 2015;

Norton et al. 2015; Verreijen et al. 2015).

The importance of the essential amino acid profile,

digestibility and bioavailability of ingested protein on

the anabolic potential of protein was demonstrated in

studies where anabolic resistance was overcome by

increasing the percentage of leucine or essential amino

acids contained in the ingested protein rather than the

total amount of protein (Volpi et al. 2003). Increased

protein synthesis was also achieved by inhibiting co-

ingestion of carbohydrates and protein (Katsanos et al.

2006). This improvement in anabolic resistance in the

old is likely to be through the upregulation of the Akt/

mTOR pathway as well as decreasing proteolysis and

autophagy (Volpi et al. 2003). Increases in Akt/mTOR

pathway and decreases in proteolysis have also been

shown in vitro (Sato et al. 2014) and in vivo resulting

in increased muscle mass when used as a single

supplement of leucine or in combination with other

nutrients (Sato et al. 2013, 2015). Leucine supple-

mentation led to improved muscle regeneration in old

rats through a decrease in inflammation and an

increase in satellite cell proliferation resulting in an

increase in the cross-sectional area of regenerated

fibres compared with control animals (Pereira et al.

2015).

In contrast, meta-analysis of protein supplementa-

tion studies (Xu et al. 2014) showed no difference

between the effect of protein supplementation and that

of a placebo groups on muscle mass, protein synthesis

and muscle strength in older men (Dirks et al. 2014) or

women (Zhu et al. 2015). Furthermore, (Russ et al.

2015a, b) showed that protein supplementation atten-

uated muscle degradation through decreasing Murf1

expression, this did not translate to any functional

benefits to muscles of old rats (Russ et al. 2015b).

However these discrepancies may be explained by the

times at which intake of protein occurred; Symons

et al. (2007) showed that a 90 g of protein meal in

humans does not cause more protein synthesis than a

30 g meal in humans (Symons et al. 2007). This

suggests that ingestion of more than 30 g of protein in

one meal is an energetically inefficient means of

protein synthesis and that protein intake should be

spread out throughout the day to optimise muscle

protein synthesis.

Despite the benefits of increased protein synthesis

on sarcopenia, it is important to note that high protein

diets (3 g protein 9 kg fat-free mass (FFM)(- 1) 9

day(- 1) have been linked to a decrease in the

glomerular filtration rate in older people, suggesting

that high levels of protein may have damaging effects

on the kidney (Walrand et al. 2008) and undesirable

effects on the musculoskeletal system were seen when

high protein diets led to negative a calcium balance

that could lead to osteoporosis in men (Allen et al.
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1979). Thus prescribing increased intake of protein in

old people is controversial.

Calorie restriction

Calorie restriction is thought to be one of the most

effective interventions of attenuating ageing. Restric-

tion of the number of calories eaten has been proved to

be life-extending in numerous species (Weindruch

et al. 1986; Lakowski and Hekimi 1989; Jiang et al.

2000) as well as reducing all-cause mortality in rhesus

monkeys (Colman et al. 2014).

The benefits of calorie restriction have been

extended into sarcopenia. In rats, a 6 week 20%

reduction in calorie intake led to an attenuation of age-

related loss of muscle mass and function in the soleus

and gastrocnemius muscles through an upregulation of

PGC-1a (Joseph et al. 2013a). Calorie restriction also

preserved fibre number and type and protected mito-

chondrial DNA from deletion (Lee et al. 1998b). In

rats, calorie restriction decreased apoptosis and pro-

tected from oxidative stress (Dirks and Leeuwenburgh

2004) as well as a decrease in the overall oxidation

status in skeletal muscle (Hepple et al. 2008). These

data suggest that calorie restriction prevents sarcope-

nia potentially through an inhibition of apoptosis and

enhancement of the mitochondrial function and this

has been shown to occur through the upregulation of

the NAD-deacetylase Sirt1 (Cohen et al. 2004).

Sarcopenia was also attenuated by calorie restriction

in the rhesus monkey (Colman et al. 2008).

The relevance and beneficial effects of human

calorie restriction is shown in studies which have

shown positive effects in diseases such as diabetes and

atherosclerosis (Fontana et al. 2004; Weiss et al.

2006). Importantly Mercken et al. showed a long term

30% reduction in calorie intake in humans changed the

transcriptional profile in skeletal muscle of an older

individual similar to that of a younger subject,

increased the production of antioxidants and

decreased inflammation (Mercken et al. 2013). This

suggests that the benefits of calorie restriction can be

extended into human muscle however a lot more work

is needed in this area. It is likely that for a high

adherence and for beneficial effects of a calorie

restricted diet, this would have to be implemented at

a younger age and it would be vital for people to be

well informed about calorie intake. This would also

need to be looked at on an individual basis as

insufficient nutrition is already a problem for a lot of

elderly people therefore, if misinformed it could lead

to the malnutrition of patients which has been shown

to result in a lower muscle mass (Pierik et al. 2017).

Protein supplementation paired with exercise

Given the benefit of exercise and protein intake on

sarcopenia, numerous studies have shown that com-

bined together, protein and exercise can increase

muscle strength and mass in the old (Tieland et al.

2012; Shahar et al. 2013; Maltais et al. 2015; Palop

et al. 2015).

The ability of protein supplementation to increase

muscle mass and strength further than with exercise

alone is debateable. Some research groups have

suggested that protein supplementation will only

enhance exercise-induced muscular improvements if

there is an existing protein deficiency (Verdijk et al.

2009b). This is particularly relevant in those who do

not already reach the recommended daily intake of

protein, where the amount and distribution of protein

throughout the day alongside an effective exercise

plan may play an essential part in whether the

supplement will be effective.

Future direction

Despite some evidence for the benefits of exercise and

nutritional interventions on sarcopenia there is still no

intervention that there is an agreement that is bene-

ficial to sarcopenia. Studies looking at more pharma-

cological agents have been more promising. For

example the inhibition of myostatin, a negative

regulator of muscle mass, increased muscle size in

mice and cattle (Lee 2007) and the use of sex

hormones have improved muscle strength and mass

(Stárka 2006). More recently microRNAs, small

RNAs that post transcriptionally regulate gene expres-

sion, have been shown to be involved in skeletal

muscle development (Goljanek-Whysall et al. 2012)

and the levels of miRNAs dysregulated in ageing
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humans (Drummond et al. 2011) and mice (Soriano-

Arroquia et al. 2016a, b). Furthermore the restoration

of level of miRNAs have led to an improved muscle

phenotype in old mice, but also the imitation of ageing

miRNA levels in younger mice have also resulted in

detrimental effects in the muscle (Soriano-Arroquia

et al. 2016a). Furthermore, miRNAs have also been

shown to be involved in the adaption of skeletal

muscle following exercise (Russell et al. 2013) thus

showing the potential for miRNAs paired with a

personalised exercise regime as a treatment for

sarcopenia.

Conclusion

Skeletal muscle is a vital organ to the body and the

age-related changes that occur in the muscle are

detrimental to the correct functioning of skeletal

muscle and leads to the loss of independence. The

ever-increasing ageing population is an important

socio-economic problem. The changes that occur in

sarcopenia have been described in the sections above

and there is a vast amount of evidence that these

changes contribute to the resulting phenotype in

skeletal muscle wasting.

Despite the huge amount of work looking at life-

style changes on sarcopenia, whether these changes

can prevent or cure sarcopenia is still to be established.

The contrast in the results from these studies suggests

that the responsiveness of individuals to exercise and

changes in nutritional intake may depend on the

individual and stage of sarcopenia that is occurring. It

may suggest that complete personalised regimes,

maybe in conjunction with pharmacological interven-

tions are required for full function of the muscle during

later life.
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