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Generic generation of noise-driven chaos in stochastic
time delay systems: Bridging the gap with high-end
simulations
Mickaël D. Chekroun1,2*, Ilan Koren1, Honghu Liu3, Huan Liu1

Nonlinear time delay systems produce inherently delay-induced periodic oscillations, which are, however, too
idealistic compared to observations. We exhibit a unified stochastic framework to systematically rectify such
oscillations into oscillatory patterns with enriched temporal variabilities through generic, nonlinear responses
to stochastic perturbations. Two paradigms of noise-driven chaos in high dimension are identified, fundamen-
tally different from chaos triggered by parameter-space noise. Noteworthy is a low-dimensional stretch-and-
fold mechanism, leading to stochastic strange attractors exhibiting horseshoe-like structures mirroring turbu-
lent transport of passive tracers. The other is high-dimensional , with noise acting along the critical eigendir-
ection and transmitted to “deeper” stable modes through nonlinearity, leading to stochastic attractors
exhibiting swarm-like behaviors with power-law and scale break properties. The theory is applied to cloud
delay models to parameterize missing physics such as intermittent rain and Lagrangian turbulent effects.
The stochastically rectified model reproduces with fidelity complex temporal variabilities of open-cell oscilla-
tions exhibited by high-end cloud simulations.
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INTRODUCTION
Among the various mechanisms of generation of chaos for low-di-
mensional systems, the phenomenon of shear-induced chaos,
known perhaps since the work of van der Pol and van der Mark
(1) (reported as “irregular noise” at that time), has gained a lot of
attention and new insights in recent years as led by Young and col-
laborators (2). Stated in simple terms, shear-induced chaos is char-
acterized by complex geometric structures in the state space
associated with stretching and folding caused by the interactions
between suitable time-dependent perturbations or noise with non-
linear oscillations (2). The key idea behind it is that for a nonlinear
system exhibiting an attracting limit cycle, Γ, not all the points near
Γ in the state space X respond the same way to random, nonuni-
formly distributed perturbations F. Because of nonlinear effects,
the relaxation toward Γ is not uniform, and angular velocities
may vary substantially from “within” to “outside” of the limit
cycle, causing “shear” effects in the vicinity of Γ that manifest as
stretch-and-fold deformations in X when F is applied in the
course of time. Convenient ways to reveal such a phenomenon
consist of either adopting the viewpoint of Poincaré return maps
(3) or that of pullback attractors (PBAs) closely related to the
notion of snapshot attractors (4, 5).

Within either framework, it can be rigorously established that
when suitably perturbed by a time-dependent forcing, a limit
cycle can be turned into a strange (pullback) attractor [see
theorem 1 in (6)]. At the core of this “strangenessfication” of a
limit cycle is a geometric mechanism for the production of chaos
with simple and intuitive conditions that were first mathematically
framed by Wang and Young (7) and generalized in subsequent

works of the same authors (6, 8) while applied in several applica-
tions such as in laser dynamics (9) or neuron models (10, 11).
Loosely speaking, in the case of a steady-state losing its stability
via a supercritical Hopf bifurcation, if the stable foliation of the bi-
furcated limit cycle has its curves sufficiently twisted, then suitable
periodic or random kicks (12) in the vicinity of the limit cycle lead
to folding and stretching of the phase space and, eventually, to the
emergence of a strange PBA.

The emergence of strange attractors that result from such
stretch-and-fold actions has also been addressed rigorously for pe-
riodically forced or randomly kicked infinite-dimensional dynam-
ical systems by Lu et al. (13), covering the case of systems of
parabolic partial differential equations (PDEs). However, because
of difficulties inherent with high dimensions, the efficient produc-
tion of such noise-driven chaos has been poorly documented on a
numerical ground. Furthermore, the results of (13) do not readily
translate to time delay systems, which constitute another class of in-
finite-dimensional models of prime relevance in many applications.
Time delay systems arise in diverse fields of biology (14, 15), neu-
robiology (16), social systems (17), semiconductor lasers (18), and
climate dynamics (19–21), to name a few. Intuitively, the use of
delay terms allows for describing many natural processes in a
compact and physically intuitive manner. The delay term can be
the outcome of competing processes with a noninstantaneous re-
sponse yielding a phase shift. In essence, many predator-prey–like
systems would have a characteristic delay.

It is hence without surprise that time delay systems produce ge-
nerically nonlinear periodic oscillations caused by delay effects
[chapter 2 in (22)]. The study of emergence of chaotic behavior in
deterministic and unforced time delay systems arising typically
through diverse bifurcation scenarios has been abundantly docu-
mented in the literature [see, e.g., (23, 24) and references therein].
Chaos produced by periodic forcing applied to time delay systems
has also attracted attention over the recent years [see, e.g., (20, 25)].
Yet, many questions remain regarding the emergence of chaos in
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forced-dissipative systems, with delays, especially regarding the oc-
currence of noise-driven chaos resulting from the interplay between
noise and delay effects. We emphasize that we are not after noise-
induced chaos that would be excited by random fluctuations ignit-
ing a chaotic motion nearby the periodic motion in the parameter
space. Rather, we are after understanding the conditions for the pro-
duction of shear-induced chaos resulting from noise’s action on pe-
riodic motion in time delay systems and the system’s temporal
response in view of applications. By the generic character of period-
ic solutions produced by time delay systems (22, 26), the question of
prediction of this noise-driven chaos is potentially of wide interest
although yet unanswered.

It is the purpose of this article to fill this gap. Our goal is thus to
develop a general understanding for the production of noise-driven
chaos caused by stretch-and-fold actions resulting from the interac-
tions of suitable stochastic perturbations with delay-induced peri-
odic oscillations. We pursue here not only to push the generation of
noise-driven chaos to the realm of nonlinear time delay systems
with infinitely many degrees of freedom but also to address the in-
herent computational and implementation aspects in view of an ef-
ficient prediction of the corresponding dynamical behaviors.

The task is challenging, but its resolution is potentially valuable
for many applications. In that respect, we demonstrate the main
ideas on a cloud physics problem, which provides a natural
ground for the introduction of fast, small-scale, random fluctua-
tions that would be originated from microphysics or other
subgrid-scale processes (turbulence) [see, e.g., (27, 28)]. Within a
broader perspective, the introduction of parameterization of unre-
solved scales is often sought to provide closure models. These are
aimed at faithfully emulating the dynamics of the macroscale vari-
ables, but the design and effects of these parameterizations advocat-
ed on a stochastic ground over the recent years (29) are often poorly
understood on a nonlinear dynamics ground. Thus, to advance the
understanding about the emergence and characterization of
complex dynamics resulting from the interactions between stochas-
tic perturbations and nonlinear effects constitutes a question with a
growing and practical interest in the contemporary modeling of
complex systems.

In parallel, the introduction of delay mechanisms in cloud
physics was proposed by Koren and Feingold (KF) in (30) to de-
scribe large-scale patterns formed in shallow marine clouds.
Through lagged effects that represent the autoconversion of the
small droplets into rain drops by collision coalescence processes,
they suggested that the transition between closed to open cellular
convection observed in marine clouds can be interpreted as the
states of nonlinear oscillations that are driven by these lagged
effects. Either in the original KF model or its simplification
known as the Koren-Tziperman-Feingold (KTF) model (31), such
delay-induced nonlinear oscillations were shown to arise through a
Hopf bifurcation scenario (32). Such conceptual modeling ap-
proaches are concerned with the representation of emergent prop-
erties of the system rather than detailed interactions between its
components. It seeks simple governing mechanisms that are the
product of the various processes and feedbacks involved without
representing them in full detail. This system’s macroscale view is in-
formative as it points out to emergent solutions that can be poten-
tially confronted to observations and more complex models such as
detailed large eddy simulations (LES) (33, 34).

Nevertheless, the delay-induced periodic oscillations obtained
with such delay models are too idealistic compared to satellite ob-
servations of open-cell oscillations (35), and this is where the math-
ematical question of this study meets our physical motivations: Can
one rectify these periodic oscillations obtained from delay models
toward more realistic ones by the action of fast, stochastic perturba-
tions? In other words, can irregular open-cell oscillations be ex-
plained in dynamical terms by means of stochastic perturbations
(such as, e.g., caused by microphysics/subgrid-scale processes) in-
teracting with periodic solutions naturally caused by delay effects?
For that purpose, we focus on the KTF delay model (31), but as it
will become apparent below, our findings apply to a broad class of
delay differential equation (DDE) models that could thus benefit
other fields of applications.

By combining recent reduced-order modeling techniques for
delay models of (32), with the recent advances in the understanding
of the phenomenon of shear-induced chaos (2), we answer positive-
ly the questions raised above. In particular, we show that irregular
but recurrent oscillations may be produced systematically out of
suitable stochastic perturbations of delay-induced nonlinear oscil-
lations and that such oscillations are associated with stochastic at-
tractors evoking Smale’s horseshoe structures (36, 37).

To understand the production of such oscillations and struc-
tures, we first recall in the “Noise-driven chaos from delay
models” section the geometric mechanisms at play for the produc-
tion of shear-induced chaos out of time-dependent perturbations of
planar systems. Here, the design problem of such perturbations is
solved in the case of a weak shear near the limit cycle, such as en-
countered for the Hopf normal form of the KTF model analyzed in
this article. We deal then with the practical design of these pertur-
bations for the effective production of stochastic strange attractors
exhibiting stretching and folding for the underlying stochastic
transport problems. These transport problems are central for the
generation of stochastically rectified DDE solutions. Complementa-
ry to such noise-driven chaos reminiscent to that of passively ad-
vected particles in a turbulent fluid flow, we also identify a
completely different type of noise-driven chaos that resembles
that of a swarm-like behavior of starlings, i.e., of amurmuration
phenomenon (38).

Unlike the horseshoes case, the murmuration chaos does not
result from low-dimensional dynamical mechanisms and cannot
be predicted from the Hopf normal form anymore. Rather, the
noise acting along the critical eigendirection, and thus low dimen-
sional, is transmitted through the nonlinear terms to the vast
number of unforced scales, leading to notable power-law and
scale break properties of the dynamics. The response to stochastic
parameterization is then analyzed in further details, particularly re-
garding the frequency content of the noise-driven solutions and its
dynamical origin. Last, we show in the “Comparison with high-end
simulations” section that the insights gained from the theory
enables us to stochastically rectify the KTF limit cycle into solutions
that reproduce with fidelity complex temporal variabilities of open-
cell oscillations exhibited by high-end cloud simulations. There, the
stochastic perturbations account for intermittent rain production
and turbulent Lagrangian effects not initially included in the KTF
model. We summarize lastly the results and point out to other ap-
plications in Discussion.
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RESULTS
High-end simulations of cloud fields
To better substantiate the questioning we are after, we report briefly
on a real-world case study of a cloud field exhibiting both open and
closed cellular cells, which will serve below to benchmark our noise-
driven approach aimed at rectifying delay-induced period oscilla-
tions (from the KTF model) toward more realistic ones. This
cloud field took form on 18 January 2020 during a cold air outbreak
with a mid-latitude cyclone developed over the western North At-
lantic Ocean. The remarkable open- and closed-cell structures are
shown in Fig. 1A from the cloud’s reflectance as retrieved from the
satellite GOES-16 channel 2 (0.65 μm) radiance with a nadir hori-
zontal resolution of 500 m (39).

Often the observations of such a cloud field exhibit complicated
spatio-temporal oscillations that are difficult to apprehend. An im-
portant step for their analysis has been taken in (35) in which a La-
grangian tracking method has been introduced to filter out the
atmospheric advective effects to isolate the clouds’ self-organized
oscillations. This approach allows for revealing spatially and tempo-
rally oscillating cloud patterns as well as quasi-stationary state cloud
patterns associated, respectively, with open and closed cells. Such
features are in qualitative, “metaphored” agreement with the Hopf
bifurcation as exhibited by the KF and KTF delay models (31, 32).
As pointed out in Introduction, the underlying delay-induced oscil-
lations produced through this bifurcation are, however, too idealis-
tic (since periodic) to represent faithfully the oscillations’
complexity as manifested from satellite observations. Nevertheless,
despite their periodic solutions, such conceptual delay models have
been credited recently a certain ability to produce a range of (peri-
odic) oscillations that share similarities when compared to filtered
cycles of cloud growth and decay as extracted from LES (40). To do
so, the diversity of the KTF periodic solutions in the parameter

space is constrained by the LES outputs using parameter estimation
techniques.

In this work, our approach is radically different. We are interest-
ed in producing diversity in the KTF model’s response to stochastic
perturbations mimicking the missing physics (e.g., parameteriza-
tion) without constraints against any LES output. Rather, our goal
is to identify the intrinsic, nonlinear mechanisms enabling these
perturbations to turn KTF periodic cycles into solutions with a
rich frequency content and amplitude modulations that resemble
open-cell oscillations as observed in nature and simulated by
high-end models of cloud physics.

The high-endmodel retained for this purpose is theWeather Re-
search and Forecasting (WRF) model, which is a state-of-the-art
mesoscale numerical weather prediction system designed for both
atmospheric research and operational forecasting applications
(41). The WRF run conducted here is aimed at reproducing the
physical variables underlying the satellite observations shown in
Fig. 1A (see Methods for more details). Figure 1 (B and C) shows
the vertical velocity just below the clouds base (∼750 m) at the same
specific time (20 January 18, UTC 12:40:00) for the regions delim-
ited by the red and blue boxes shown in Fig. 1A, respectively. These
boxes evolve in time and follow a Lagrangian path that filters out the
background advection and that hence enables us to extract the in-
trinsic open-cell and closed-cell dynamics (35) over the tracked
domains. The closed cellular state is a mostly cloudy state character-
ized by broad, weak updrafts in the opaque cloudy cell center and
stronger, narrower downdrafts around the cell edges. The open-cell
state is the “polar opposite” or “negative” in which narrow, strong,
cloudy updrafts surround broad, weak downdrafts in the optically
thin cell center. The simulated vertical velocity field reconstructs
these features almost perfectly: The cloudless open-cell centers are
associated with downdrafts, while the cloudy open-cell boundaries
are associated with updrafts (Fig. 1B) and just the opposite for the

Fig. 1. Open-cell and closed-cell fields: Satellite observation and high-end simulations. (A) Open- and closed-cell structures from the cloud’s reflectance as retrieved
from the GOES-16 channel 2 (0.65 μm) radiance with a nadir horizontal resolution of 500 m. (B) and (C) show results from the simulation (vertical velocity at ∼750 m is
shown) of the WRF model and correspond to the blue and red boxes shown, respectively, in (A). (B) [resp. (C)] displays open-cell (resp. closed-cell) patterns. Transitions
from closed-cell patterns to open cell ones are visible fromwest to east over a zonal strip in the latitude range (28∘N,36∘N). See fig. S10 for a high-fidelity WRF simulation of
the cloud field shown in (A) from which (B) and (C) are extracted.
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closed cellular cells (Fig. 1C) (see fig. S10 for aWRF simulation over
the whole domain as shown in Fig. 1A).

The comparison between KTF model’s response to stochastic
perturbations and WRF time series is discussed at the end of this
article, in the “Comparison with high-end simulations” section.
We turn next to the nonlinear mechanisms at the core of the trans-
formation of KTF periodic cycles into noise-driven solutions with a
rich frequency content obtained bymeans of well-designed stochas-
tic perturbations.

Noise-driven chaos from delay models
Stretching and folding nonlinear oscillations from noise
Before dealing with the production of noise-driven chaos out of sto-
chastic perturbations of nonlinear oscillations issued from DDE
models, we recall below the geometric mechanisms at play in the
case of planar systems. At the core of these mechanisms lies the
notion of isochron (iso, equal; chronos, time, in Greek) that was in-
troduced by Winfree (42) in his seminal work to address timing re-
lations in oscillators perturbed off their attracting cycles. Winfree
showed that to understand the response to elemental perturbations
boils down to understanding the functional dependence of the
phase on the state. This functional dependence is captured by the
isochrons, which provide the sets of phase-equivalent initial condi-
tions in the state space that lead to rhythms that are synchronous in
asymptotic time [box B, page 167 in (43)].

More precisely, given an attractive limit cycle Γ, whose orbit is
u(t), recall that the asymptotic (or latent) phase of a point x0 in
the basin of attraction of Γ is the scalar φ(x0) for which

lim
t!1
k xðtÞ � uðt þ wðx0ÞÞ k¼ 0 ð1Þ

where x(t) is the trajectory starting at x0 off Γ [see, e.g., chapter 13,
theorem 2.2 in (44)]. Then, the locus of all points sharing the same
asymptotic phase φ(x0) is called an isochron. In other words, the
isochrons are interpreted as the level sets of the phase function φ.
These isochrons form also the curves constituting the stable folia-
tion of the limit cycle (45) (see Methods). They provide a global
picture of the nonlinear dynamics associated with a limit cycle
and organize the response to localized perturbations such as
spikes (11, 43, 46).

The isochrons and, particularly, their twist (or bending) also
provide the key elements to understand the mechanisms at play
for generating chaos by exerting upon a limit cycle more general
time-dependent forcing, possibly stochastic (2, 9, 12, 47). In the
case of the Hopf normal form, _z ¼ ðaþ ibÞz � ðaþ ibÞzj z j2,
the isochrons’ twist is controlled by the ratio β/α; the larger it is,
the more auspicious it is for noise-driven chaos to take place—char-
acterized by a strange PBA emerging from stochastic perturbations
of a limit cycle (2, 48). In this case, points in the complex plane
rotate with different angular speed depending on their distance
from the origin, and intuitively, applications of random kicks, non-
uniformly distributed in time and in space, lead to different system’s
responses, which may lead to erratic, chaotic behaviors. On the
other hand, when the twist parameter β/α is small enough, then de-
pending on the noise intensity, the top Lyapunov exponent becomes
strictly negative and the random PBA reduces to a random fixed
point [see theorems B and C in (48)]. More details are provided
in the “Smale’s horseshoes from normal form: Noise
design” section.

Thus, as the system is suitably kicked in both radial and angular
directions, competing in an appropriate balance with the nonlinear
relaxation toward the unkicked system’s limit cycle, a series of
stretch-and-fold actions may result from this interplay between
the kicks and the local state space’s geometry. These stretch-and-
fold actions—if sufficiently frequent in the course of time—lead
eventually to the creation of Smale’s horseshoes (2), i.e., (hyperbol-
ic) chaotic dynamics (36, 49). Depending on the degree of iso-
chrons’ twist, the kick does not have to be so specific or carefully
chosen. It may be sufficient to kick nonuniformly in the radial di-
rection alone and rely on natural forces of nonlinear shear to
provide the necessary stretch-and-fold actions. This is, however,
not the case for the Hopf normal form issued from the DDE
model considered next, requiring the perturbations to somehow
enhance the isochrons’ twist as explained below.
Smale’s horseshoes from normal form: Noise design
We turn now to the generation problem of noise-driven, Smale’s
horseshoe-like structures from DDEmodels. To serve as an illustra-
tion, we consider the following KTF model from cloud dynamics

_h ¼ 1þ ahðtÞ � bh2ðt � tÞ; t . 0 ð2Þ

in which a = − 1 and b ¼
1
m

(μ > 0), while the variable h represents
the (normalized) cloud height. In this conceptual model, the delay
parameter τ is a key parameter that controls the time it takes from
the onset of droplet coalescence to the rain sedimentation and thus
the dynamical regimes’ bifurcations (31, 32). For this choice of a
and b, Eq. 2 admits only one physically relevant steady state given
by �h ¼ ð� mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4m

p
Þ=2. The KTF model (Eq. 2) rewritten for

the perturbed variable, HðtÞ ¼ hðtÞ � �h, is then

_H ¼ � HðtÞ �
2
m

�h Hðt � tÞ �
1
m
H2ðt � tÞ ð3Þ

Using Eq. 3, it is known that the critical equilibrium �h of Eq. 2
destabilizes through a (supercritical) Hopf bifurcation scenario as τ
crosses from below a critical value τc(μ) [see (32)]. We are then in
the presence of a recharge-discharge mechanism rooted into delay
effects that causes periodic oscillations.

To design a time-dependent forcing that perturbs the limit cycles
emerging through such a Hopf bifurcation, leading eventually to
chaotic dynamics according to stretching and folding mechanisms,
we first rely on the Hopf normal form of Eq. 3 and the geometric
insights recalled in the previous section.

This Hopf normal form is here obtained through Galerkin ap-
proximations of Eq. 3 by means of Koornwinder polynomials fol-
lowing Chekroun et al. (32, 50), on one hand, and the use of center
manifold theory [section 2 in (51)], on the other. The result shows
that the leading unstable mode’s amplitude is approximated, close
to τc(μ), by the following Stuart-Landau (SL) equation

_z ¼ lN1 z � ðaN þ ibNÞzj z j
2

ð4Þ

with explicit formulas of the coefficients αN and βN given in theorem
III.1 in (32). The sub- and superscript N reflects the dependence on
the dimension N of the Galerkin approximation used to approxi-
mate the DDE Eq. 3, i.e., the number of Koornwinder polynomials
retained to approximate the DDE solution [see appendix A in (32)].
The coefficient lN1 denotes the unstable (complex) eigenvalue asso-
ciated with the linear matrix ΓN of the Galerkin approximation of
Eq. 3 (see note S2). The coefficients αN and βN encapsulate the
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nonlinear interactions of the corresponding unstable mode eN1 with
the other stable modes [see equations 36 to 39 in (32)]. These coef-
ficients control, in turn, the twist of isochrons of the planar limit
cycle obtained from Eq. 4, twist that has an intuitive interpretation
when Eq. 4 is written in polar coordinates. In these coordinates, (r,
ϑ), Eq. 4 becomes the real system

_r ¼ RðlN1 Þr � aNr3;

_q ¼ IðlN1 Þ � bNr2
ð5Þ

from which we note the nonlinear dependence of the angular speed
_q on the radial distance r, whose intensity is controlled by βN, while

IðlN1 Þ approximates the frequency of the KTF model’s limit cycle.
As a result, the stronger the βN (and weaker αN), the stronger is the
radial dependence of the angular speed and thus the shear effects
near the limit cycle. This simple observation allows us to under-
stand why the twist number γ = βN/αN provides a good measure
of shear effects near the limit cycle (2).

For the physical parameter regime corresponding to μ = 0.3 and
τ = 1 such as considered in (31), the twist number is γ ≈ 0.45 result-
ing into a moderate twist of the isochrons (see Methods). As a con-
sequence, the shear effects near the limit cycle are too weak to help
trigger stretch-and-fold chaos when, e.g., only a random kick in the
radial direction is applied to Eq. 4. In contrast, it is shown in
Methods a parameter setting for which the twist number is 2.2 cor-
responding to isochrons that are further bended, becoming more
“tangential” to the limit cycle and augmenting thus the shear
effects along the limit cycle [see also figure 1 in (9)].

Thus, to enhance the shear effects, we apply the following state-
dependent perturbation to the SL equation (Eq. 4)

Fðt; zÞ ¼ iDf ðtÞzj z j2 þ s _WðtÞ ð6Þ

where _WðtÞ is a (real) white noise process, and f(t) is a random kick
specified below. The idea is to enhance sporadically the twist
number γ to γ + D/αN (thus D must be large enough) while
letting the white noise “jiggling” the limit cycle along the real line.
Said differently, the term iDf(t)z∣z∣2 is responsible for enhancing
phase diffusion by bending further the isochrons (52), i.e., to in-
crease phase-space stretching along the limit cycle as measured in
terms of phase difference between two trajectories starting from dif-
ferent isochrons. The term s _WðtÞ is aimed at providing the fast
fluctuations responsible of the folding through interactions with
the nonlinear effects.

The following stochastically perturbed SL equation is then
central in the design of the parameters of F to produce noise-
driven chaos

_z ¼ lN1 z � ðaN þ ibNÞzj z j
2
þ Fðt; zÞ ð7Þ

In that respect, the temporal structure f(t) of the state-dependent
forcing in Eq. 6 is designed as follows. We take f(t) to be real valued
of the form of a square signal, whose activation is randomly distrib-
uted in the course of time. More precisely, given a firing rate fr in
(0,1) and duration Δt > 0, we define the following real-valued jump
process as

f ðtÞ ¼ 1fjn� f rg; nDt � t , ðnþ 1ÞDt ð8Þ

where ξn is a uniformly distributed random variable taking values in

[0,1] and 1fj� f rg ¼ 1 if and only if 0 ≤ ξ≤ fr. The choice of the firing
rate is important as it must be chosen not “too high” to let express
the nonlinear relaxation toward the limit cycle, a key element to
produce stretch-and-fold actions. With the right amount of
random kicks (controlled by fr and D) and fast perturbations (con-
trolled by σ), the stochastic forcing F can thus be designed for the
stochastic SL equation (Eq. 7) to exhibit shear-induced chaos (see
fig. S1).

Recalling that Eq. 4 gives the Hopf normal form of the cloud
delay model (Eq. 3), the stochastic perturbation F given by Eq. 6
in Eq. 7 has a useful physical interpretation. As recalled above
from (30), the lagged effects account for rain production in the for-
mulation of Eq. 3, particularly through the nonlinear term H2(t −
τ). However, rain is known to be an intermittent phenomenon. On
the other hand, the coefficient βN in the normal form Eq. 4 highly
depends on the nonlinear term H2(t − τ) [see equations 37 to 39 in
(32)]. Thus, the term iDf(t)z∣z∣2, adding to the term iβNz∣z∣2 in Eq. 4,
can be viewed as responsible for enhancing the nonlinear effects
caused by rain production in an intermittent way. Within this
framework, the white noise term can be interpreted for accounting
for turbulent perturbations in a Lagrangian setting (53) and F in Eq.
6 for accounting for the missing physics in the KTF model. Note
that such a combination of on-off stochastic trigger with white
noise has been advocated in the design of conceptual models of pre-
cipitation (54). For earlier works using stochastic jump processes for
parameterizing tropical convection, see (55) [see also (56–58) and
references therein].

The question arises then on how to “lift” such a stochastic forcing
designed from the low-dimensional, stochastic SL equation (Eq. 7)
to (still) produce stretch-and-fold chaos for the DDE (Eq. 3) with
infinitely many degrees of freedom. We deal next with this problem
of practical importance in view of applications to cloud physics dis-
cussed hereafter.
Formulation of the associated stochastic transport problem
As pointed out above, Eq. 4 is a reduced model of Eq. 3 approximat-
ing the unstable mode’s amplitude near the onset of instability. This
model is obtained as the normal form of anN-dimensional Galerkin
approximation near the Hopf bifurcation point by application of
[theorem III.1 in (32)]. Thus, to force Eq. 4 translates into forcing
the unstable mode eN1 of the matrix ΓN used in the approximation of
the linear operator A associated with Eq. 3 (see Eq. 15 below). To
assess the effects of such a forcing on the DDE dynamics, one needs
then to determine what it means to force this mode in the limit ofN
→ ∞.

To do so, recall that any DDE can be recast into a transport
problem for which the solution u(t, θ) provides, in our case, the his-
toric segment {H(t + θ)}θ ∈ [−τ,0], with H(t) solving Eq. 3 [see, e.g.,
section II-A in (32)]. The Galerkin approximation framework of
(50) provides rigorous approximations uN(t, θ) of u(t, θ) that are
uniform in the time variable, t, and converge in a mean-square
sense over the history interval, i.e., for θ in [−τ,0] [see section 4
and remark in (50)]. The DDE solution, H(t), is then obtained as
the boundary value u(t,0) by means of numerical schemes exploit-
ing this transport equation reformulation [see, e.g., chapter 3.5 in
(59) and (60)]. Note that DDE solutions obtained this way enjoy
better stability properties than by standard step-by-step integration
methods applied to the DDE directly (61). We refer to (62) for a
survey about dynamical indicators exploiting the relationships
between delay models, and their transport equation formulation
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also referred to as the space-time representation of delay models in
the physics literature (63).

It is within this transport equation formulation that our stochas-
tic parameterizations take place. After mathematical analysis, one
can argue that forcing the unstable mode of an N-dimensional Ga-
lerkin approximation to Eq. 3 leads, in the limit N → ∞, to the fol-
lowing stochastic transport problem (see Methods and notes S3 and
S5)

@tu ¼ @uuþ ðFðt;, u;w1 .Þw1 þ c:c:Þ ð9Þ

subject to the nonlocal and nonlinear boundary condition

@uu ju¼0 ¼ � uðt; 0Þ �
2
m

�huðt; � tÞ �
1
m
u2ðt; � tÞ ð10Þ

In Eq. 9, φ1 denotes the unstable mode of the operator A given in
Eq. 15 below; it corresponds to the mode that destabilizes through
Hopf bifurcation. The stochastic forcing F is given in Eq. 6 but has
its argument z therein replaced by the inner product between u and
φ1, namely, <u, φ1> defined in Eq. 16 below. See note S5 for
more details.

The effect of this stochastic forcing at the level of the DDE dy-
namics is then simply obtained by evaluating u(t,0), which reduces
toH(t), solving Eq. 3 when F is identically zero. Hereafter, we obtain
thus a stochastic version of H(t) [still denoted by H(t)] by comput-
ing u, solving Eqs. 9 and 10, and storing

HðtÞ ¼ uðt; 0Þ ð11Þ

See fig. S9 (C and D) for a numerical illustration of the relation-
ships between u(t, θ) and H(t).

It is noteworthy that the obtention of stochastic perturbations of
deterministic DDE solutions via the stochastic transport formula-
tion (Eqs. 9 and 10) is not purely technical and implies deep differ-
ences with forcing stochastically the original DDE by simply adding
a stochastic term to the right-hand side (RHS) of Eq. 3. In the latter
case, using the transport equation reformulation, the stochastic
forcing would appear only in the RHS of the boundary condition
(Eq. 10) and not at the transport equation level itself as in Eq. 9.
This approach offers more degrees of freedom in the noise
design, allowing for taking account of dependence over the past
history from t− τ to t. Furthermore, this stochastic transport frame-
work allows for interpretability of results inspired by the analysis of
PDE dynamics such as energy spectra, fluxes through the boundary,
and so on (see the “Noise transmission, fluxes, and murmuration
cascade” section). Figure 2 provides a schematic of this stochastic
transport formulation to generate stochastically perturbed solutions
from a given DDE.

Compared to higher-precision schemes (60), we observed that
numerical solutions to Eqs. 9 and 10 are already computed with
high fidelity by using a first-order upwind finite difference
scheme following (59, 61) and an Euler-Miruyama scheme for
time discretization. For our numerical experiments, unless specified
otherwise, we used δθ = 5 × 10−4 and δt = 10−4. Within this numer-
ical setup, we discuss next the dynamical impact of the stochastic
forcing term in Eq. 9 by analyzing the corresponding snapshot
attractors.
Noise-driven horseshoes in stochastic transport problems
To compute the snapshot attractors from integration of Eqs. 9 and
10, we proceed in two steps. First, a large number of initial

conditions are placed near the limit cycle of the Hopf normal
form. Then, we map these initial conditions into functions of the
variable θ over [−τ,0] by using the Koornwinder polynomials
(used in the Galerkin approximation) to initiate Eq. 9 accordingly
(see Methods). The snapshot attractors obtained by this protocol
and shown in Fig. 3 (A and B) reveal an amazing complexity in
the reduced state space [u(t, −τ), u(t,0)] for the forcing parameters
as indicated in the caption of that figure. The patterns thus obtained
exhibit notable similarities with those displayed by chaotic advec-
tion in fluids (49, 64), traditionally associated also with stretching
and folding mechanisms as already advanced by Osborne Reynolds
[see (65) and references therein]. However, we emphasize that in
our case, such a fluid-like behavior revealed by the time evolution
of snapshot attractors is produced out of a linear advection equation
subject to suitable stochastic perturbations (Eq. 9) and to nonlocal
and nonlinear boundary conditions (Eq. 10) supporting nonlinear
oscillations in the absence of forcing. To the best of the authors’
knowledge, our findings constitute among the first numerical evi-
dence that such stochastic transport problems may exhibit, in the
appropriate phase space, a behavior highly reminiscent to that of
passively advected particles in a turbulent flow (64). We mention
though (66) for a mathematical proof of topological horseshoes
arising in deterministic and unforced DDE systems with small
delays. Whereas turbulent dynamical systems are generally charac-
terized by both a large dimensional phase space and a large dimen-
sion of instabilities, it is thus particularly noticeable that, here, a
turbulent behavior is produced still in high dimension but from a
system with only one pair of unstable modes associated with the
Hopf bifurcation.

Inspired by this fluid analogy, we next examine the mixing in the
reduced state space [u(t, −τ), u(t,0)] by conducting a dye experi-
ment, which consists of marking in red a few points located in a
small region of the snapshot attractor (Fig. 3A) and to track its evo-
lution at a later time (Fig. 3B). This numerical experiment reveals
the propensity to strong mixing naturally associated with stretching
and folding. The dye is stretched following a pattern largely dictated
by the unstable manifolds forming striated structures, which spread
over the attractor. Compared to its Hopf normal form, the stochastic
transport problem (Eqs. 9 and 10) shows snapshot attractors with
unstable manifolds presenting occasionally more of such striated
structures (compare Fig. 3A with figs. S1, B and C). The additional
degrees of freedom appear to amplify the nonlinear shear effects.
Movie S1 shows the time evolution of the snapshot attractors ob-
tained from Eqs. 9 and 10 to better appreciate the stretching and
folding structures resulting from the interactions between the
noise with the nonlinear effects.
Noise-driven murmurations
We consider now the stochastic transport problem (Eqs. 9 and 10)
in which the state-dependent forcing term F(t, ·)φ1 is simply re-
placed by an additive random kick force Df(t)φ1, with f (t) still
given in Eq. 8. The idea is to explore the response to a “naive” pa-
rameterization that would just use jump processes and not state de-
pendency nor account for turbulent effects (via the σ-term).

With such a forcing, the limit cycle of the SL equation (Eq. 4)
does not experience sustained stretch-and-fold deformations
anymore and is only substituted by a random periodic orbit
(4, 67). However, in this case, we observed that the additional
degrees of freedom act as a sort of high-dimensional amplifier of
the interactions between the external forcing and the internal
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nonlinear oscillations but in a different way than for the horseshoes
case. Eventually, these interactions lead to a new type of noise-
driven chaos as revealed by snapshot attractors, which no longer
exhibit the stretch-and-fold pattern characteristic of horseshoes
(compare Fig. 3, C and D with Fig. 3, A and B). Instead, the
points constituting the chaotic PBA evolve in a coherent fashion,
reminding that of murmuration, a phenomenon that results when
hundreds, sometimes thousands, of starlings fly in swooping,
forming intricately coordinated patterns through the sky (38) (see
Fig. 3, C and D, and movie S2).

Qualitatively, the chaotic dynamics obtained as noise-driven
horseshoes, via the state-dependent noise (Eq. 6), or noise-driven
murmuration, via additive random kick force, differ from their
mixing properties. To visualize this important distinction, a same
volume of points colored in red and taken at a same time frame (t
= 39) has been propagated by the corresponding stochastic trans-
port problem up to time t = 51, in each case. Figure 3 reports the
results of this dye experiment, which shows that the murmuration-
like motion is less mixing in the phase space than that associated
with horseshoes. On a more quantitative ground, this difference
in mixing properties is manifested by a faster decay of correlations
in the horseshoes case than in the murmuration case, already visible
in the time domain: the time evolution of H(t) presenting faster os-
cillations in the former case than in the latter (compare red and blue
curves in Fig. 4A). See also fig. S7E showingH(t) over a longer time-
interval. Last, we would like to emphasize that the “fuzziness” dis-
played by the snapshot attractors in the murmuration case is pre-
sumably indicative of a hyperchaotic behavior with at least two
positive Lyapunov exponents (68) [see, e.g., figure 1 in (69)]. The
careful checking of such a hyperchaotic behavior by computation
of the Lyapunov exponents is, however, a numerically challenging

task for the stochastic transport problems such as Eqs. 9 and 10 due
to the high-resolution schemes used in this study.

It is noteworthy that in each case, a noise-driven chaos such as
considered here does not correspond to an excitation of a chaotic
regime existing nearby in the parameter space as the (deterministic)
KTF model is known to exhibit (31). The very essence to produce
chaotic behaviors here consists of adding the suitable stochastic per-
turbations to the corresponding transport problems set on the fixed
domain [−τ,0], whereas chaos as identified in (31) consists of
varying the size of this domain, i.e., changing τ. Thus, it is expected
that each chaos displays its own spectral signature after estimation of
the corresponding (temporal) power spectrum over long simula-
tions corresponding to convergence of the second-order moments
(see Fig. 4B). Power spectra are known to relate to structural ele-
ments of the dynamical equations (70, 71). While the horseshoes
dynamics shows clear distinctions with that of the deterministic
chaotic regime, the power spectrum in the murmuration case
(Fig. 4B, blue curve) displays some features reminiscent with that
of the latter (Fig. 4B, black curve).

Thus, noise-driven chaos produced only under the influence of
jump processes (murmuration) is in sharp contrast with noise-
driven chaos accounting for state dependency and turbulent
effects in their driving noise (horseshoes). The latter exhibits a
completely different temporal response than for chaotic behaviors
produced by the KTF model alone. Nevertheless, there are still im-
portant differences between the murmuration chaos and this deter-
ministic chaos. As explained below, these differences lie in the very
level of their generative mechanisms, back to the space-time
formulation.
Noise transmission, fluxes, and murmuration cascade
To analyze the mechanisms at the origin of this murmuration chaos
compared to those associated with horseshoes or deterministic
chaos, we conducted an energy content analysis of high-resolution
solutions, u(t, θ), to Eqs. 9 and 10 (for the corresponding forcing)
obtained from long integrations of 2 × 107 iterations. To do so,
because the Koornwinder polynomials Kt

kðuÞ are naturally ranked
from low- to high-frequency wave numbers, k, (see fig. S4A) and
form a basis to approximate the solutions of Eqs. 9 and 10 (50),
we computed the energy content E(k) associated with a wave
number k by projecting, for each t, u(t, θ) onto Kt

kðuÞ using the
inner product (Eq. 16), followed by time averaging.

We observe that while the energy E(k) decreases monotonically
with increasing wave numbers for the unforced chaotic regime, a
slower rate of decay of energy of power law type suddenly occurs
beyond a critical wave number kc (∼12) in the murmuration case
(see Fig. 5, blue curve). The dynamical origin of this notable
scaling-law transition is rather subtle. It is tied to the fact that the
stochastic perturbation in Eq. 9, in which F(t, ·)φ1 is replaced by
Df(t)φ1, is transmitted not only directly within the domain via
Eq. 9 but also through the right boundary according to Eq. 10.

To quantify these contributions to the “noise transmission,” we
computed the rate of change of the flux F0ðtÞ ¼ @t@uu ju¼0, at the
right boundary and within the domain, denoted by
Fðt; uÞ ¼ @t@uu. By differentiating Eq. 10 with respect to time
and using Eq. 9 for computing the corresponding ∂tu-terms, one
observes that F0 depends on the random kick f(t) in the murmura-
tion case. These kicks occurring irregularly in time cause irregular
variations of F0ðtÞ that penetrate within the domain and become

Fig. 2. Stochastic forcing via stochastic transport formulation. In this schemat-
ic, the forcing term F(t, ·)φ1 is an additive random kick force f (t)φ1, with f (t) being
the jump process given by Eq. 8. It corresponds to themurmuration case discussed
in the “Noise-driven murmurations” section. Stochastic perturbations of determin-
istic DDE solutions are obtained via solving the stochastic transport formulation
(II). The forced trajectory is obtained via (III). It is different from forcing the DDE
in (I) with f (t) directly, which would consist of forcing the boundary condition
f (t) and not forcing the transport equation as in (II).
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manifested spatially (in the θ variable) as small-amplitude high-fre-
quency oscillations on Fðt; uÞ (t fixed), located near the boundary
θ = 0 (see blue curves in fig. S5B).

These oscillations, after integration in time and in θ, become
even of smaller amplitudes but are still contained in the solution
profile u itself, albeit present only at very weak energy levels. In con-
tradistinction, for the unforced chaotic regime, F0 is only driven by
the nonlinear dynamics, and Fðt; uÞ is smooth throughout the
domain, including near the boundary θ = 0 (see black curve in
fig. S5B). For this deterministic setting, it is thus only (exponential)
dissipation that dominates at small scales. For the murmuration
case, the small-amplitude oscillations caused within the θ domain
by irregular fluxes at the boundary θ = 0 (see inset in fig. S5B) pump
up energy into the small scales that manifest into a bending of E(k)

toward a slower rate of the form k−p (scale break), as k is increased
beyond some kc.

The transmission of the stochastic perturbations between the
domain and the boundary, responsible for the scale break of E(k)
in the murmuration case, acts thus as a small-scale stochastic
forcing that would be spanned by a few high-wave Koornwinder
modes. This observation is consistent with the notable re-emer-
gence of snapshot attractors for the (extremely) small amplitudes
associated with scales beyond kc that are reminiscent with those ob-
served at the large scales [compare Fig. 5 (insets B and C) with Fig. 3,
C and D]. At these small scales, the snapshot attractors evoke also in
their time evolution the motion of murmuration. We refer to this
phenomenon of murmuration across the scales as a murmura-
tion cascade.

Fig. 3. Snapshot attractors from the stochastic transport problem (): Horseshoes and murmuration cases. Eqs. 9 and 10 (A) and (B) show the reduced state space,
(u(t, − τ), u(t,0)), snapshot attractors,A(t), at a given time t, as computed by integration of the stochastic transport problem (Eqs. 9 and 10) over 2 × 106 initial data, each
driven by the same noise path (see Methods). These panels correspond to the horseshoe case. (C) and (D) show such snapshot attractors for themurmuration case, which
consists of the same protocol, except that the state-dependent noise term F(t, < u, φ1 >)φ1 in Eq. 9 is replaced by the additive noise term Df(t)φ1 with f (t) given by Eq. 8. In
each case, the same volume of points are colored in red at time t = 39, whose evolution is shown at time t = 51. This dye experiment reveals that the murmuration chaos
case is less mixing than for the horseshoe case. The parameter values for the horseshoe case areD = 60 and σ = 0.1, and the parameter value for themurmuration case isD
= 0.3. In each case, the other parameters are set to fr = 0.7, Δt = 10−2, δt = 10−4, and δθ = 5 × 10−4.
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We emphasize that such organized dynamics takes place in scales
up to seven orders of magnitude smaller compared to the original
size of full snapshot attractors shown in Fig. 3 (C and D), expressing
almost the signature of self-similarity in these lagged coordinates.
This is absolutely remarkable compared to the unforced chaotic
regime where, at such scales, any projection of the dynamics is
reduced to a “marshmallow-type” shape dominated by dissipation,
which also occurs for an intermediate range of scales above kc in the
murmuration case (see Fig. 5, inset A).

For the horseshoes case, recall that the stochastic forcing F(t, < u,
φ1 >)φ1 in Eq. 9 is also large scale because φ1 is itself of low wave
number in the θ variable (see fig. S4B). The small-scale oscillations
exhibited by the profile in θ of Fðt; uÞ (fig. S5D) are not the finger-
print of the forcing term in the otherwise linear Eq. 9 but rather
proceed from the transmission over time of the stochastic perturba-
tions between the domain and the boundary through nonlinear Eq.
10. In this case, this transmission is even more pronounced than in
the murmuration case, with a multiplicity of scales of oscillations
penetrating deeper into the domain as visible on the θ-profile
Fðt; uÞ shown in fig. S5D. These oscillations are caused by even
faster oscillations of F0ðtÞ (due to white noise) at the boundary θ
= 0 (compare red and blue curves in fig. S5, C and A, respectively.
As a result, the solution’s energy in the horseshoes case is distribu-
ted according to a power law spanning a wider range of scales than
in the murmuration case, explaining the shape of the energy spec-
trum shown in Fig. 5 (red curve). Here, again, horseshoe-like pat-
terns are visible down the scales on the small-scale projections of the
dynamics.
Response dependence to stochastic parameterization
Before comparison with high-end simulations from cloud physics,
we report below on a parameter dependence study about the sto-
chastic forcing’s parameters and lagged effects. The motivation is
to analyze, in terms of variability, the potential diversity of dynam-
ics that the proposed “horseshoe parameterization” provides in view
of comparison to other cloud decks observed not only over subtrop-
ical oceans but also over continents (72). Each of these cellular pat-
terns stems from a distinct dynamical origin (in a physical sense),

related to the spatial partitioning of rising and sinking air (33, 73).
Thus, we consider below the question of diverse temporal variability
produced out of stochastic transport problems such as Eqs. 9 and 10.

Two sets of numerical experiments are conducted in that respect.
While keeping fixed the characteristic parameters, D and fr, of the
jump process in Eq. 8, we assess the intensity variation of the tur-
bulent effects encoded by the σ parameter in Eq. 6 upon two peri-
odic nonlinear regimes. One regime, referred to as regime A below,
corresponds to the underlying results shown in Fig. 3, i.e., for μ = 0.3
and τ = 1. This regime, which we qualify as mildly nonlinear, is
located not far from the Hopf bifurcation with a critical τ value of
τc ≈ 0.745 and with a spectral gap given as sg ¼ RlN1 � RlN2 ¼ 1:19
(see fig. S2, top row). This gap is of size comparable to spectral gaps
underlying other parameter regimes for which the center manifold
reduction provides efficient low-dimensional approximations of the
KTF model’s periodic orbits [see section 3.C in (32)]. For instance,
for τ = 0.8 as in figure 3 in (32), sg = 1.61. Recall that the larger the
spectral gap, the more auspicious it is for center manifold reduction
to operate [see, e.g., equation 2.18 in section 2.1 in (51)].

The other regime, referred to as regime B below, corresponds to a
strongly nonlinear one (μ = 1.2 and τ = 20) located further away
from the onset of Hopf bifurcation with τc = 6.671 and with a
much smaller spectral gap, sg = 3.9 × 10−3, than in regime A (see
fig. S2, bottom row). For regime B, the limit cycle exhibits more
abrupt changes of curvature than in regime A (see magenta curve
in Fig. 6A). Physically, by its larger τ value, it corresponds to a sit-
uation in which the onset of droplet coalescence to the rain sedi-
mentation is a slower process than for regime A. Without any
surprise, for this regime, the center manifold approach fails to
provide a reliable low-dimensional approximations (due to small
spectral gap) and hence invites us to reconsider the production of
noise-driven chaos at the DDE level from a low-dimensional
manufacture.

Nevertheless, the stochastic transport formulation (Eqs. 9 and
10), derived from Galerkin approximations in which only the un-
stable mode is forced stochastically (see note S3), still makes sense to
produce for regime B as well, noise-driven chaos as shown below.

Fig. 4. Comparison of horseshoes and murmuration dynamics. (A) Time series of H(t). (B) Corresponding power spectra (log-log scale). Shown in each panel is a
comparison with a chaotic regime existing nearby in the parameter space (see legend). The horseshoe dynamics is characterized by a dominant oscillation of period T* ≈
1, smaller than the period of the unperturbed KTF model’s limit cycle.
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Nevertheless, the insights gained to produce stochastic horseshoes
from Eqs. 9 and 10 by further augmenting the isochrons’ twist from
the reduced SL (Eq. 4),need revision as regime B escapes the domain
of validity of center manifold theory. Actually, noise-driven chaos
with an even richer temporal variability are reachable when stochas-
tic perturbations of the same form as used in regimeA are applied to
regime B. We first elaborate on this noise-induced variability and
then explain that its origin can still be traced back to low-dimen-
sional mechanisms involving the theory of isochrons.

The diversity in temporal variability can already be visually ap-
preciated by comparing the time series across the regimes [Fig. 6 (C
and E) versus fig. S7 (C and E)]. Whereas for both regimes, one
departs from randomly kicked periodic oscillations when σ = 0
and D ≠ 0 (see Fig. 6A), the emergence of frequency and amplitude
modulations displayed by the noise-driven solutions become even
more dramatic in regime B compared to regime A as σ is increased

(cf. Fig. 6 and fig. S7). The response to stochastic perturbations from
Eqs. 9 and 10 in the cases σ = 0.05 and σ = 0.1 is marked by “tonic”
episodes of high-frequency oscillations (see, e.g., around t = 160 in
Fig. 6C) that populate a broadspectral peak in the power spectrum
(see Fig. 6, D and F and broadband peak marked in red in Fig. 6F).

On the other hand, one observes when σ = 0.05 and σ = 0.1, a
low-frequency bump pumping out of the power spectrum to the left
of this broadband peak (Fig. 6, D and F) manifested in the time
domain by episodes of slow and modulated oscillations (Fig. 6E).
Note that this low-frequency bump rises above a subharmonic fre-
quency of the (unperturbed) KTF model’s period (see the vertical
dashed cyan lines across Fig. 6, B, D, and F).

The broad high-frequency peak has an origin that can still be ex-
plained by arguments stemming from low-dimensional stochastic
dynamics. As mentioned above, normal form theory no longer pro-
vides a valid reduction for this regime. On the other hand, the

Fig. 5. Energy spectra. These spectra are obtained from discretization of Eqs. 9 and 10with δθ = 2−12 and δt = 10−4. More precisely, once u is computed for a given type of
stochastic forcing, EðkÞ ¼ j yk j

2, where ykðtÞ ¼k K
t
kk
� 1

, uðt; � Þ; Kt
k ., with ð� Þ denoting time averaging, and Kt

k is the (rescaled) Koornwinder polynomial of wave
number k [see (32) and note S3].
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computation of isochrons is a challenge in dimension higher than
three by current mesh-basedmethods (74–76), making it difficult to
gain insights into the response to perturbations by the computation
of the isochrons associated with, e.g., high-dimensional Galerkin
approximations (50) of the KTF model placed in regime B.

Instead, we adopt a heuristic approach to propose a two-dimen-
sional (2D) reduced system able to approximate with a certain ac-
curacy the 2D projection onto the unstable mode φ1 of the KTF
model’s periodic orbit in regime B. This heuristic is described in
Methods. It leads, in the (x, y) plane of the corresponding 2D
reduced state space, to the following system

_x ¼ Rxþ py � cððyþ y�Þ þ bðx � x�ÞÞ
3

_y ¼ � qx � ry � dðy � y�Þ
3

ð12Þ

where R, r, b, c, d, x*, y*, p, and q are positive parameters.
The most interesting attribute of Eq. 12 is that it produces a limit

cycle with an oblique and elongated shape displaying local changes
of curvatures comparable to those of the 2D projection of the KTF
model’s periodic orbit in regime B (see fig. S9A). The limit cycle

from Eq. 12 is shown by the black curve in Fig. 7B (see Methods
for the model’s parameter values). Unlike in the case of a circular
orbit (as for SL Eq. 4), the changes of curvature along the limit cycle
imply an inhomogeneous twist of the isochrons. A few isochrons
calculated from Eq. 12 and shown in blue in Fig. 7B illustrate this
point. This inhomogeneous feature is known to occur for many
other 2D systems such as the van der Pol oscillator among others
[see figure 10.3 in (46) and box C in page 70 in (43)]. Such an in-
homogeneous twist of the isochrons is also known to affect the re-
sponse to δ-function perturbations [chapter 10 in (46)]. However,
little is known regarding the impact of such an inhomogeneous
twist of the isochrons on the response to stochastic perturbations.
Intuitively, because the angular speed of the unperturbed dynamics
is no longer uniform at a fixed radius to the center of gravity of the
limit cycle (unlike for Eq. 5), a richer response is expected.

The response of Eq. 12 to stochastic forcing of the form F(t)
given by Eq. 6 is thus calculated and shown in Fig. 7A for the x var-
iable in the case of parameter values of F leading to noise-driven
chaos. There, we observe, as in Fig. 6E, tonic episodes of high-fre-
quency oscillations punctuated by slower ones. In terms of power

Fig. 6. Parameter dependence of the response: Strongly nonlinear regime away from Hopf bifurcation. (A), (C), and (E) show the response H(t) given by Eq. 11 for
different values of σ in the state-dependent noise F (see Eq. 6) with D = 40. (B), (D), and (F) show the corresponding power spectra in log-log scale. The magenta curve in
(B) corresponds to the power spectrum of the periodic orbit for D = σ = 0. This periodic trajectory is also shown in magenta in (A). Note the difference in the response to
random kicks [black curve in (A)] in terms of the oscillations’ near period compared to the original period Td ≈ 43 displayed by the unforced DDE’s periodic orbit. The
response when σ = 0 and D = 40 (A) is oscillating at a faster dominant frequency than T � 1d and, at the same time, much slower than the firing period Δt = 10−2 of the
random kicks. See text for more details.

Chekroun et al., Sci. Adv. 8, eabq7137 (2022) 18 November 2022 11 of 19

SC I ENCE ADVANCES | R E S EARCH ART I C L E



spectrum, these modulations of frequency and amplitude corre-
spond to a broadband peak, which is also skewed toward high fre-
quencies as shown in Fig. 6F for the high-dimensional stochastic
transport problem (Eqs. 9 and 10) (compare the black curve in
Fig. 7C with the red broadband peak shown in Fig. 6F). In compar-
ison, in the case of an homogeneous twist of the isochrons such as
observed for SL Eq. 4 (see Methods), the response to the same sto-
chastic perturbation is not skewed and more narrowband.

It is thus legitimate to attribute the broadband peak of high fre-
quencies observed for Eqs. 9 and 10 to emerge actually from a low-
dimensional mechanism, taking its origin into the inhomogeneous
twist of the genuine isochrons of the KTF model in the 2D reduced
state space associated with the unstable mode φ1. The low-frequency
peak visible in Fig. 6F for Eqs. 9 and 10 is, however, not displayed by
the response to the stochastic perturbation F(t) of the reduced equa-
tion (Eq. 12). It thus takes a high-dimensional origin presumably
rooted into the nonlinear interactions between the noise, F(t, < u,
φ1 >)φ1, acting along the critical eigendirection, and (some of) the
stable eigenmodes.

Last, it is worth noting that the random attractor associated with
regime B when σ = 0.1 displays patterns somewhere in between
those shown by the snapshot attractors of Fig. 3 in the horseshoe
and murmuration cases, respectively. Such a snapshot attractor
for regime B is shown in fig. S9B, and its time evolution is available
in movie S3. There, we can distinguish stretch-and-fold features

embedded in a “foggier” background than for the snapshot attrac-
tors shown in Fig. 3 (A and B) for the mild nonlinear regime,
regime A.

Comparison with high-end simulations
Thus, we have just seen that for nonlinear regimes corresponding to
conditions in which the onset of droplet coalescence favoring rain is
a slow process (regime B) (captured by τ), then the response to sto-
chastic perturbations (missing physics in the KTF model) is of a
broader power spectral signature than for regimes with a shorter re-
charge period before rain sedimentation (regime A).

We illustrate here that the theory presented in the “Noise-driven
chaos from delaymodels” section and insights gained therein enable
us to produce stochastically perturbed KTF solutions with a rich fre-
quency content and amplitude modulations that resemble open-cell
oscillations as simulated from the high-end WRF model. The
benchmark time series is issued from the WRF model simulation
(vertical velocity) of an open cell and is obtained by recording the
time evolution w(t) of a grid point in Fig. 1B (see the black curve in
Fig. 8A). The stochastic perturbations to the KTF model are de-
signed according to the horseshoe’s approach, and the model’s re-
sponse is the noise-driven time series H(t) (obtained from Eq. 11),
whose an episode is shown in Fig. 8A (red curve). Although H(t)
and w(t) are not in the same units, H(t) has been rescaled for a

Fig. 7. Broadband response caused by isochrons’ inhomogeneous twist. (A) The response for the x variable to the stochastic perturbation F(t) (given by Eq. 6) applied
to the reduced Eq. 12. (B) A few isochrons associated with the corresponding limit cycle. (C) The power spectrum (in log-log, black) of x(t) shown in (A) and that obtained
from SL Eq. 4 when forced by F(t) (red curve). In both cases, the parameters of F(t) are D = 40, fr = 0.7, Δt = 10−2, and σ = 0.1.
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better visual comparison, fluctuations in updraft/downdraft being
correlated to cloud height.

Regime A turns out to be the most relevant for the comparison
exercise. For this regime, the power spectrum of the KTF model’s
response (red curve in Fig. 8B) shares remarkably similar features
compared to the power spectrum of the WRF time series (black
curve in Fig. 8B): a low frequency bump and a higher frequency
one of smaller energy. This is observed for many such WRF time
series of w(t) over the tracked domain shown in Fig. 1B for the
open-cell field at hand. There, the dominant period of the most en-
ergetic bump is 86.2 min from the noise-driven model Eqs. 9 and 10
matching that of theWRFmodel. The blue curve shown in the inset
of Fig. 8B corresponds to the KTF periodic cycle when the stochastic
perturbation in Eqs. 9 and 10 is turned off. Its period is 210.5 min.
For comparison, the black curve in the same inset reproduces the
black curve shown in Fig. 8A. The stochastic component is thus
able to rectify significantly delay-induced periodic oscillations
toward realistic ones. To “optimize” these results, note that the
time in the KTF model has been rescaled as t ¼ st, where
s ¼ f �KTF= f

�
WRF, in which f �KTF denotes the frequency of the domi-

nant peak in the KTF model’s response (before rescaling), while
f �WRF denotes that of the WRF time series. With this rescaled
time, the value of the rescaled τ is 66 min, while μ = 19.8. The
noise parameter values are given in Methods.

It is noteworthy that the stochastically perturbed normal form
(Eq. 7) of the KTF model [with F given by Eq. 6] allows for approx-
imating the frequency f �KTF of the dominant peak in the KTF
model’s response to stochastic perturbations.

Without noise, the fundamental frequency fc to Eq. 7 is obtained
thanks to Eq. 5 as f c ¼ IðlN1 Þ � RðlN1 ÞbN=aN , dropping the 1/(2π)
factor.When noise is turned on, the term η(t) =Df(t)r2 (see Eq. 8) is
added to the RHS of the θ equation of Eq. 5, which perturbs there-
fore this fundamental frequency. By simply making the approxima-
tion hðtÞ � D f rr

2, with r denoting the mean value of the r
fluctuations, the dominant frequency of z(t) solving Eq. 7 is then

approximated by

fw ¼
fc þ D f rr

2

2p
ð13Þ

It turns out that f⋆ provides a good approximation of f �KTF with
f⋆ corresponding to a dominant period of 91 min (see the two
dashed vertical lines in Fig. 8B with black for f �KTF and cyan for f⋆).

However, this normal form approximation is unable to explain
the second bump in the power spectrum of the KTF model’s re-
sponse, because the latter does not correspond to a “subharmonic”
of f �KTF. Neither it corresponds to a “fingerprint” frequency inher-
ited from the forcing f(t), the latter presenting a flat spectrum over a
low-frequency band containing the frequency peak of this second
bump (see inset figure in fig. S8).

Recall that the Koornwinder polynomials allow for decomposing
the solution u(t, θ) to Eqs. 9 and 10 according to

uðt; uÞ ¼
X1

k¼0
ykðtÞK

t
kðuÞ ð14Þ

whereKt
k denotes the rescaled (and normalized) Koornwinder poly-

nomials (50), and yk(t) denotes the corresponding Koornwinder co-
efficients. By analyzing the power spectra of these coefficients, one
observes that the second bump is not only present in them but dom-
inates their time variability, starting from the third (i.e., k = 3)
Koornwinder coefficient (see the bump marked by a vertical
dashed line in each panel of fig. S8). This observation together
with the decomposition formula (Eq. 14) shows that the time fluc-
tuations carried by the high wave number modes participate to the
second bump exhibited by the (temporal) power spectrum dis-
played in Fig. 8B.

DISCUSSION
Thus, different types of noise-driven chaos—produced from either
low- or high-dimensional interactions between the noise and

Fig. 8. Noise-driven chaotic time series versus WRF simulation. (A) A (rescaled) time series H(t) given by Eq. 11 from the stochastic transport model Eqs. 9 and 10 (red
curve) and a time series of the vertical velocity at a spatial location as simulated by theWRFmodel in the open-cell regime. The corresponding power spectra are shown in
(B) in linear scale. See text for more details.
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nonlinear terms—have been identified and implemented for the
KTF model. From a cloud physics perspective, this work brings
new perspectives on the impact of fast fluctuating processes (micro-
physics/turbulence) onto the cloud large-scale motion, modeled as
delay-induced oscillations, depending on the way these processes
are parameterized. We have shown that the latter may induce on
the large-scale dynamics completely different cloud dynamics’ re-
sponses, responsible of irregular oscillations with their own spectral
properties.

Notably, when the stochastic forcing, F, accounts for intermit-
tent rain production and Lagrangian turbulent effects (missing
physics in the original KTF model) as in Eq. 6, it enables us to
produce stochastically perturbed KTF solutions with a rich tempo-
ral variability that resembles open-cell oscillations as simulated by
the high-end models of cloud physics (see Fig. 8).

The low-dimensional mechanism through which the regular os-
cillations (limit cycles) are stretched and folded by F (with suitable
parameters) until emergence of stochastic strange attractors (sto-
chastic horseshoe-like structures) mirroring the motion of passive
tracers in a turbulent flow is not limited to the KTF model. This
phenomenon is generic as we have shown that the very fabric of
such a noise-driven chaos is rooted into the center manifold reduc-
tion of any time delay system exhibiting a Hopf bifurcation
[theorem III.1 in (32)], on one hand, and the theory of shear-
induced chaos (2), on the other. Figure 9 shows these generic mech-
anisms at work to produce systematically stochastic horseshoe-like
structures from stochastic perturbations of delay-induced periodic
oscillations as long as the DDE model is placed not “too far” after
the onset of a (supercritical) Hopf bifurcation such that center man-
ifold reduction techniques apply.

In contradistinction, noise-driven horseshoes can no longer be
predicted by center manifold and normal form theory for strongly
nonlinear regimes exhibiting limit cycles, which are distorted in the
absence of noise. Still, the theory of isochrons and the stochastic
transport formulation provide a flexible framework to understand
and produce noise-driven chaos—with an even richer temporal var-
iability—from stochastic perturbations of such highly nonlinear
DDE limit cycles as documented in the “Response dependence to
stochastic parameterization” section. With the proper reduced
equation to approximate the unperturbed limit cycle in the unstable
space, we have shown that the reduced equation’s isochrons are still
key elements in the design and production of noise-driven chaos for
the full model.

The open-cell field analyzed in this study (see Fig. 1) revealed
that stochastic perturbations to the KTF dynamics such as obtained
via the stochastic transport formulation (Eqs. 9 and 10) provides
good approximations of the time variability of the open cells, in
the case of a mild nonlinear regime (regime A), corresponding to
relatively short recharge period before rain sedimentation (see the
“Comparison with high-end simulations” section). Obviously, open
cells in stronger nonlinear regimes with longer time to rain sedi-
mentation can also be found in nature depending, e.g., on the con-
centration of aerosols (higher μ values as in regime B), and this is
where the ideas discussed in the “Response dependence to stochas-
tic parameterization” section could show their physical relevance.
We are aiming to explore the occurrence of such regimes from ob-
servations in the future.

It is alsoworthwhile noting that noise-drivenmurmurations [F =
Df(t) with f(t) given by Eq. 8] cannot be predicted by normal form

theory. The reason does not lie though in the nonproximity to the
onset of Hopf bifurcation. Noise-driven murmurations have been
shown to occur for randomly kicked DDE’s limit cycles located
near this onset, albeit such murmurations are not emerging from
perturbations of the normal form alone. The loss of predictability
of murmurations from the normal form lies elsewhere. Noise-
drivenmurmurations are the result of a high-dimensional manufac-
ture in which the noise acting along the critical eigendirection is
transmitted through the nonlinear terms to stable modes located
deeper into the linear spectrum.

With its re-emergence of organized structures at very small
scales (see Fig. 5, B and C, insets), noise-driven murmurations
exhibit a somewhat loftier root than its horseshoes counterpart,
which constitutes to the authors’ opinion, a mesmerizing finding
of this work that requires even further substantiation for other
fields of applications. It seems that noise-driven murmurations
are not just a distinctive quality of the KTF model but could be pro-
duced for other DDE models such as arising in, e.g., population dy-
namics (15).

This observation opens up new horizons in terms of character-
ization of the (genuine) phenomenon of murmuration (38). It sug-
gests that such phenomenamade of synchronous and asynchronous
dynamics [chimera states (77)] may result from stochastic perturba-
tions of delay-induced periodic oscillations.

More generally, the stochastic and nonlinear mechanisms
brought to light in this study to obtain in a systematic fashion, en-
riched oscillatory patterns from periodic oscillations caused by
delay effects, are expected to nurture new ideas for the modeling
of many oscillatory phenomena. For instance, the incorporation
of stochastic effects to physiological delay effects present in standard
cardiac electrophysiology models (78, 79) could potentially contrib-
ute to improve the understanding of episodes of ventricular fibril-
lations (in terms of their dynamics) in view of their control or
prevention.

Going beyond the realm of delay models, our approach is also
expected to be applicable to PDEs that admit regular oscillations
through Hopf bifurcations. Such models supporting Hopf bifurca-
tions spread a wide array of scientific and engineering applications
(80, 81). The stochastic perturbationsmechanisms and details about
their numerical implementation identified here have a great poten-
tial to enable the practitioner to reach realistic regimes from com-
putationally friendly ones by stochastically rectifying periodic
oscillations into enriched oscillatory patterns in terms of their tem-
poral variability. In that respect, the role of stochastic oscillators in
parameterization (82, 83) has already demonstrated certain prom-
ises that comfort such ideas.

METHODS
The WRF model
In our WRF simulations using the Advanced Research WRF core
(41), the prognostic variables (including vertical velocity) are ob-
tained by using the National Centers for Environmental Prediction
FNL (Final) Operational Global Analysis data on 1° × 1° grids pre-
pared operationally every 6 hours for the day of interest (here 18
January 2020). The model topography and other static surface
fields are initialized with high-resolution global databases. A snap-
shot of the vertical velocity field just below the cloud base (~750 m)
as modeled by the WRF model is shown in fig. S10. To obtain these
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results, our simulations are run with two nested domains (no feed-
back from the inner nests) and 95 vertical layers between the surface
and 50 hPa. Our analyses focus on the outputs of the inner domain
only, with a horizontal resolution of 3 km, a time resolution of 5
min, and a gradually increased vertical resolution that ranges
from 5 to 500 m. Our simulations use a Thompson aerosol-aware
scheme for the microphysics (84) and the Rapid Radiative Transfer
Model (RRTM) for general circulation models (GCMs) for long-
wave and shortwave radiation. The subgrid-scale turbulence is pa-
rameterized by using a Yonsei University scheme, which consists of
a nonlocal K scheme with explicit entrainment layer and parabolic
K-profile in the unstable mixed layer (85). A revised fifth-generation
Pennsylvania State University–National Center for Atmospheric
Research Mesoscale Model with Monin-Obukhov scheme is used
for the surface layer (86). Last, the advection scheme uses the

positive-definite advection option for the ARW solver, which is
set by default in the WRF model and is recommended for real-
data simulations as in this stud [see (41)].

Isochrons of the Hopf normal form (Eq. 4)
To help provide an intuitive understanding about the isochrons, we
show in Fig. 10 the geometry formed by the isochrons for the Hopf
normal form (Eq. 4), as computed following the chapter 10 in (46).
We also show a case for which the twist number is increased to ex-
emplify the effect on the bending of isochrons. See the caption
of Fig. 10.

Forcing the unstable mode in the limit N→∞
It is by adopting the transport equation reformulation of a DDE and
its Koornwinder-Galerkin approximation (32) that one can make

Fig. 9. Genericmechanisms to produce stochastic horseshoe-like structures from aDDE experiencing aHopf bifurcation: Schematic chart.Here, themain steps to
produce stochastic horseshoe-like structures from the KTF model are summarized. The latter serves just as an illustration and can be replaced by any other DDE model
experiencing a delay-induced (supercritical) Hopf bifurcation. First, the Hopf normal form’s coefficients in Eq. 4 of the corresponding DDEmodel are computed following,
e.g., theorem III.1 in (32) (A and B). Then, its stochastic version (Eq. 7) is used to design the parameters of the state-dependent noise F(t, z) given in Eq. 6 to obtain noise-
driven chaos as shown in (C). In parallel, in (D) and (E), the unstablemode φ1 of the linear operator A is computed; here, φ1 associatedwith the unstable pair [red dots in (E),
left inset] is shown in (E) (right inset) for the KTFmodel. By using F(t, ·) and φ1 as obtained in (C) and (E), respectively, to forcewhat would be the analog of Eqs. 9 and 10 for
another DDE model (F), one would get the production of stochastic strange PBAs exhibiting horseshoe-like structures. This latter statement is valid as long as the DDE
model is placed not too far after the onset of a (supercritical) Hopf bifurcation such that center manifold reduction techniques apply. For situations violating these
conditions, one can still apply the stochastic parameterization approach shown here to predict (and characterize) noise-driven chaos for the stochastic transport
problem, albeit from reduced equations different from the SL (Eq. 4) (see the “Response dependence to stochastic parameterization” section).
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precise what it means to force the unstable mode in a Galerkin ap-
proximation of Eq. 3 when taking the limit. To do so, note that,
using the Koornwinder polynomials, the (Galerkin) unstable
mode eN1 has a natural representation in the θ variable given by
wN1 ðuÞ ¼

PN
j¼1e

N
1;jK

t
j ðuÞ for θ in [−τ,0], where the Kt

j denote the
(rescaled) Koornwinder polynomials [see A.10 in (32) and note
S3]. As N tends to infinity, such eigenelements converge to those
of the following linear operator A acting on Φ = (ϕ, ϕ(0)) (with ϕ
in a suitable function space over [−τ,0]) (50).

½AF�ðuÞ ¼

df
du
; u [ ½� t; 0Þ;

� fð0Þ �
2
m

�hfð� tÞ; u ¼ 0

8
>><

>>:

ð15Þ

More precisely, denoting by (λ1, φ1) [respectively ðlN1 ;wN1 Þ], the
leading eigenpair of A (respectively the Nth Galerkin truncation of
A), we have, as N → ∞, that j lN1 � l1 j and k wN1 � w1 k converge
to 0 (see figs. S3 and S4). Here, ∥ · ∥ denotes the norm associated with
the inner product of the Hilbert space L2([−τ,0); ℝ) × ℝ, namely, the
inner product defined for any Φ = (ϕ, x) and Ψ = (ψ, y) by

hF;Ci ¼
1
t

ð0

� t

fðuÞcðuÞ duþ xy ð16Þ

where x and y denote point values at θ = 0. See notes S5 and S3 for the
derivation of the stochastic transport problems in the horseshoe case
and the murmuration case, respectively.
Snapshot attractors computation: Initial data generation
We describe next how the initial data used for the computation of
the stochastic transport problem snapshot attractors are generated.
Recall that a snapshot attractor is given by an ensemble of trajecto-
ries that start from a set B of initial states in the phase space and that
are driven by a common noise path once a finite amount of time s

has elapsed (4, 5). Thus, a snapshot attractor provides the instanta-
neous distribution at the current time t of many “particles” emanat-
ing from B at time t-s and driven by a same forcing.When s is sent to
infinity and B is varied in an admissible class of subsets of the state
space, X, one obtains the PBA, A(t), of the system. The latter thus
describes the system’s states in X that are reached at a time t when
the system is initiated from an asymptotic past, s′ = t− s→ − ∞, and
the initial states are varied within, e.g., a collection of bounded sets
of X. One of the main teachings of the PBA approach is that even
under the presence noise, if an ensemble of trajectories is examined,
each driven by the same noise path, then, e.g., the fractal structure of
an underlying chaotic dynamics can be faithfully revealed (4). As
discussed above, the way the noise enters the model’s equations
plays a determining role in that respect. Key also is the generation
of a sufficiently diverse population of initial data to reveal the pos-
sible PBA’s complex structures.

This is a challenge for the stochastic transport problems consid-
ered here. Recall that these problems are high-dimensional because,
after discretization, they lead to solving stochastic differential equa-
tions with up to 4096 degrees of freedom. Thus, the choice of initial
data must be operated with care to sample regions that are dynam-
ically meaningful within such a high-dimensional state space [see
also (25)]. The general idea we pursue here exploits the perturbation
setting of our problem. In that respect, the population of initial data
is chosen near the unperturbed KTF limit cycle. To do so, we exploit
low-dimensional approximations as provided by the Galerkin-
Koornwinder (GK) framework (50).

More precisely, we first simulate an N-dimensional GK approx-
imation of the unforced KTF model to resolve the limit cycle. For
this purpose, we have used a semi-implicit Euler scheme to solve the
GK system with a time step δs = 1/210 for the simulation of a GK
system with N = 20, which already allows for an approximation of
the KTF model’s limit cycle to a very high precision.

Fig. 10. Isochrons. The isochrons’ twist measures the phase-space stretching near the limit cycle. (A) A few isochrons, shown as blue curves, are computed for the SL (Eq.
4) with lN1 ¼ 0:158þ 2:079i, αN = 2.893, and βN = 1.307. The limit cycle is shown in black. These coefficient values correspond to those of Eq. 2 for μ= 0.3 and τ = 1, i.e., for a
regime near the instability onset. (B) Samewhen βN is replaced by βN + Dwith D = 5 corresponding to a twist number γ ≈ 2.2. One observes as D is increased that the new
isochrons are further bended compared to the D = 0 case shown in (A), augmenting the shear effects along the limit cycle.
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After the removal of the transient dynamics to allow the dynam-
ics for settling down on the limit cycle, we then extract the solution
segment over one period (associated with the sampling rate δs) that
we denote by {yj : j = 1, ⋯, p}. This solution segment is then pro-
jected onto the eigenvectors feNk : k ¼ 1; . . .;Ng of the matrix ΓN(τ)
involved in the GK approximation of Eq. 3 (see note S2) to get
fzjk : j ¼ 1; . . .; p; k ¼ 1; . . .;Ng. Here, on average, the first two
modes account for more than 99% of the limit cycle’s energy for
regime A and about 75% for regime B. Recall that the second
mode is just the complex conjugate of the first mode. In other
words, the N-dimensional vectors ðzjkÞ

N
k¼1 are, on average (over j ),

quasi-bidimensional, i.e., close or even very close (regime A) to the
2D plane spanned by zj1 and z

j
2 ¼ z

j
1.

It is by relying on such high-energy approximations provided by
the pair of leading modes that we design the random samples gen-
erating the desired initial data. To do so, to each data point zj1 (and
its complex conjugate), we draw q samples of a uniformly distribu-
ted random variable ξ, for which RðjÞ is uniformly distributed in
½Rðzj1Þ � d;Rðzj1Þ þ d� and IðjÞ is uniformly distributed in
½Iðzj1Þ � d;Iðzj1Þ þ d�, with δ = 0.01 for regimes A and B.

The resulting sample points are denoted by z j;‘1 for j = 1,…, p and
l = 1,…, q, where jmarks out the “location” on the limit cycle, and l

labels the sample points at this jth site. Then, by introducing

y j;‘ ¼ ðz j;‘1 eN1 þ c:c:Þ þ
XN

k¼3
zjke

N
k ð17Þ

the initial data for Eqs. 9 and 10 are taken to be f j;‘ ¼
PN

n¼1 y
j;‘
n Kt

n,
where y j;‘n denotes the nth component of y j, l. In the numerical
results shown in Fig. 3, we have p = 3214 and q = 600, leading to
about 2 × 106 initial data, ϕj, l, to compute the corresponding snap-
shot attractors shown in Fig. 3 and in movies S1 and S2. Movie S3
associated with regime B is produced by using 2.5 × 105 initial data
due to the longer spin-up time before reaching the random
attractor.
The reduced Eq. 12 for regime B
The study of the linear part of Eq. 12 reveals that when 2pq > (r +
R)2, linear instability is produced with linear growth (R − r)/2 and
oscillatory frequency v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pq � ðr þ RÞ2=4
q

. When R = r, the growth rate
is zero, and thus, the linear system exhibits a perfect harmonic os-
cillatory solution with frequency ωc whose analytic expression is
given by x(t) = x0 cos (ωct) + (rx0 + py0) sin (ωct)/ωc and
yðtÞ ¼ � qxðt � tcÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
c þ r2

p
with tc = arctan (ωc/r)/ωc. This

latter relation between y(t) and x(t) shows that this harmonic oscil-
lation gives rise to an oval-shaped closed orbit in the (x, y) plane
with a “major” direction from the top left to the bottom right
quadrant.

These orbit’s shape and location in the (x, y) plane are in agree-
ment with that of the 2D projection onto the unstable mode φ1 of
the KTFmodel’s periodic orbit in regime B (see fig. S9A). The cubic
nonlinear terms in Eq. 12 saturate the growth rate to a self-excited
oscillation of finite amplitude (limit cycle) whose orbit shares a
similar oblique direction in the (x, y) plane as for the harmonic os-
cillation, as long as d and c are sufficiently small. When the two
closed orbits intercept, i.e., the limit cycle from Eq. 12 and the 2D
projection of the DDE’s periodic orbit, the parameter values in Eq.
12 are then chosen to minimize the error, which consists of the area

formed by the union of their respective enclosed domains to which
is subtracted that of their intersection. With the following choice of
parameters, R = 0.599, r = 0.25, p = 0.75, q = 0.267, b = 2.132, c =
0.45, and d = 0.5, while x* = 0.065 and y* = 0.12, one reaches a nearly
optimal solution corresponding to a relative error of about 7%.
The noise parameters for Fig. 8
In the rescaled time used to obtain the results of Fig. 8, the noise
parameters values are D = 0.909, D = 0.909, s ¼ 0:1=

ffiffiffiffiffi
66
p

, and Δt
= 0.66, while fr = 0.7.
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