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Where Are the Diseases of
Clinical Significance?

It is perhaps surprising to state that we

have an extremely poor knowledge of the

global distribution of the vast majority of

infectious diseases [1]. A review of all

infectious diseases of clinical significance

has revealed it would be of public health

benefit to map about half of these

conditions; yet, astonishingly, only 2%

(seven of 355) have been mapped compre-

hensively [2]. This geographical ignorance

frustrates a variety of clinical, epidemio-

logical, and public health aspirations.

Here we argue that this information gulf

has serious implications for global public

health surveillance and that too little

attention is given to spatial epidemiology

in international preparedness planning.

Stated simply, how can we gauge the risk

posed by new infectious disease outbreaks

if we have only the crudest understanding

of their natural geographical range? Ad-

ditionally, how do we prioritise useful

intelligence in the growing deluge of Big

Data [3–5] if the contemporary geograph-

ical distribution of these infectious disease

threats is unknown? We suggest that it

should be a policy priority to improve the

ability to triage spatially, infectious disease

outbreak alerts [6,7].

How Do We Map Infectious
Diseases?

To explore the factors hindering prog-

ress, we need to consider how traditional

methods are used to map disease. We

illustrate this in Figure 1 using a schematic

of the cartographic process applied recent-

ly to map dengue [8,9]. The objective is to

make a continuous map of the entire

geographical range of a disease from a

sample of locations where the disease has

been observed [10,11]. In the ecological

literature this is described as identifying

the fundamental niche of the target

organism [12,13]. In our application it is

the fundamental niche of an infectious

disease. It is rare for any organism or

disease to fully exploit all of the environ-

mental space that is available to it, due to a

whole host of evolutionary, biogeograph-

ical and ecological factors, so to help guide

the mapping process we use evidence-

based expert knowledge to demark the

crude global limits of a disease—its

definitive extent or realised niche.

Figure 1 shows the process used to

generate a continuous data layer of disease

risk, in this example dengue. The process

starts with records of disease occurrence

obtained from the literature [14], web

reports [3], and GenBank [15] that are

used to define the definitive extent of the

disease [16] and to populate a database of

occurrence points where the disease has

been reported. Because it is rare for

disease absence to be recorded, a common

practice in niche mapping and modelling

is to infer absences [17,18]. The definitive

extent and occurrence point data are used

to infer plausible pseudo-absence points

for further analysis [9].

To complete the process illustrated in

Figure 1, a range of epidemiologically

relevant environmental covariates are also

assembled. These covariates, such as

temperature and rainfall, must cover the

area over which prediction is desired.

Statistical techniques are then used to

characterise points of presence and pseu-

do-absence against the range of covariates

assembled [8,9]. In this instance we

favoured the Boosted Regression Tree

technique due to favourable comparative

reviews of performance, statistical flexibil-

ity, and community support evidenced by

well documented and freely available R-

code [19,20]. These relationships are then

used to predict the probability that the

disease occurs at each location and

thereby generate a risk map with a

quantified measure of uncertainty.

Canonically, the output risk surface is

where the mapping process ends, which

further compounds the problem of the

paucity of infectious disease mapping. This

is in part due to the very labour intensive

nature of assembling (most often from the

peer-reviewed literature, for example, over

2,000 published articles contributed data

to the latest map of malaria vectors [21])

and then geo-positioning the required

information. Usually, trained analysts do
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this manually, so capacity for update and

refinement is limited by human resources.

Moreover, our strong perception of dis-

ease maps as static is clearly flawed

because disease risk can change rapidly

in space and in time and since knowledge

about the distribution of diseases now

improves daily [3–5,22,23], risk maps

become quickly outdated.

Can We Use Big Data
Approaches to Routinely Map
All of These Infectious
Diseases?

The process described above provides a

continuous risk map in space that is static

in time. Conversely HealthMap (www.

healthmap.org) provides continually up-

dated disease occurrence points but not

continuous spatial data. Can we conceive

of spatially continuous risk maps being

updated in ‘‘real-time’’—as frequently as

new occurrence data are assimilated? The

conceptual bridge of imagining spatial

modelling as a continuous process in time

is achieved simply by linking the output

risk map back to the data inputs to create a

feedback loop. This is important as it

facilitates the novel step of spatial triage of

new occurrence information (see below)

and critically, the potential for multiple

iterations of the map with continuous

improvement by adding a machine learn-

ing element. This conceptual shift towards

evolving maps, in combination with the

increased availability of novel digital data

sources [5,22], is now dissected in the

context of ‘‘Big Data.’’

Big Data is a term used to describe

information assemblages that make con-

ventional data, or database, processing

problematic due to any combination of

their size (volume), frequency of update

(velocity), or diversity (variety) [24]. These

‘‘volume, velocity, and variety’’ descriptors

have proven useful themes with which to

explore opportunities and challenges of

Big Data [24] and are emulated here.

Each part of this mapping process can be

radically improved with a Big Data

approach, and the extent of the Big Data

challenge is highlighted in Table 1. These

challenges are discussed in turn.

It is well established that a huge amount

of novel data are being generated that will

make important contributions to temporal

public health surveillance [5,22]. The

secondary use of passive search query

and micro-blogging data as well as actively

collected crowd-sourced data for disease

surveillance has been well documented

and validated for major public health

events, including influenza and dengue

Summary Points

N Systems to provide static spatially continuous maps of infectious disease risk
and continually updated reports of infectious disease occurrence exist but to-
date the two have never been combined.

N Novel online data sources, such as social media, combined with epidemiolog-
ically relevant environmental information are valuable new data sources that
can assist the ‘‘real-time’’ updating of spatial maps.

N Advances in machine learning and the use of crowd sourcing open up the
possibility of developing a continually updated atlas of infectious diseases.

N Freely available dynamic infectious disease risk maps would be valuable to a
wide range of health professionals from policy makers prioritizing limited
resources to individual clinicians.

Figure 1. A schematic overview of the process of predicting spatial disease risk. The
definitive extent of infectious disease occurrence at the national level (red is certain presence,
green is certain absence) [16] is combined with assemblies of known occurrence, presence points
(red dots), to generate putative pseudo-absence points (blue dots). The presence and pseudo-
absence data are then used in the analyses, with selected environmental covariates to predict
disease risk, formally the probability of occurrence of the target disease. In this example a risk map
of dengue is shown, shaded from low probability of occurrence in blue to high probability of
occurrence in red [8]. The arrows represent data flows.
doi:10.1371/journal.pmed.1001413.g001
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epidemics [22,23,25]. Though these data

sources demonstrate significant noise and

require continual model fine tuning, the

sheer volume of health outcome related

searches and personal accounts presents

incredible new opportunities to monitor

population health in real time. It is less

well appreciated that this information

could also be used to build definitive

extents and databases on the occurrence

of many diseases [2]. The volume, veloc-

ity, and variety of occurrence information

from these sources will increase rapidly

and transform our ability to create geo-

graphical baselines for a range of diseases.

These novel data sources come with issues

of reliability so it is important that the

machine learning process is calibrated for

known reporting bias and the triage

process assigns a weighting to each data

point as a measure of reliability. This

weighting is an integral part of the niche

mapping techniques used and feeds into

the measure of uncertainty output for each

location. An increasing proportion of these

new data are geo-positioned at source.

Moreover, machine learning approaches

to automate geo-positioning of disease

reports [26], especially when combined

with human oversight and crowdsourcing

(outsourcing tasks online to volunteers)

[27,28], can further radically lower the

logistical barriers to positioning this infor-

mation.

In the era of satellite sensors, a diversity

of epidemiologically relevant environmen-

tal information can be sourced globally at

daily intervals [29]. Big Data volume,

velocity, and variety challenges are in-

volved in moving from the traditional

processing of synoptic averages of covar-

iates to harnessing a wider variety of

temporally rich information that can be

matched in time with the new occurrence

information. This closer temporal match-

ing of disease outbreaks with covariates

may improve the accuracy of mapping

models, allowing for the possibility of

seasonally tailored geographic baselines

and may help improve traditional tempo-

ral surveillance by facilitating early warn-

ing of epidemiologically relevant environ-

mental changes.

Perhaps the most important develop-

ment in relation to Big Data is the

conceptual move from static to improving

and evolving risk maps. Taking further our

example of dengue mapping (Figure 1),

the first evidence-based risk map generat-

ed can be used to help triage the

information content of new reports before

running the next map iteration. For

example, disease reports located nearby

existing records and with a high-predicted

probability of occurrence are not alarm-

ing; we expect the disease to occur here

from the history of reporting and the

suitability of the environment. Further-

more, such reports will not substantially

alter the risk map and are thus of low

priority to analysts. Conversely, a disease

outbreak far away from observed occur-

rence is alarming, and more so if it occurs

in an area biologically suitable for the

disease. It should be investigated and, if

verified, contribute to improving next

iterations of the map. It is easy to imagine

how these automated learning processes,

supervised by expert analysts, could be

deployed in tandem for all diseases of

concern, transforming our spatial intelli-

gence, surveillance, and preparedness.

The Challenges Ahead

The biggest obstacles to incorporating a

continuous spatial mapping component to

routine biosurveillance will be demonstrat-

ing the feasibility and sustainability of this

undertaking and engaging the audience.

We have focussed here on applications for

biosurveillance but it is important to

emphasise the wider audiences. First, one

should never underestimate the value of

risk maps in helping to illustrate the extent

of a public health problem [30]. Second,

addressing the paucity of spatial informa-

tion on infectious disease distributions will

transform our understanding of their envi-

ronmental determinants and help radically

improve our understanding of the factors

that promote disease diversity [31] and

emergence [32]. Third, a comprehensive

atlas of contemporary distributions would

be of considerable benefit to improve future

assessments of the burden of disease [33].

The audience for risk maps that are

continuous in time and space includes

agencies who need to prioritise limited

resources and respond to changing disease

patterns, public and private R&D pipelines

who need to assess value and plan research

strategy, logistics groups who need to

optimise the roll out of new interventions/

treatments, and clinicians who want to

accurately diagnose infectious diseases in

local populations and returning travellers.

We have already argued that this

mapping ambition is made tractable by

automating many of the laborious steps in

primary data acquisition and positioning.

The Big Data revolution is already

underway and harnessing the useful infor-

mation in these new data sources will

involve collaborations with computer sci-

entists at the forefront of machine learning

and with those who have had success in

engaging communities [27]. The evidence

shows that motivating people to devote

some of their ‘‘cognitive surplus’’ to crowd

sourcing is possible, so long as the products

and benefits are immediately available to

all for the common good. We have seen

the rise of crowdsourcing influenza sur-

veillance with participatory systems such

as Flu Near You in the United States

(www.flunearyou.org) and Influenzanet in

the EU (www.influenzanet.eu), which now

boast nearly 100,000 volunteers com-

bined. From the outset all infectious

disease data and derived maps should be

made freely available to ensure engage-

ment. This will also facilitate the uptake of

new resources and their consideration by

policy makers. Once the primary invest-

ment in the software platform is complete,

and the community established, sustain-

ability increases because demands for user

inputs decrease as the software learns and

the mapped outputs become increasingly

Table 1. An assessment of the challenges of using Big Data in disease mapping.

Definitive Extent Occurrence Point
Pseudo-Absence
Point Environmental Covariates Risk Prediction

Volume (scale) +++ +++ + +++ +++

Velocity (frequency) +++ +++ ++ +++ +++

Variety (diversity) ++ ++ + + +

The potential Big Data challenges in each stage of an iterative mapping process are highlighted in the table. The columns represent each of the mapping stages defined
in Figure 1. The rows reflect the volume, velocity, and variety descriptors of data contributions. The future Big Data challenge in relation to infectious disease risk
mapping is as follows: low (+), medium (++), and high (+++).
doi:10.1371/journal.pmed.1001413.t001
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stable. The ultimate vision is to democra-

tise the platform by providing the code to

all interested authorities.
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