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Soil contamination with heavy metals (HMs) is a serious concern for the developing world 
due to its non-biodegradability and significant potential to damage the ecosystem and 
associated services. Rapid industrialization and activities such as mining, manufacturing, 
and construction are generating a huge quantity of toxic waste which causes environmental 
hazards. There are various traditional physicochemical techniques such as electro-
remediation, immobilization, stabilization, and chemical reduction to clean the contaminants 
from the soil. However, these methods require high energy, trained manpower, and 
hazardous chemicals make these techniques costly and non-environment friendly. 
Bioremediation, which includes microorganism-based, plant-based, microorganism-plant 
associated, and other innovative methods, is employed to restore the contaminated soils. 
This review covers some new aspects and dimensions of bioremediation of heavy metal-
polluted soils. The bioremediation potential of bacteria and fungi individually and in 
association with plants has been reviewed and critically examined. It is reported that 
microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high 
metal tolerance, and bioremediation potential up to 98% both individually and when 
associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria 
denseserrulata. The mechanism of microbe’s detoxification of metals depends upon 
various aspects which include the internal structure, cell surface properties of 
microorganisms, and the surrounding environmental conditions have been covered. 
Further, factors affecting the bioremediation efficiency and their possible solution, along 
with challenges and future prospects, are also discussed.

Keywords: bioremediation, beneficial microorganisms, heavy metals, phytoremediation, soil management

INTRODUCTION

With the onset of the twentieth century, human beings have witnessed advancement in 
technologies related to food production, health, infrastructure, transport, and communications. 
Such activities require a vast quantity of new materials and energies destroying natural 
environmental components and the production of huge quantities of wastes resulting in 
environmental degradation (Mani and Kumar, 2014). The presence of toxic metals and metalloids 
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in the waste generated from the industrial, domestic, and 
agricultural sectors causes significant damages to the ecosystem 
and associated lives (Pourret et  al., 2016; Goyal et  al., 2020; 
Leong and Chang, 2020). The contaminants are highly mobile 
and soluble, thus possessing the capability to be bioaccumulated 
in the food chain and causing serious damage with increasing 
tropic levels (Petavratzi et  al., 2005; Zerizghi et  al., 2020). 
When these contaminants enter the human body, they can 
cause various life-threatening diseases such as cancer, kidney 
and bone diseases, cardiovascular diseases, hypertension, low 
birth weight, Alzheimer diseases, and atherosclerosis (Nawrot 
et  al., 2006; Ahern et  al., 2011; Bernhoft, 2012; Flora et  al., 
2012; Muszynska and Hanus-Fajerska, 2015; Lee et  al., 2017). 
Metal accumulated in biological tissues is hard to remove due 
to its non-biodegradability, and it becomes a major concern 
to global health (Ayangbenro and Babalola, 2017). Metal 
contamination leads to the alteration in soil physicochemical 
and biological properties such as an increase in bulk density 
and soil pH, as well as a decrease in soil fertility and water 
holding capacity, microbial diversity and soil enzyme activity 
(Wuana and Okieimen, 2011; Jin et al., 2019; Saha and Bauddh, 
2020). They are also responsible for the alteration in microbial 
communities, leading to disturbing the proper function of the 
biogeochemical cycle and imbalance in the ecosystem (De 
Quadros et  al., 2016; Feng et  al., 2019). Heavy metals like As, 
Hg, Ni, Cr, Pb, and Cu can cause multiple indirect and direct 
effects on plant growth, such as chlorosis, necrosis, root injury, 
reduced carotenoid concentration, oxidative stress, inhibition 
of enzyme activities, osmotic imbalance, decreased photosynthetic 
activities, and imbalance of the nutrients (Lewis et  al., 2001; 
Mascher et  al., 2006; Shaibur et  al., 2009; Yadav, 2010; Hasan 
et  al., 2017; Sachan and Lal, 2017). Further, due to these 
environmental effects of metals, there are incessant efforts made 
to sustainably eliminate this toxic and excess amount of metals 
for stabilizing the ecosystem.

Various physicochemical techniques (such as extraction, 
immobilization, stabilization, coagulation, electrodialysis, 
vitrification, reverse osmosis, ion exchange, chemical reduction, 
evapotranspiration, and precipitation) have already been 
practicing to reduce metal contamination (Ali et  al., 2013; 
Gupta and Kumar, 2017). However, these techniques are costly, 
require high energy, harsh chemicals with low removal efficiency, 
and can generate secondary environmental pollution (Tang 
et  al., 2007; Acheampong et  al., 2010; Ali et  al., 2013; Gupta 
and Diwan, 2016; Suman et  al., 2018). Therefore, there is a 
continuous demand for environmental friendly remediation 
methods that can be  helpful to reduce its harmful effects on 
the environment.

Bioremediation is an ecologically sound technique that 
requires the use of green plants, microorganisms including 
fungi, bacteria, yeast, and algae or their enzymes to help the 
polluted sites return to their original states (Chakraborty et al., 
2012; Mani and Kumar, 2014). The late 19th century ascertained 
to be  the golden period for bioremediation. With further 
improvement, the 20th century marked the beginning of research 
in the field of microbial ecology, involving the identification 
and isolation of microbes that have the potential to degrade 

pollutants, e.g., Candidatus accumulibacter that is capable of 
accumulating excess amount of phosphorus as polyphosphates 
in their cells from the sewage treatment plants (Seviour et  al., 
2003). Later, the delineation of catabolic pathways to break 
pollutants, the genomic construction of recombinant microbes 
tailored to eliminate metals, and the application of molecular 
techniques to understand microbial activities have been explored 
(Siezen and Galardini, 2008; Ramos et  al., 2011).

Soil microorganisms play an essential role in stabilizing soil 
macroaggregates by producing polysaccharides to maintain soil 
architectural patterns for plant productivity (Ghose, 2005). Such 
microorganisms including numerous species of bacteria, fungi, 
yeast, and algae contribute significantly to the decomposition 
and stabilization of inorganic and organic pollutants (Fulekar 
et  al., 2012; Rahman et  al., 2015; Leong and Chang, 2020). 
A number of studies have highlighted that various natural 
and genetically engineered microorganisms (GEM) such as 
Bacillus cereus, Chlorella pyrendoidosa, B. cereus XMCr-6, 
Pseudomonas veronii 2E, P. aeruginosa, Serratia marcescens, 
Sacharomyces cerevisiae, Penicillium canescens Spirogyra sp., 
Spirullina sp., and Cladophora sp. are responsible to remediate 
HMs such as Cd, Pb, As, Cr, Mn, Cu, U, Se, and Zn from 
contaminated land and water (Lee and Chang, 2011; Kumar 
et  al., 2011b; Hrynkiewicz et  al., 2012; Kanmani et  al., 2012; 
Mane and Bhosle, 2012; Mani and Kumar, 2014; Farhan and 
Khadom, 2015; Lívia et al., 2015; Ojuederie and Babalola, 2017; 
Verma and Kuila, 2019).

There is a need for characterization and regular assessment 
of various contaminated sites such as mining dumpsites, nuclear 
waste, surface wastewater, sewage sludge pump sites, agricultural 
soils, and various industrial and commercial dumping zones. 
Recently a number of research studies and literature reviews 
have been focused on the phytoremediation potential of particular 
plant species and selected metals with different microorganisms 
or particular microorganism-based remediation strategies (Raza 
et  al., 2020; Yan et  al., 2020; Wang et  al., 2021; Hao et  al., 
2021; Sharma et  al., 2021).

In this review, we  have covered some new aspects and 
dimensions of bioremediation of heavy metal-polluted soils. 
Here, we  have reviewed the recent literature published mainly 
between the year 2019–2021. There is a critical examination 
of the bioremediation potential of different microorganisms, 
especially bacteria and fungi individually and in association 
with plants. Further, the different mechanisms adopted by the 
microorganisms to detoxify HMs have also been discussed. 
Moreover, the study attempts to explore the knowledge about 
field applications with several case studies, factors affecting 
bioremediation, challenges, as well as future prospects have 
been covered.

METHODOLOGY

The relevant literature was searched and collected from the 
online database using Scopus, Web of Science, Google, Google 
Scholar, Springer Nature, Frontiers, Taylor and Francis, Science 
Direct, etc. The keywords used for the literature search 
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include bioremediation, phytoremediation, phytoextraction, 
phytomanagement, remediation using living organisms, 
remediation through plant/microorganism, plant–microbe 
association for heavy metal removal, etc. In addition, particular 
focus journals such as International Journal of Phytoremediation, 
Bioremediation Journal, Frontiers in Microbiology, Journal of 
Environmental Management, Frontiers in Plant Science, Science 
of the Total Environment, Chemosphere, Water, Air, & Soil 
Pollution, Environmental Science and Pollution Research, 
Microbial Research, etc. were browsed volume-wise for track 
the relevant papers until July 2021. The literature includes 
journal articles, books, book chapters, conference papers, 
proceedings, and technical reports were referred in this review 
paper from which 92.91% were published between the years 
2010 to 2021. In total, more than 400 documents were examined 
individually and eliminated the quotative and duplicate papers 
(Qi et  al., 2018). Out of which 254 documents were selected 
for reference in this work.

BIOREMEDIATION

Bioremediation is an emerging and highly acceptable practice 
for restoring heavy metal contaminated soils, because of its 
environment friendly and low cost as compared to other 
conventional methods such as dredging, capping, and 
incineration that are often very costly and ineffective when 
metal concentration level is low and often generates a significant 
amount of toxic byproducts (Ekperusi and Aigbodion, 2015; 
Ayangbenro and Babalola, 2017). A study has been shown 
that it costs about 100–500 USD/ton for cleaning metal-
polluted sediments and soils through landfilling and chemical 
treatment, and 90–870 USD/ton for vitrification, whereas 
about 15–200 USD/ton for bioremediation and 5–40 USD/
ton for phytoremediation (Meier et  al., 2012). It estimates 
that bioremediation can save 50–65% for cleaning one acre 
of Pb-contaminated soil compared to traditional excavation 
and landfill (Blaylock et al., 1997; Chibuike and Obiora, 2014). 
In addition, bioremediation is a non-invasive method that 
can remove contaminants permanently, leave the environment 
intact, and can be  hybridized with chemical and physical 
treatments (Mani and Kumar, 2014). The bioremediation 
processes rely entirely on natural biological potency. The 
majority of bioremediation methods depends on several 
parameters such as soil structure, pH of the polluted sites, 
moisture content, type of the pollutants, nutrient supplement, 
microbial diversity, the temperature of treatment sites, and 
oxygen availability (Atagana et  al., 2003; Thapa et  al., 2012; 
Mangunwardoyo et  al., 2013; Mani and Kumar, 2014). 
Bioremediation can occur naturally in a polluted site, which 
is called natural attenuation.

Lombi and Hamon (2005) have divided bioremediation into 
‘in-situ’ and ‘ex-situ’ strategies. In-situ or on-site bioremediation 
is the most preferred option for removing contaminants from 
polluted soil and water. In the in-situ process, the soils remain 
confined to their initial location throughout the reclamation 
process, ending up in minimal site disturbance, fewer public 

health risks associated with excavation and off-site transport 
of contaminated soil, and reduced the overall cost over other 
remediation technologies (Hellekson, 1999; Lombi and Hamon, 
2005). The in-situ bioremediation is broadly classified into two 
types, intrinsic and engineered bioremediation (Hazen, 2010). 
Intrinsic bioremediation takes place through the stimulations 
of indigenous microorganisms by supplying them with nutrients 
and oxygen to boost their metabolic activity. This is an 
unstimulated, unmanipulated, and unenhanced biological remedy 
of contaminates. Whereas for engineered bioremediation, a 
specific type of microorganisms or genetically engineered bacteria 
are introduced into the contaminated place to accelerates the 
degradation process by creating a conducive physicochemical 
condition (Kumar et  al., 2011).

On the other side, ex-situ bioremediation methods require 
the excavation of polluted soil and water from its original 
location for the treatment. This is further categorized as a 
solid-phase system and slurry phase system. Solid-phase 
bioremediation includes contaminated waste such as industrial 
waste, domestic waste, municipal solid waste, and sewage 
sludge with organic waste including manure, leaves, and 
agricultural waste. The treatment process includes composting, 
soil biopile, hydroponics, and land farming, which create 
suitable conditions for indigenous anaerobic and aerobic 
microorganisms to boost the reclamation process (Kumar 
et  al., 2011; Rayu et  al., 2012). From which in hydroponics 
methods plants are grown in the mineral nutrient solution. 
Nowadays, this method is a common step for screening the 
suitable plant for phytoremediation by characterization of its 
response to heavy metal stress. On the other hand, slurry 
phase bioremediation is a speedy process where contaminated 
soils are mixed with additives and water in a bioreactor to 
create an appropriate environment for microorganisms to 
eliminate the contaminants.

MECHANISMS OF BIOREMEDIATION

Both in-situ and ex-situ remediation methods work on the 
principle of biotransformation/biodegradation, removal, 
mobilization, immobilization, or decontamination of various 
pollutants from the environment through the action of 
microorganisms (bacteria, fungi, and yeast) and plants (Abatenh 
et al., 2017). Microbes use chemical contaminants as an energy 
source during biotransformation and metabolize the target 
contaminant into useable energy via redox reactions. There 
are usually less harmful by-products or metabolites released 
back into the environment compared to the primary pollutants. 
For instance, microorganisms can degrade petroleum 
hydrocarbons through aerobic respiration in the presence of 
oxygen. The hydrocarbon gets oxidized by losing electrons, 
whereas the oxygen reduces by gaining electrons. Water and 
carbon dioxide are formed as a by-product of this redox reaction 
(Nester et  al., 2001).

The microorganisms play an important role in HM 
remediation from the contaminated soil as they have acquired 
various mechanisms to tolerate the toxic effects of HMs. 
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Microorganisms can sequester, precipitate, biosorb, and change 
the oxidation states of various metals (Ndeddy Aka and 
Babalola, 2016; Yin et  al., 2019; Rizvi et al., 2020; Ibrahim 
et  al., 2021). Metal sequestration happens by cell wall 
components and by intercellular metal bindings peptides 
and proteins such as metallothionein, phytochelatins with 
bacterial siderophores (Ojuederie and Babalola, 2017; Balzano 
et  al., 2020). Microorganisms convert the toxic metal into 
a less toxic or innocuous form with the help of enzymes 
(such as dioxygenases, peroxidases, and oxidoreductases). 
The mechanisms applied by microorganisms to remove HMs 
from the contaminated soil or convert to less toxic form 
have been presented in Figure  1. However, the biosorption 
mechanism is based on two way: first depends on cell 
metabolism and second on the location of the cell where 
the HM is removed.

Three key bioremediation ingredients are (1) the presence 
of a contaminant, (2) the acceptor of electrons, and (3) the 
existence of microorganisms that can degrade a specific 
contaminant. Generally, the biodegradation process is easy for 
the naturally occurring contaminant or those have chemical 
similarities with naturally occurring compounds. It is due to 
the potential of microorganisms to destroy the contaminants. 
For instance, petroleum hydrocarbons are naturally derived 
chemical products, therefore microorganisms are habituated 
for these contaminants and can degrade them easily. Different 
approaches applied in the microbial remediation process such 
as bioattenuation, biostimulation, bioaugmentation for removing 

the toxic pollutants from the contaminated land, have been 
described below.

Bioattenuation
The contaminants are converted to less harmful or immobilized 
forms during bioattenuation. Such processes of immobilization 
and transformation are primarily attributed to microbial 
biodegradation and biological transformation (Smets and 
Pritchard, 2003), and, to some degree, to reactions with naturally 
occurring chemicals and geological media sorption. Contaminant-
specific processes of natural attenuation are considered as 
methods for the remedy of fuel components [e.g., biosparging 
of benzene, toluene, ethylbenzene, and xylene (BTEX)], but 
not for other various classes of contaminants (e.g., sulfide and 
ferrous iron; Atteia and Guillot, 2007).

Biostimulation
This includes modification in environmental parameters, such 
as restricting nutrients supplement such as slow-release fertilizers, 
biosurfactants, and biopolymers (Kumar, 2019), which helps 
to remove the heavy metal, hydrocarbons and oil contaminants 
(Junior et  al., 2019; Sun et  al., 2019, 2021). It also enhances 
the bioavailability of Cu, Cd, Pb, and Zn, heavy metal uptake, 
translocation, and biodegradation rate of hydrocarbons, pesticides 
and herbicides by naturally existing microorganisms present 
on the site (Lim et  al., 2016; Kumar, 2019). There are various 
fertilizers available as nutrients for microbes to stimulate, e.g., 

FIGURE 1 | Different microorganisms mechanisms to tackle the HMs from the soil.
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water-soluble NaNO3, KNO3, NH3NO3, slow-release customizable, 
max-bac, IBDU, and oleophilic Inipol EAP22, MM80, F1, S200.

Bioaugmentation
Bioaugmentation basically increases the heavy metal removal 
efficiency by introducing the pre-grown microorganisms. In 
this process, natural/exotic/engineered microbes are 
incorporated artificially in the heavy metal contaminated soil 
(Hassan et  al., 2019, 2020a). Microbes are collected from the 
remediation site, separately cultured, genetically grown, and 
returned to the location. This process helps increase the 
growth and population of microorganisms, which enhance 
the solubility, mobility, accumulation of HMs, and increase 
the remediation efficacy (Atigh et  al., 2020). However, it also 
reduces the risk of these pollutants either through chemically 
altering their chemical structure or by decreasing their 
bioavailability (Mandal et  al., 2016; Hassan et  al., 2019; 
Zanganeh et  al., 2021). Recently this method is applied to 
various HM contaminated soil using different types of bacteria 
and fungal strains which include Oscillatoria sp., Leptolyngbya 
sp., Portulaca oleracea, Perenniporia subtephropora, Aspergillus 
niger MH541017, Daldinia starbaeckii, Tremates versicolor, and 
Tremates versicolor (Atigh et  al., 2020; Hassan et  al., 2020a; 
Zanganeh et  al., 2021).

PLANT-BASED BIOREMEDIATION

Plants are used for bioremediation either alone or in combination 
with microbes (Ramos et  al., 2005) instead of depending on 
microbes and their efficacy in achieving bioremediation of any 
contaminated medium. The application of green plants to clean 
up any contaminated medium or surface is not a novel concept. 
Plants were proposed for treating the wastewater around 300 years 
ago (Hartman, 1975). Presently a number of plant species such 
as Amaranthus spinosus, A. hypochondriacus Chrysopogon 
zizanioides, Brassica juncea, Ricinus communis, Chromolaena 
odorata, Ageratum conyzoides, Ipomoea carnea, Prosopis juliflora, 
Lantana camara, Parthenium hysterophorus, Fagopyrum esculentum, 
Odontarrhena chalcidica, Tagetes patula, T. erecta, and Odontarrhena 
chalcidica, have been identified which helpremediate HM 
contaminated soil (Bauddh and Singh, 2012; Bauddh and Singh, 
2015; Huang et  al., 2019; Chen et  al., 2020a; Raza et  al., 2020; 
Biswal et al., 2021; Cui et al., 2021; Gonzaga et al., 2021; Nugroho 
et al., 2021; Singh et al., 2021). In addition, plants like Nicotiana 
tabacum, Arabidopsis thaliana, Beta vulgaris and Sedum alfredii 
have been genetically modified with suitable bacterial genes from 
Caenorhabditis elegans, Saccharomyces cerevisiae, Streptococcus 
thermophilus, Pseudomonas fuorescens and employed for 
remediating the targeted contaminants (Daghan et  al., 2013; Liu 
et  al., 2015a; Wang et  al., 2019; Nedjimi, 2021). For instance, 
mercury (Hg) reductase bacterial genes, e.g., merA and merB 
have been applied in plants for the detoxification of methyl-Hg 
(Li et  al., 2020a). In addition, various biostimulators, such as 
manure and organic amendments (e.g., various plant biochar, 
biosolids, and litter) are used in this plant-based bioremediation. 

Use of different chelators such as citric acid, ethylene diamine 
tetraacetic acid (EDTA), [S,S]-ethylenediaminedisuccinic acid 
(EDDS), ethylenediamine-di-o-hydroxyphenylacetic acid 
(EDDHA), diethylenetriaminepentaacetic acid (DTPA), ethylene 
glycol tetraeacitic acid (AGTA), nhydroxyethylenediaminetriacetic 
acid (HEDTA), fulvic acids, salicyclic acid, and tartaric acid 
control metal sorption, and precipitation through the formation 
of metal chelate complexes, which consequently enhance the 
bioavailability of these metals and also improve phytoextraction 
efficiency (Caporale and Violante, 2016; Acuña et  al., 2020; 
Saleem et  al., 2020). The addition of chelates in soils can move 
more metals into soil solution via the suspension of precipitated 
compounds and desorption of sorbed species. Plants can also 
naturally produce various phytosiderophores, organic acids, and 
carboxylates, which can enhance metal mobility, solubility, and 
bioavailability in soils, thus increasing the phytoremediation 
potential of plants (Vithanage et  al., 2012; Gupta and Singh, 
2017). For instance, Miscanthus sinensis can detoxify Al by 
producing various phytosiderophores such as citric acid, malic 
acid, and chlorogenic acid and stored the metal in cell walls 
(Haruma et  al., 2019).

Plant-based bioremediation is considered a potential tool 
for the accumulation, transformation, and immobilization 
of a low level of contaminants (Rayu et  al., 2012). The 
mechanisms behind plants facilitate the reclamation of the 
polluted soils and groundwater are presented in Table  1. 
The approach of plant-based bioremediation has several 
merits such as cost-effectiveness, public acceptance, and the 
ability to remove inorganic and organic contaminants 
simultaneously. In a study, mixed mercury-trichloroethylene 
(Hg-TCE) pollutants are removed by transgenic alfalfa plants 
pKHCG co-expressing human P450 2E1 (CYP2E1) genes 
and glutathione S-transferase (GST; Zhang et  al., 2013). A 
major synergistic effect caused by simultaneous expression 
of CYP2E1 and GST leads to increased accumulation and 
resistance of heavy metal–organic complex pollutants. Another 
study by Tammam et al. (2021) found that the plant Glebionis 
coronaria can eliminate Pb from the contaminated soil. It 
is also recorded that the foliar spray of Indole-3-acetic acid 
(IAA) and gibberellic acid (GA3) enhanced the growth 
significantly and increase the phytostabilization capacity of 
the studied plant. The application of bamboo biochar with 
the Salix psammophila to remediate the multi-metal 
contaminated soil, enhance the translocation factor (TF) 
and bioconcentration factors (BCF) of Cd, Cu and Zn (Li 
et  al., 2021a). The higher TF for Zn (TF > 1) and BCF for 
Cd (BCF > 1) makes S. psammophila a potential candidate 
for the phytoremediation in BBC amendment soil. Recently 
several studies found that the application of nanoparticles 
such as Ag nanoparticles (AgNPs), nano-TiO2 particles, 
nanoscale zero-valent iron (nZVI), salicylic acid nanoparticles 
(SANPs) and magnesium oxide (MgO) nanoparticles along 
with plants Zea mays, Glycine max, Isatis cappadocica, Lolium 
perenne, Boehmeria nivea and Raphanus sativus enhance the 
growth and phytoextraction of HMs Cd and Pb (Khan and 
Bano, 2016; Singh and Lee, 2016; Gong et  al., 2017; Souri 
et  al., 2017; Huang et  al., 2018; Hussain et  al., 2019).
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Plants are effective in extracting inorganic and organic 
pollutants from the ground through the roots, they can also 
be transported and accumulated (phytoextraction/accumulation) 
in the harvestable parts of the plant (Pranaw et  al., 2020). 
Transpiration to the atmosphere via leaf stomata 
(phytovolatilization) occurs in some instances (Rascio and 
Navari-Izzo, 2011). Phytodegradation of organic compounds 
are metabolized by plants in three sequential steps (namely 
transformation, conjugation, compartmentalization, respectively) 
with the aid of enzymes, e.g., cytochrome (CY) P450 and 
GT–glycosyltransferase (GT), which results in the storage of 
contaminant in the vacuole, incorporation into the cell wall, 
or excretion from the cell. In addition, plant-associated 
microorganisms in the rhizosphere (rhizodegradation) can 
degrade organic contaminants (Truu et  al., 2015). By releasing 
root exudates and other compounds (e.g., organic acids) to 
the surrounding soil along with providing a surface for microbe 
colonization, plants can promote the biodegradation of pollutants, 
thereby contributing to the increased density and metabolic 
activity of microorganisms (rhizosphere effect) and contaminant 
bioavailability. Plant supplements nutrients to endophytic bacteria 
and stimulates catabolic gene expression. In turn, endophytic 
bacteria degrade organic contaminants, thereby reducing 
phytotoxicity and producing hormones (Shukla et  al., 2020).

Since metal bioavailability in soils is relatively poor under 
most conditions, plants have very active metal uptake systems 
that utilize transporter molecules such as Zn-regulated transporter 
protein, Cu transporter protein, etc. (Krämer et  al., 2007). In 
addition, plants are capable of acidifying the soil and mobilize 
soil-bound metals by secreting metal-chelating molecules to 

the surrounding soil, such as siderophores (catechol and 
hydroxymate), organic acids (e.g., citrate and malate), 
biosurfactants (rhamnolipids), protons from the root exudates 
(Yan et  al., 2020; Bruno et  al., 2021). Heavy metals cannot 
be  biodegraded inside the plant, unlike organic contaminants, 
but can only be  converted from one oxidation state/organic 
complex to another. It ends up in metal accumulation inside 
the plant. There are nearly 450 hyperaccumulator plants varies 
from annual to perennial herbs, shrubs, and trees (e.g., Brassica 
juncea, Zea mays, Ricinus communis, nicotiana tabacum, 
Helianthus annuus, Pteris vittata, Thlaspi caerulescens, Russian 
thistle, Sesbania drummondii, Salix matsudana, Populus deltoides), 
which have been identified to accumulate, metabolize and 
depollute extraordinary high concentration of metal ions (such 
as Cd, Pb, Ni, Co, Mn, Zn) in their above-ground tissues 
(Meagher, 2000; Padmavathiamma and Li, 2007; Shah and 
Nongkynrih, 2007; Sheoran et  al., 2009; Palanivel et  al., 2020).

MICROORGANISM-BASED 
BIOREMEDIATION

The capacity of microorganisms to degrade contaminants depends 
on their metabolic system through which the pollutants alter 
to innocuous form via the redox process (Jan et  al., 2014). 
They help plants alleviate metal toxicity by sequestration of 
metals in cell wall components, alteration of the biochemical 
pathway to block metal uptake, reduction of the intercellular 
metal concentration via a precise efflux system, and conversion 
of poisonous metals to a less harmful state (Jan et  al., 2014; 

TABLE 1 | List of various phytoremediation mechanisms and plant species used in various process.

Technique Mechanism Plant used Plant parts Surface medium References

Phytoextraction Uptake and accumulation of heavy 
metal into plant tissues with 
subsequent elimination of the 
plants

Brassica juncea 
Amaranthus 
hypochondriacus, 
Thlaspi caerulescens

Roots, Shoot, 
Leaves

Soils Odoh et al., 2019; Cui 
et al., 2021; Singh et al., 
2021

Phytodegradation/
Rhizodegradation

Enzyme catalysed metabolism by 
rhizosphere-dwelling 
microorganisms to transform 
organic contaminant into simpler 
molecules

Rhizophora mangle, 
Salix viminalis, Vetiveria 
zizanioides, Typha 
latifolia

Roots, Leaves Surface water, Groundwater Sampaio et al., 2019; 
Papadopoulos and Zalidis, 
2019; Nedjimi, 2021

Phytostabilization Decreases the mobility and 
migration of soil contaminants

Atriplex undulata, Salix 
alba, Glebionis 
coronaria

Roots Soils,Groundwater, Mine 
tailing

Mataruga et al., 2020; Li 
et al., 2021; Tammam 
et al., 2021

Rhizofiltration Uptake of metals via plant roots Eichhornia crassipes, 
Lemna minor, Pistia 
stratiotes

Roots Surface water, Water 
pumped

Kodituwakku and 
Yatawara, 2020; Singh 
et al., 2021

Phytovolatilization Removal of pollutants such as 
selenium, mercury, volatile 
hydrocarbons via 
evapotranspiration processes

Arundo donax, Stanleya 
pinnata, Brassica 
juncea, B. Napus

Roots, Leaves Soils, Groundwater Guarino et al., 2020; 
Hasanuzzaman et al., 
2020; Yan et al., 2021

Phytostimulation Phytostimulation (a symbiotic 
relationship that exists between 
plants and several soil 
microorganisms) is developed for 
the remediation of polychlorinated 
biphenyl (PCBs)

Brassica campestris, 
Zea mays, glycine max

Roots Soils Zahoor et al., 2017; Bilal 
et al., 2020
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Ojuederie and Babalola, 2017). Microorganisms (such as bacteria 
and fungi) play a vital role in the microbial bioremediation 
process. In addition, microorganisms contain several genes 
located in transposons and plasmids, which encode heavy metal 
resistant proteins and transporters. Recently, Kang et al. (2016) 
found that four bacterial strains, namely Enterobacter cloacae 
KJ-46, E. cloacae KJ-47, Sporosarcina soli B-22, and Viridibacillus 
arenosi B-21 had synergistic effects on the remediation of Cd, 
Pb, and Cu from contaminated soil. Moreover, the combination 
of bacteria strains shows greater resistance and efficacy for 
metal bioremediation compared to a single strain after 48 h 
of experiments. Microbes secrete several metabolites that play 
a significant role in bioremediation of contaminated sites 
(Sobrinho et  al., 2013; Dixit et  al., 2015; Coelho et  al., 2015; 
Ahemad, 2019; Figure  2).

Bacteria generate siderophores that can diminish metal 
bioavailability and are subsequently eliminated from contaminated 
land (Ahemad, 2019). It is recorded that bacterial cell can 
alter their morphology to increase the production of siderophores 
for promoting the intercellular accumulation of metals (Manoj 
et  al., 2020). Chibuike and Obiora (2014) found that a sulfate-
reducing bacterium Desulfovibrio desulfuricans can alter sulfate 
to hydrogen sulfate, which further reacts with HMs (Cd and 
Zn) and then form insoluble metal sulfides. The biomolecules 
of microbial cell walls contain negatively charged functional 
groups such as phosphate, hydroxyl, and carbonyl, which bind 
quickly with toxic metal ions and help them in bioremediation 
(Coelho et  al., 2015; Dixit et  al., 2015). Besides, bacteria can 
be grown and survive in any control and intense environmental 

conditions, making them a perfect bioremediation agent 
(Srivastava et  al., 2015).

Likewise, fungi can be  grown in harsh environmental 
conditions and detoxify metal ions by accumulation, valence 
transformation, and extra and intracellular precipitations 
(Ayangbenro and Babalola, 2017). In addition, fungi act as a 
promising biocatalyst in the bioremediation process, where they 
absorb toxic chemicals into their spores and mycelium. Recently, 
Hassan et  al. (2020a) showed the bioremediation capability of 
fungal consortia of Ascomycota and Basidiomycota, suggesting 
fungal bioaugmentation helps decontaminate heavy metal from 
contaminated land. A number of investigations are carried to 
study the microorganism bioaccumulation and biosorption 
capacity for effectively remediate metal-contaminated 
environment (Table  2).

Recently researchers have been isolated various heavy metal 
resistance microorganism from contaminated lands, mining 
dumping and abandoned sites, industrial waste dumping yards, 
and the rhizosphere of plants growing in metal-contaminated 
sites (Banerjee et  al., 2019; Aguilar et  al., 2020; Akhter et  al., 
2020; Nurfitriani et  al., 2020; Din et  al., 2021; Sharma and 
Shukla, 2021b). The isolated bacterial genera (such as Arthrobacter, 
Enterobacter, Corynebacterium, Stenotrophomonas, Bacillus, and 
Pseudomonas) and fungi (such as Aspergillus flavus, Aspegillus 
awamori, Saccharomyces cerevisiae, Phanerochaete chrysosporium, 
Penicillium oxalicum, and Trichoderma viride) play a significant 
role in bioremediation process. Bacteria and fungi precisely 
used to eliminate the specific metals in recent years have been 
reviewed and presented in Tables 3, 4, respectively.

FIGURE 2 | Microorganisms produce/secrete different compounds and their role in bioremediation.
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PLANT–MICROBE ASSOCIATED 
REMEDIATION

The microorganism-plant-based remediation has gain popularity 
currently due to its higher removal efficiency compared to plant-
based remediation process. These microorganisms are involved 
in the various biochemical process such as carbon and nitrogen 
mineralization, nitrogen fixation, and decomposing organic matter, 
which contributes to soil formation, nutrient cycling and transfer 
of energy. Soil microorganisms are also affected by HMs in 
contaminated areas. However, with continuous exposer, they tend 
to tolerate and develop unique features with few specific microbial 
populations. These types of specific microbes can be  employed 
for remediating toxic metals from contaminated lands. Further, 
soil microorganisms that form a symbiotic association with host 
plants are the most successful species in the soil reclamation 
process. The mycorrhizal fungi form intimate symbiotic relationship 
with host plants, which have been applied in many bioremediation 
processes (Yang et al., 2015; Gunathilakae et al., 2018; González-
Chávez et  al., 2019; Rubin and Görres, 2021). The arbuscular 
mycorrhizae as the most well-known symbiotic fungi are frequently 
used in phytoremediation due to their ubiquity in soil. They 

can develop several mechanisms to tolerate high metal 
concentrations in soils, thus promoting plant growth (Janoušková 
et  al., 2005; Fasani et  al., 2018). In addition, plant growth-
promoting bacteria (PGPB) can also stimulate plant growth 
activities and help plants cope with the contaminated ecosystem. 
They can enhance plant growth through direct and indirect 
mechanisms that are discussed in the separated section below.

There are two aspects of plant–microbe-based bioremediation 
process. First of all is the microorganisms help the host plant 
sustain in the harsh environmental condition by providing 
nutrients. Second, the plant plays a critical role by maintaining 
favorable environmental conditions such as improving soil organic 
matter, available P, K, and N, where soil microorganisms can 
thrive and enhance the reclamation process. Recently, a number 
of studies have been highlighted both side benefits of the plant–
microbe-based bioremediation process. A study recorded that 
planting of Trifolium repens in heavy metal contaminated sites 
improves soil enzymatic activities (Lin et  al., 2021). Wang et  al. 
(2021) also showed that plantation of Salix in Cd contaminated 
soil increased beneficial microorganisms diversity, such as genera 
of bacteria include Arthrobacter, Bacillus, Flavobacterium, Niastella, 
Novosphingobium, Niabella, Anaeromyxobacter, Rmlibacter, Solitalea, 

TABLE 2 | Different microorganisms and their bioaccumulation and biosorption capacity.

Microorganism(s) Contaminant(s) Remarks References

Scenedesmus acutus, Chlorella 
pyrenoidosa

Cd C. pyrenoidosa and S. acutus accumulated 3 
and 1.5% of Cd and biosorbed 97 and 98.5% 
of Cd, respectively.

Chandra et al., 2020

Aspergillus spp. Cd, Cu The removal efficiency for Cu and Cd was 
recorded >90%. The biosorption potential of 
living and dead cells for Cd was 0.1977 and 
0.1772 mg g−1 and for Cu it was 5.3676 and 
18.661 mg g−1, respectively.

Hasgül et al., 2019

Streptomyces K11 Zn The bioaccumulation capacity was 
4.4 mmol g−1. The maximum biosorption 
capacity recorded was 0.75 mmol g−1.

Sedlakova-Kadukova et al., 2019

Bacillus xiamenensis PbRPSD202 Pb, Cd, Cr, As, Ni, Cu, and Zn The maximum Pb biosorption capacity for 
living and dead biomass of B. xiamenensis 
shows 216.75 and 207.4 mg g−1, respectively.

Mohapatra et al., 2019

Aspergillus flavus SFL Cr The intercellular accumulation of A. flavus SFL 
was 50% more than the reference strain.

Vajpai et al., 2020

Phanerochaete chrysosporium Cd+2, Ni+2 The accumulation efficiency of P. 
chrysosporium for Cd2+ and Ni2+ was 96.23 
and 89.48%. The maximum biosorption 
capacity for Cd+2 and Ni+2 recorded 71.43 and 
46.50 mg g−1, respectively.

Noormohamadi et al., 2019

Pseudomonas azotoformans JAW1 Cd, Pb, and Cu Metal accumulation occurs on the cell surface 
(biosorption). The maximum adsorption found 
of Cd, Pb, and Cu by 98.57, 88.57 and 
69.76%, respectively. The removal level 
achieved the highest in order of Pb (78.23%), 
Cu (63.32%), and Cd (44.67%).

Choińska-Pulit et al., 2018

Aspergillus tamari, Simplicillium 
subtropicum, Aspergillus niger, 
Fusarium solani,

Cu Although A. tamari and S. subtropicum growth 
rate was low, the intake of Cu per unit of 
biomass is high compare to two other species.

Ong et al., 2017

Ensifer adhaerens OS3 Cd, Cr, Ni, Pb, Cu, and Zn The maximum accumulation was recorded for 
Ni (95%) and lowest for Pb (74%) and in order 
of Ni > Cu > Zn > Cr > Cd > Pb. Biosorption 
capacity recorded in order of 
Zn > Cr > Cd > Ni > Cu > Pb.

Oves et al., 2017
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Devosia, Mesorhizobium Nitrospira, Thermomonas, Flavisolibacter, 
Pedomicrobium, Lysobacter, Rubrivivax Phyllobacterium, and 
mycorrhizal genera of fungi include Actinomucor, Conocytes, 
Amanita, Cryptococcus, Xylaria, Ramicandelaber, Spizellomyces, 
Sporobolomyces, Rhodotorula Umbilicaria, Claroideoglomus, 
Tilletiopsis, and Cirrenalia in plant rhizosphere.

Plant Growth-Promoting Bacteria
It is well known that PGPB can enhance phytoremediation 
efficiency (Ma et  al., 2016; Lin et  al., 2021; Kumar et  al., 
2021a). The PGPB may directly prompt root proliferation 

and improve plant growth and fitness, plant metal resistance, 
uptake and translocation of nutrients and metals, and protect 
plants from phytopathogens (Ma et  al., 2011; Gupta et  al., 
2013; Fasani et al., 2018) by producing and secreting various 
organic acids, polymeric compounds, chelators, and hormones 
such as indole-3-acetic acid (IAA), 1-aminocyclopropane-1- 
carboxylate (ACC) deaminase, polysaccharides, glomalinand, 
azotobactin, azotochelin, alcaligin E, pyochelin, coelichelin, 
ferrioxamine B, and pyoverdin, which are responsible for 
decrease the soil pH and enhance the metal bioavailability, 
whereas the polymeric compounds help in phytostabilization 

TABLE 3 | Metal bioremediation potential of bacteria strains.

Targeted heavy metal Bacteria used Remarks References

Cd and Pb Enterobacter cloacae, Klebsiella 
edwardsii and Pseudomonas 
aeruginosa

P. aeruginosa showed the highest bioremediation potential compared 
to the other two with 58.80 and 33.67% of remediation in 50 mg Cd 
L−1 and 300 mg Pb L−1, respectively.

Oziegbe et al., 2021

Pb and Ni Ochrobactrum intermedium BPS-
20 and Ochrobactrum ciceri 
BPS-26

O. intermedium BPS-20 and O. ciceri BPS-26 accumulated Pb by 
85.34 and 71.20% and Ni by 74.87 and 88.48%, respectively.

Sharma and Shukla, 2021a

Pb Bacillus cereus BPS-9 BPS-9 strains recorded the highest Pb accumulation potential of 
79.26% and the biosorption capacity was 193.93 mg g−1.

Sharma and Shukla, 2021b

Cr, Pb, and Ni Klebsiella pneumoniae MB361, 
Stenotrophomonas sp. MB339, 
and Staphylococcus sp. MB371

The percentage of accumulation increase gradually with time and 
increased biomass.

The highest removal was recorded by MB339 with Pb (85.30%), and 
Ni (48.78%), followed by MB361 with Cr (83.51%), while MB371 
sorbed Pb by 88.33%.

Aslam et al., 2020

Ni Pseudomonas sp. P21, 
Stenotrophomonas sp. S20, and 
Sphingobium sp. S42

Bacterial strains S20 and P21 show high tolerant levels to Ni up to 
400 mg L−1, while S42 removed 33.7% of metal.

Chen et al., 2020

Hg Fictibacillus nanhainensis SKT-B 
and Bacillus toyonensis PJM-F1

F. nanhainensis SKT-B accumulated the highest level of Hg followed 
by B. toyonensis PJM-F1 with 82.25 and 81.21%, respectively.

Nurfitriani et al., 2020

Co and Ni Anoxybacillus mongoliensis The highest accumulation by bacteria recorded for Co and Ni was 
274.9 and 268.5 mg g−1, respectively. Further, increasing activities of 
superoxide dismutase (SOD) and catalase (CAT) were also  
recorded.

Akkoyun et al., 2020a

Pb, Cd, and Ni Rhizopus stolonifer and Bacillus 
megaterium

When growing the bacteria separately, R. stolonifer and B. 
megaterium recorded maximum uptake of Cd and Ni by 479.10 and 
501.05 mg L−1, respectively. Overall B. megaterium uptake a higher 
concentration of combined HMs.

Njoku et al., 2020

Cr Bacillus cereus AVP12 and 
Bacillus cereus NC7401

The highest Cr accumulation potential of AVP12 and NC7401 strains 
isolated from the contaminated sites was 181.0 and 107.5 mg L−1, 
respectively. While for the same strains AVP12 and NC7401 isolated 
from non-polluted sites were 92.59 and 62.11 mg L−1, respectively.

Akhter et al., 2020

Hg and Pb Exiguobacterium profundum The highest bioaccumulation of Pb and Hg for E. profundum were 
54.35 and 37.56 mg g−1, respectively.

Akkoyun et al., 2020b

Cr, Ni, and Pb Lactobacillus plantarum 
MF042018

It shows high tolerance against the Ni and Cr up to 500 and 100 ppm, 
respectively. The biosorption capacity of MF042018 was recorded 
very high for Cd and Pb at pH 2.0 and temperature 22°C after 1 h.

Ameen et al., 2020

As Bacillus cereus and Lysinibacillus 
boronitolerans

The bacterial strains P2IIB, P1C1Ib and P2Ic resistant to 3,000 mg L−1 
of As. The bacteria culture removes 85.72% of arsenate and 71.88% 
of arsenite from the medium.

Aguilar et al., 2020

Cr Bacillus cereus The bacteria strain can tolerate Cr2000 (2,000 mg L−1) Cr(VI) and can 
completely decrease Cr200 under heterotrophic conditions within 16 h. 
It is recorded that Cr(VI) was effectively reduced to Cr(III).

Banerjee et al., 2019

As Ochrobactrum ciceri SW1 and 
Exiguobacterium profundum PT2

Both bacterial strains increased production of EPS in the presence of 
As, which help to sequester arsenic.

Saba et al., 2019

Hg, Cd, Pb, Cu, Ni, and Zn Escherichia coli K-12 The bacterial strain can absorb different types of metal ions. It can 
absorb more than 30 varieties of metal ions via its outer membrane.

Jin et al., 2018

Cd Cupriavidus necator GX_5, 
Sphingomonas sp. GX_15, and 
Curtobacterium sp. GX_31

The highest removal capacity of Cd recorded in order of GX_31, 
GX_15 and GX_5 with 86.06, 53.88 and 25.05%, respectively.

Li et al., 2018
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of metals by decreasing their mobility (Chen et  al., 2017). 
The chelators work as metal-binding ligands to enhance 
metal bioavailability, improve root-shoot translocation and 
metal uptake capacity, and facilitate intracellular heavy metal 
accumulation in organelles (Yan et  al., 2020). Inoculation 
of ACC deaminase-producing PGPB showed extensive root 
and shoot density along with increased biomass and 
phytoremediation efficiencies (Arshad et al., 2007; Yan et al., 
2020). It is found that Bacillus sp. XZM lowers As toxicity 
to the plant by producing a higher amount of extracellular 
polymeric substance (EPS), siderophore, and IAA (Irshad 
et al., 2020). Some of PGPB, such as Pseudomonas, Micrococcus, 
Erwinia, Azospirillium, Flavobacterium, Azotobacter, 
Chromobacterium, and Agrobacterium have been applied in 
the phytoremediation process (Bhattacharyya and Jha, 2012; 
Ma et  al., 2019). Ma et  al. (2016) isolated two droughts 
resistant serpentine PGPB Pseudomonas reactans Ph3R3 and 
Pseudomonas libanensis that showed high resistance to different 
HMs (Cd, Cr, Pb, Cu, Ni, and Zn), salinity, extreme 
temperature, and antibiotics. Both strains significantly 
enhanced plant growth, pigment content, and leaf relative 
water, and also translocation and bioconcentration factors 
for Cu and Zn under the drought condition.

Further, PGPB are found to be  an important player in 
remediating the HM contaminated marine ecosystems. The 
study by Mesa-Marín et  al. (2020) recorded that inoculation 
of Thalassospira australica SRT8, Vibrio neocaledonicus SRT1 
and Pseudarthrobacter oxydans SRT15, with Salicornia 
ramosissima improved the relative plant growth rate and 
the number of new branches by 32 and 61%, respectively, 
when planted in the HM contaminated estuarine soil. The 
inoculation of PGPB also helps to accumulate the highest 
concentration of HMs like As, Cd, Cu, Ni, Pb and Zn in 
the root and subsequently enhance the phytoremediation 
potential of S. ramosissima. In one another study inoculation 
of Bacillus flexus KLBMP  4941 with coastal halophytes 
Limonium sinense under the salt stress ecosystem shows 
positive effects on the hostplant survival and growth and 
it can be  employed for phytoremediation of saline soils 
(Xiong et al., 2020). Two PGPB namely Bacillus cereus strain 
P2 and Planomicrobium chinense strain P1 isolated by Khan 
et  al. (2018) and inoculated with Helianthus annus for 
phytoremediation of HMs in drought conditions found a 
significantly positive result. The study confirmed that the 
application of PGPB and salicylic acid significantly increased 
the rhizosphere accumulation of Cd, Pb, Ni by 84, 66 and 
65%, respectively. In addition, inoculation of PGPB 
significantly enhanced the root length, shoot length, root 
fresh, and dry weight by 68, 60, 61, and 63%, respectively. 
Likewise, in various studies different types of PGPB such 
as Bacillus subtilis, Bacillus thuringiensis, Ensifer meliloti 
RhOL6 and RhOL8, Bacillus megaterium, Pseudomonas sp. 
DSP17 and Proteus sp. DSP1 have been applied along with 
organic and inorganic amendments found enhanced 
remediation of HMs from different types of soils which 
include sandy soil, arid and semi-arid soils (Khan and Bano, 
2018; Raklami et  al., 2019; Khodaverdiloo et  al., 2020).

Generally, associations of leguminous plants with PGPB have 
also been applied in the phytoremediation process of highly 
metal-contaminated sites (Hao et  al., 2014). But recently, this 
remediation method is used in less or moderately metal-
contaminated agriculture soil (Saadani et  al., 2019). Recently, 
Saadani et  al. (2019) found that the inoculation of PGPB with 
Sulla coronaria and Vicia faba L. var. minor showed a higher 
metal accumulation in legumes grown in low contaminated 
agriculture soil compared to non-inoculated legumes. After the 
cultivation of symbiotic legumes, soil fertility is positively affected 
with higher organic content (phosphorous and nitrogen) and 
soil decomposition rate. The rhizobium-legume symbiosis 
relationship between high metal-resistant Sinorhizobium meliloti 
CCNWSX0020 and plant Medicago lupulina has been successfully 
used in the study for efficient bioremediation of HMs (Lu et al., 
2017). It is also recorded that the bacterial strain’s extracellular 
polymeric substances help to immobilize Cu2+. The genetically 
engineered rhizobium-legume symbiont is also used to remediate 
the As contamination from the soil. A study by Zhang et  al. 
(2017) inserted the arsenite [As (III)] S-adenosylmethionine 
methyltransferase gene (CrarsM) derived from alga 
Chlamydomonas reinhardtii in Rhizobium leguminosarum bv. 
trifolii strain R3 and check the As methylation capacity by 
symbiosis with red clover found a positive result in the test. 
Likewise, Tsyganov et  al. (2020), applied two transgenic strains 
of Rhizobium leguminosarum bv. viciae, 3,841-PsMT2 and 3,841-
PsMT1 to pea plants (Pisum sativum) for the study of Cd 
tolerance and accumulation in plants. The study concludes that 
the pair of legume-rhizobia may be  applied for 
phytostabilization purposes.

Arbuscular Mycorrhizal Fungi
AMF are mostly found in terrestrial plant roots by forming 
the symbiotic association. In the root cortex, the fungus 
colonizes and develops a thick extended mycelium around 
the roots, which acts as an intermediatory connection between 
plants and soils and helps absorb nutrients from soils 
(Kernaghan, 2005; Reinhardt, 2007). AMF are also found 
in highly disturbed ecosystems or polluted soils (Cornejo 
et  al., 2008; Yan et  al., 2020). AMF can confer plant metal 
resistance (Singh, 2012; Xu et  al., 2012; Curaqueo et  al., 
2014; Gunathilakae et  al., 2018). AMF is a tremendous 
biological interest due to its positive effects on symbiotic 
relationships and remediation capability. Further, it has been 
exploring in every way to employ AMF for stabilizing the 
metals in contaminated land. The mycorrhizal plants enhance 
metal phytostabilization by metal sequestration in roots and 
hyphae. The metals confined to soils make them less 
bioavailable. Thus, the toxic effects of metals on other living 
microorganisms are alleviated.

Many studies have been conducted to investigate the role 
of AMF in phytoremediation (Table  5). Liu et  al. (2015b) 
conducted a study on Cd uptake capacity of Solanum nigrum 
inoculated with Glomus versiforme BGC GD01C (Gv) in 
different Cd concentrations soil. They found that the inoculation 
of G. versiforme highly improved the total Cd uptake in plants 
at different Cd concentrations. Many researchers have attempted 
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to explore more possibilities to remediate the contaminants 
from the stressed environment. Recently, a study conducted 
by Hao et al. (2021) showed that the phytoremediation potential 
of Zea mays inoculated with Claroideoglomus etunicatum 
grown in Lanthanum (La) contaminated soils enhanced bacterial 
diversity including Agrococcus, Lysobacter, Planomicrobium, 
Microbacterium, Streptomyces, Saccharothrix, Penicillium, and 
other unclassified bacteria and fungi like Penicillium. This 
study confirmed that AMF can regulate the rhizosphere fungal 
and bacterial diversity to foster beneficial microorganisms 
that help the plant sustain. Further, an investigation is 

undertaken in Ni contaminated saline soil for remediation 
using Helianthus annuus inoculated with plant beneficial 
bacteria (Pseudomonas libanensis TR1) and AMF 
(Claroideoglomus claroideum BEG210; Ma et  al., 2019). The 
study found that the bacteria and fungi alone or in combination, 
significantly increase plant growth, physiological parameters, 
and accumulation of Ni and Na+, thus contributing significantly 
to Ni Phytostabilization, Na+ and Ni detoxification, and Na+ 
exclusion. Therefore, bioaugmentation with PGPB with AMF 
can be  used as a useful strategy for reclaiming metal-
contaminated saline soil.

TABLE 4 | Metal bioremediation potential of fungi strains.

Target heavy metal Fungi used Remarks References

Cd Penicillium chrysogenum 
FMS2

The highest tolerance level recorded for P. chrysogenum FMS2 was 
1,000 mg L−1. The fungal strain can survive in the wide environmental 
condition such as temperature and pH range between 15–35°C and 4.0–
12.0, respectively. The Cd removal capacity of fungi was approximately 
49% in 15 days of exposure.

Din et al., 2021

Cd, Cu, Ni, Pb, and Zn Ganoderma lucidum The concentration of Pb, Zn, Ni, Cu and Cd in contaminated soil were 
4,490, 147, 27.7, 19.4 and 2.18 mg kg−1 and G. lucidum accumulated 138, 
29.8, 3.48, 3.69 and 1.01 mg kg−1 of respective metal after inoculated in 
contaminated soil.

Ipeaiyeda et al., 2020

Pb Aspergillus niger, Penicillium 
oxalicum, and Trichoderma 
asperellum

Trichoderma, Penicillium and Aspergillus accumulate Pb ions by 75.29, 
66.77, and 56.82%, respectively.

Mariconi et al., 2020

Pb, Ni, and Zn All isolated fungi, Ascomycota 
and Basidiomycota

The highest bioremoval capacity for Ni and Pb was 52 and 44% from the 
bioaugmented soil with all isolated fungi. While for Zn, the maximum 
removal was 36% in A. consortium-treated soil. Overall, Pb and Ni removal 
efficacy in order of isolated fungi > Basidiomycota > Ascomycota, whereas 
for Zn it was Basidiomycota > all isolated fungi > Ascomycota.

Hassan et al., 2020a

As, Cr, Cu, Mn, and Fe All isolated fungi, Ascomycota 
and Basidiomycota

Fungal consortia show the highest tolerance index of 1.0 for Cr, Cu and Fe 
in agar medium. Further, the consortium of all isolated fungi shows the 
removal capacity of As, Mn, Cr, and Cu by 77,71, 60 and 52%, respectively.

Hassan et al., 2020b

As 21 fungal strains including

Humicola sp.

All the isolated fungal strains can tolerate up to 5,000 mg L−1 AsV. The 
accumulation capacity of fungi biomass ranged between 0.146 to 
11.36 g kg−1 and volatilization of As between 0.05 to 53.39 mg kg−1 
biomass. Humicola sp. recorded the highest biovolatilization capacity by 
53.39 mg kg−1.

Tripathi et al., 2020

Hg Penicillium spp. DC-F11 DC-F11 fungal strain detoxified Hg via extracellular sequestration through 
precipitation and adsorption.

Chang et al., 2020

Hg Aspergillus sp. A31, 
Lindgomycetaceae P87, 
Curvularia geniculata P1, and 
Westerdykella sp. P71

All four species of endophytic fungi remove up to 100% of Hg in a species-
dependent manner from the culture medium.

Pietro-Souza et al., 2020

Cd Aspergillus fumigatus A. fumigatus showed the highest tolerance against Cd with a removal 
percentage of 74.76 and uptake capacity of approximately 5.02 mg gm−1.

Talukdar et al., 2020

Cd and Pb Simplicillium chinense QD10 Cd biosorption occurs with forming Cd-chelate and Pb mainly adsorbed by 
extracellular polymeric substances (EPA).

Jin et al., 2019

Cu, Cd, Pb, and Zn Alternaria 
chlamydosporigena, 
Trichoderma harzianum, 
Acremonium persicinum, 
Fusarium verticillioides, 
Seimatosporium pistaciae, 
and Penicillium 
simplicissimum

T. harzianum was found the maximum tolerant against Cd, Cu and Pb. A. 
persicinum and P. simplicissimum record the highest biosorption and 
accumulation of HMs.

Mohammadian et al., 2017

Cd, Cr, Cu, Ni, and Zn Beauveria bassiana It removed 84% multi-metal from the mixture sample while individual metal 
removal capacity was 61–75%. B. bassiana removed the metal via 
accumulation and sorption processes.

Gola et al., 2016

Cu, Pb Aspergillus flavus and A. niger The biosorption of Cu and Pb by A. flavus and A. niger was recorded 81.8 
and 83.1%, respectively, during the initial 10 min.

Iram et al., 2015
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TABLE 5 | Role of microorganisms in the removal of heavy metals by plants.

Targeted heavy metal Microorganisms used Host plant Remarks References

Bacteria

Cd, Cu, Ni, Pb, and Zn Bacillus cereus TCU11 Zea mays TCU11 significantly enhanced the biomass, 
chlorophyll, carotenoids, proline, phenolics, protein 
and antioxidant enzymes. It also increased the 
translocation of metals except for Ni. Overall, it 
improves the phytoremediation efficiency.

Bruno et al., 2021

Cu Pseudomonas lurida 
EOO26

Helianthus annuus Inoculation of EOO26 increased the Cu 
accumulation in roots and leaves by 8.6 and 1.9-
fold, respectively, and total plant uptake by 2.6-
fold compared to the uninoculated plants.

Kumar et al., 2021a

Cd, Pb, and Cr Adhaeribacter, 
Kaistobacter, Lysobacter, 
Pontibacter, 
Flavisolibacter, Bacillus

Trifolium repens Kaistobacter, Lysobacter and Pontibacter 
significantly helped in metal accumulation, 
whereas the other three species enhanced plant 
growth.

Lin et al., 2021

Cd Micrococcus sp., 
Arthrobacter sp.

Chlorophytum 
amaniense, C. 
comosum

Micrococcus sp. increased the production of 
biomass of both plants. Both the bacterial strains 
boost phytoextraction of Cd.

Sangsuwan and Prapagdee, 
2021

Cu Pseudomonas sp. TR15a, 
Bacillus aerophilus TR15c

Helianthus annuus The consortium of bacteria significantly increased 
the dry biomass, germination, root and shoot Cu 
accumulation by 64¸ 32, 47 and 75%, respectively.

Kumar et al., 2021b

Cu, Cd, Pb, and Zn Bacillus subtilis, Bacillus 
licheniformis - BC 
Streptomyces pactum 
Act12 -ACT

Brassica juncea Co-inoculation of bacteria increased the enzyme 
activity, metal bioavailability, plant growth and 
phytoextraction capacity of B. juncea.

Jeyasundar et al., 2021

Cd Lelliottia jeotgali MR2, 
Klebsiella michiganensis 
TS8

Miscanthus floridulus Strain TS8 enhanced plant growth and declines 
the total Cd in the rhizosphere, while MR2 
significantly increased the translocation of Cd from 
root to shoot parts.

Liu et al., 2021a

Cu, Cd, Pb, and Zn Bacillus cereus 
MG257494.1, Alcaligenes 
faecalis MG966440.1 
Alcaligenes faecalis 
MG257493.1

Sorghum vulgare The bacteria consortium increased the microbial 
activity and reduced metal bioaccumulation in the 
plant and its root. It also controlled the metals 
bioaccumulation factor (BAF) in plants and the 
rhizosphere.

Abou-Aly et al., 2021

Cd, Pb, and Cr Pseudomonas putida 
RE02

Trifolium repens The inoculation RE02 improved the seed 
germination tailing, soil fertility and the uptake of 
total heavy metal by 30.03–574.58%.

Liu et al., 2021b

Cd and Mn Enterobacter sp. FM-1 Polygonum 
lapathifolium L., 
Polygonum hydropiper 
L.

Inoculation of bacteria increased soil bioavailability 
of Cd and Mn significantly and lowered the soil 
pH, resulting in an increase in metal accumulation 
in both the plants.

Li et al., 2020

Sb Pseudomonas fuorescens Trifolium repens The application PGPB with nZVI significantly 
enhanced Sb accumulation capacity of T. repens.

Zand et al., 2020

As Cupriavidus basilensis 
r507

Pteris vittate P. vittata accumulated up to 171% of As, when 
inoculated with the bacterial strain.

Yang et al., 2020

Pb Micrococcus luteus Chromolaena odorata M. luteus inoculated with C. odorata can 
be applied to remediate the moderately Pb-fuel oil 
contaminated mild saline soil.

Jampasri et al., 2020

As Bacillus sp. XZM Vallisneria 
denseserrulata

The symbiosis between the plant and bacteria 
significantly enhanced As uptake and removal 
capacity. In addition, 85% arsenic found as As (III) 
and > 77% stored in vacuole of leaves cells.

Irshad et al., 2020

Al Chaetomium cupreum Miscanthus sinensis The bacteria produced siderophore called 
oosporein that supports seedling growth and 
increased Al tolerance and accumulation.

Haruma et al., 2019

As Azospirillum brasilense 
Az39, Bradyrhizobium 
japonicum E109

Glycine max The mortality of plants reduced with an increase in 
plant growth, nodule number and nitrogen 
content. As translocation to aerial parts also 
decreased, thus it enhances the phytostabilization 
potential of G. max.

Armendariz et al., 2019

Cd, Pb Cr, Cu, and Zn Mesorhizobium loti

HZ76, Ensifer adhaerens 
HZ14, Rhizobium 
radiobacter HZ6

Robinia pseudoacacia Treatment with M. loti HZ76 results in significantly 
increased nodule number. Overall, the addition of 
bacteria strains enhanced the phytoremediation 
efficiency.

Fan et al., 2018

(Continued)
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Targeted heavy metal Microorganisms used Host plant Remarks References

Cd, Pb, and Zn Streptomyces sp. Strain 
B1, B2, B3

Salix dasyclados L. Bioaugmentation with bacteria significantly 
enhanced plant biomass and decreased oxidative 
stress. B1 strain record the high potential for 
phytoextraction due to its highest ability for 
siderophore secretion.

Złoch et al., 2017

Pb and U Enterobacter sp. HU38, 
Pantoea stewartii ASI11,

Microbacterium 
arborescens

HU33

Leptochloa fusca The bacterial consortia increased metal 
accumulation capacity by 58–97% and 53–88% 
for Pb and U, respectively.

Ahsan et al., 2017

Fungi

Cd and Zn Rhizophagus irregularis 
(FR717169)

Phragmites australis Under Zn stress, the fungi helped increase the 
activities of ascorbate peroxidase (APX) and SOD. 
Under Cd stress, CAT, peroxidase (POD), SOD 
and APX increased significantly. The translocation 
factor of Zn and Cd reduced by 10–57 and 17–
40%, respectively.

You et al., 2021

Cd Funnelliformis mosseae Solanum nigrum, Oryza 
sativa

Intercropping with fungi enhanced growth and Cd 
accumulation of S. nigrum. The treatments help 
reduce the Cd level in rice parts with a maximum 
reduction in brown rice by 64.5%.

Yang et al., 2021

Cd Blastocladiomycota, 
Chytridiomycota, 
Mortiriellomycota, 
Tilletiopsis, 
Sporobolomyces, 
Cryptococcus, 
Conocytes,Umbilicaria, 
Amanita, Xylaria, Cirrenalia

Salix The presence of fungi showed a positive 
correlation with Cd accumulation. The study 
recorded that a higher fungal number contributes 
to high biomass.

Wang et al., 2021

La Claroideoglomus 
etunicatum

Zea mays The AMF promoted nutrient uptake and growth of 
Z. mays in various La stressed soil. It also 
increased the root and shoot fresh and dry weight 
significantly. The shoot concentration of La decline 
significantly by 51.53% and increased root 
concentration by 30.45%.

Hao et al., 2021

Cd, As, and Pb Glomus mosseae Pisum sativum Inoculation with G. mosseae enhanced plant 
growth, the concentration of carbohydrates, 
photosynthetic pigments, nitrogen and defense 
antioxidants. This symbiosis can be employing for 
onsite remedy of Cd- and Pb-polluted soil.

Chaturvedi et al., 2021

Cr Rhizophagus irregularis Brachiaria mutica AMF enhanced the photosynthetic performance 
by increasing the chlorophyll, carotenoid, proline, 
protein content and activities of antioxidant 
enzymes. It also improves the tolerance index, 
transportation index and bioconcentration factor 
of B. mutica.

Kullu et al., 2020

Hg Aspergillus sp. A31, 
Lindgomycetaceae P87, 
Curvularia geniculata P1 
and Westerdykella sp. P71

Aeschynomene 
fluminensis, Zea mays

The tolerance capacity of plants for the Hg2+ was 
improved after the inoculation of fungi. The 
biomass of the plants increased along with the 
reduction in soil Hg concentration. Further, the soil 
Hg level reduced in A. fluminensis by 57.14% 
inoculated with P87.

Pietro-Souza et al., 2020

As 21 fungal strains including

Humicola sp.

Bacopa monnieri Humicola sp. enhanced the plant growth and 
bacoside content and can use as a realistic and 
potential mitigation strategy for reducing the As 
level in the cropping system.

Tripathi et al., 2020

As Piriformospora indica Artemisia annua The inoculation of fungi helped the plant to 
accumulate significantly high concentration of As 
in roots than shoots. In addition, overall biomass, 
artemisinin, flavonoids, peroxidase and SOD were 
increased significantly.

Saeed-ur-Rahman et al., 
2020

(Continued)
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FACTORS AFFECTING BIOREMEDIATION 
EFFICIENCY

The most important factor affecting bioremediation efficiency 
is site characteristics. Secondly, environmental factors such as 
water content, temperature, pH, nutrient availability, moisture 
content, and pollutant bioavailability can also hinder the efficiency 
of bioremediation (Freitas et  al., 2013; Azubuike et  al., 2016; 
Khodaverdiloo et  al., 2020; Leong and Chang, 2020). Apart 
from this, the bioremediation process is a complex system 
that is optimized and controlled by many factors. The interactions 
among the contaminants, microbes, nutrient availability and 
environmental factors affect the bioavailability and biodegradation 
of the contaminants.

Site Characteristics
The first and most important factors which affect the bioremediation 
process are the site location and its characteristics. The extent and 
type of contaminants present in the location determine the 
remediation efficiency (Abatenh et  al., 2017). These factors can 
be  overcome and managed by sufficient prior investigation and 
characterization of sites before implementing the remediation process.

Temperature
Temperature is an important factor that determines the survival 
and growth of the microorganism and the composition of 
hydrocarbon (Yang et  al., 2009). It plays a critical role in the 
microbe-assisted remediation process by affecting both the physical 
and chemical states of contaminants present in the polluted sites 
and interrupting the microbial metabolisms, growth rate, soil 
matrix, and gas solubilities (Megharaj et  al., 2011). It is recorded 
that high temperature destroys the cell metabolic activity of 
bacteria and affects the process of bioaccumulation (Javanbakht 
et al., 2014). Furthermore, the temperature can speed up or slow 

down the remediation process as microbial physiological properties 
are highly influenced by temperature. The interaction between 
fungal membrane binding sites and heavy metal ions depends 
on the temperature. Temperature also affects the configuration 
and stability of fungal membrane by chemical moieties ionization 
(Oka et  al., 2005). Jin et  al. (2019) showed that the biosorption 
efficiency of S. chinense QD10 for Cd and Pb was highest at 
30°C by 60.4 and 38.3%, respectively. But it significantly declined 
when the temperature increased to 45°C. The microbial adsorption 
is also affected by temperature (Timková et  al., 2018).

pH
pH has its own impacts on the metabolic activity of microorganisms 
which can increase or decrease the removal process. Bioremediation 
can be  applied in a wide range of pH. However, a pH of 6.5 to 
8.5 is considered the maximum potential for remediating the most 
terrestrial and aquatic systems (Abatenh et  al., 2017). The pH 
value influences the biosorption process by dissociation of functional 
groups on the fungal membrane and affects heavy metal mobility 
and solubility (Wang et  al., 2014). It was observed that the Cd 
biosorption capacity of Exiguo bacterium sp. enhanced with increased 
pH up to 7.0 and remained neutral when the pH was higher 
than 7.0 (Park and Chon, 2016). The microbial adsorption is also 
affected pH and ionic strength (Timková et  al., 2018).

Nutrient Availability
Likewise, nutrient concentration, availability, and type are 
also important for microbial growth and activity in the 
bioremediation process. The fundamental elements (such as 
carbon, nitrogen, and phosphorous) help the microbes produce 
the necessary enzymes to break down the pollutants. The 
lower level of nutrient availability affects the plant and 
microorganisms, which ultimately affects the bioremediation 
rate and effectiveness. In this condition balancing the essential 

Targeted heavy metal Microorganisms used Host plant Remarks References

Cd, Pb, and Zn Cenococcum geophilum 
(Cg, KY075873.1), 
Laccaria sp. (L1, 
KY075876.1,), Pisolithus 
sp.1 (P1, KY075877.1), 
Pisolithus sp. 2 (P2, 
MN422052)

Pinus sylvestris Inoculation of fungi increased the survival rates of 
plants by enhancing the biomass, photosynthetic 
rate, transpiration rate, stomatal conductance, 
mineral nutrients and intercellular CO2 
concentration. Further, P. sylvestris accumulated a 
higher concentration of Cd, Pb and Zn than non-
ectomycorrhizal seedlings.

Liu et al., 2020

As Rhizophagus, Funelliformis Pteris vittata Rhizophagus and Funelliformis inoculation 
improved the plant growth and increased the fresh 
and dry weight of aerial parts by 44 and 37%, 
respectively. The BAF for inoculated plants was 
7.6 while for uninoculated it was recorded 6.0.

Cantamessa et al., 2020

Cd and Pb Simplicillium chinense 
QD10

Phragmites communis The amendments of S. chinense QD10 
significantly increased the phytoextraction of metal 
by 28.6–48.0% of P. communis.

Jin et al., 2019

Cd Acaulospora

Laevis, Glomus

monosporum, G. clarum, 
Gigaspora nigra

Trigonella 
foenumgraecum

Inoculation of AMF enhanced the plant growth 
parameters, protein and chlorophyll contents. The 
TF of plants was also reduced significantly.

Abdelhameed and Metwally, 
2019

TABLE 5 | Continued

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Saha et al. Microbe-Plant-Based Bioremediation

Frontiers in Microbiology | www.frontiersin.org 15 December 2021 | Volume 12 | Article 731723

nutrient such as nitrogen (N) and phosphorus (P) can enhance 
the bioremediation efficacy through optimizing the bacterial 
C:N:P ratio (Abatenh et al., 2017). In the colder environment, 
the supply of an appropriate quantity of nutrients enhances 
the metabolic activity of microorganisms, which leads to an 
increase in the remediation rate (Phulia et  al., 2013; Couto 
et  al., 2014). It has been reported that an excessive amount 
of nitrogen in the contaminated medium resulted in microbial 
inhabitation (Varjani and Upasani, 2017). Further, the higher 
concentration of nitrogen, phosphorus, and potassium hinders 
the biodegradation efficiency of hydrocarbon contaminants.

Moisture Content
The microorganisms can be  adversely affected by the soil 
moisture content. Moisture affects the rate of pollutant metabolism 
via influencing the amount and type of soluble materials as 
well as the pH and osmotic pressure of the terrestrial and 
aquatic sites (Abatenh et  al., 2017).

Type/Nature of Microorganism and Plant
The existence of unsuitable microorganisms or the inadequate 
presence of suitable microorganisms in the contaminated sites 
affects the bioremediation efficiency. Apart from this, the microbial 
biophysical process also influences bioaccumulation as the process 
is metabolically dependent and uses cellular energy for metal 
uptake. It depends on the microbial biochemical features, genetic 
and physiological ability, internal structure, cell surface properties 
such as charge changes, and surrounding environmental conditions 
(Srinath et  al., 2002; Vijayaraghavan and Yun, 2008; Issazadeh 
et  al., 2013). Razmi et  al. (2021) found that phytoremediation 
efficiency was influenced by various biological and chemical 
factors. For the plant-based remediation, the important factors 
consider for selecting the suitable plants includes the root system, 
it may be  tap or fibrous roots depending on the depth of the 
contaminants, above-ground biomass, which should not preferable 
for livestock consumption, survival, and adaptation of plants and 
the plant growth (Azubuike et  al., 2016). However, the role of 
plant type in the phytoremediation of Cd, Pb, Ni, and Zn has 
been considered as the prime factor. Similarly, the maximum 
biosorption efficiency for most of the fungal strains was found 
under their optimal growth conditions (Iram et  al., 2015).

Water Content
In general, microorganisms require water activity values between 
0.9–1.0 for metabolism and growth. Most of the bacteria grow 
optimally at the upper limits of water activity values (Sharma, 
2019). Therefore, the water content in contaminated land is 
an essential factor that may affect the bioremediation rate. 
Recently, Khodaverdiloo et  al. (2020) highlighted that water 
deficiency, sodicity, and salinity are also important factors that 
affect bioremediation efficiency.

Pollutant Bioavailability
The low bioavailability of HMs in the contaminated soil greatly 
affected the bioremediation efficiency. The bioavailability of 
contaminants is controlled by various physicochemical processes 

such as sorption, diffusion, desorption, and dissolution. This 
problem can be managed using various surfactants and chelating 
agents, which enhance the bioavailability of HMs for microbial 
degradation and plant uptake. Various types of organic and 
inorganic chelating agents are applied recently such as ethylene-
diamine tetraacetic acid (EDTA), [S,S]-ethylenediaminedisuccinic 
acid (EDDS), ethylenediamine-di-ohydroxyphenylacetic acid 
(EDDHA), diethylenetriaminepentaacetic acid (DTPA), 
nhydroxyethylenediaminetriacetic acid (HEDTA) citric acid, 
acetic acid, and malic acid. Application of these chelating agents 
has successfully proven that it effectively forms a complex 
with HMs and increases the bioavailability (Sarwar et al., 2017).

CHALLENGES AND FUTURE 
PROSPECTS

The bioremediation methods are diverse and show effectiveness 
in restoring the polluted sites contaminated with multiple HMs. 
However, there are some important factors to be considered before 
implementing bioremediation practices. There is a need for regular 
investigation and assessment of the level of HMs and other 
pollutant concentrations in the contaminated sites before proposing 
bioremediation. The selection of an appropriate type of microbes 
and plant species is a very hefty task for the sites where the 
presence of multi-metals and other organic pollutants at the same 
site. Secondly for the plant-based bioremediation, the presence 
of volatile metals and metalloids such as Si, Hg, and As in the 
site may get volatilized into the atmosphere in their toxic form 
which may affect the living organisms. Third, if edible plants are 
used for bioremediation purposes, there is a risk that they can 
be consumed by animals, insects and which may further contaminate 
the food chain and ultimately reach humans and cause serious 
health complications. For this, nonedible and nonpalatable 
phytoremediator plant species can be  preferred or in the case of 
the edible plants, proper protection during cultivation, and harvesting 
must be  taken to avoid future complications. With the presence 
HMs deeper into the ground where plant roots cannot reach, in 
situ phytoremediation becomes difficult.

Further research, assessment, and investigation are required 
to enhance our knowledge and understanding of best management 
practices for efficient bioremediation of HMs. There is a need 
for futuristic clarification of mechanisms, metabolites, and novel 
approaches/methods are required. For simple and efficient plant-
based bioremediation, utilization of hyperaccumulator plants to 
efficiently remove of HMs from the contaminated soil need novel 
strategies for its further progress. This can be  achieved in two 
ways, first by finding and validating the various diversity of new 
hyperaccumulator plant species, and second by developing the 
hyperaccumulator plant using genetic engineering. In addition, 
we  can consider the hyperaccumulator plants with deep root 
plants for, e.g., woody plants or tree such as Populus × canescens, 
Rinorea bengalensis, Schima superba and Pycnandra acuminata 
with high translocation rate, high biomass and growth rates and 
more tolerant plant species.

Biotechnological intervention including genetic engineering, 
for example, the rate-limiting step in a known metabolic pathway 
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can be  manipulated genetically to enhance the transfer and 
biodegradation rates, or by introducing a completely new metabolic 
pathway into the microbe for higher accumulation of HMs or 
degradation of recalcitrant compounds. In addition, overexpression 
of foreign genes into a non-tolerant plant with having higher 
biomass for HM remediation from the soil may be  a feasible 
strategy. The advanced way to study hologenomics of plants 
microorganism will be  helpful for the manipulation of microbial 
niches which help to enhance the resistance against toxic metal 
contamination. For multi-metal contaminated and multi-stress 
environmental conditions, there is a need to development of 
suitable amendments to enhance the survival of the suitable plant 
species. Although there are several organic and inorganic 
amendments and metal chelators are available there is a need 
for further investigation to find out more suitable and eco-friendly 
amendments which can be  applied for the treatment of multi-
metal contaminated and multi-stressed soil. There is a necessity 
for coordination and contribution of researchers, scientists, 
policymakers, government, industrial sectors, and individuals that 
can help to success and reliability of bioremediation.

CONCLUSION

Man-made activities have been introducing a high amount of 
toxic metals into the environment, affecting the life processes of 
all living organisms in direct and indirect ways. It has been 
reported that more than one type of heavy metal is simultaneously 
present in the contaminated land and the available conventional 
methods are not significantly efficient to detoxify the pollutants 
compared to the bioremediation process. It has been proved that 
bioremediation methods are easily affordable compared to other 
physicochemical remediation techniques. A number of bacterial 
and fungal strains have been isolated and identified from different 
metal-contaminated and mining abandoned soils in recent years. 
Pseudomonas spp., Bacillus spp., Aspergillus spp., and Penicillium 
spp. are found frequently and show high metal tolerance and 
bioremediation potential. Currently, bioremediation has been 
practiced in various contaminated sites globally with varying 

degrees of success. Recently by applying the various plants and 
microorganisms to remediate the contaminants from the 
environment has been noted like Alaska oil spill remediation, 
China’s Aleutian island bioremediation operation and other 
decontamination cases of HMs from the industrial and agricultural 
fields. The addition of proper supplements and enhancing 
environmental conditions are the prime concern for the significant 
yield of bioremediation. To overcome the above problem, the 
addition of organic matter and a consortium of microorganisms 
can enhance microbial metabolic activity and may improve 
bioremediation potential. In addition, more investigations are still 
required to screen the more suitable microorganisms, 
hyperaccumulator plants that will have a high capacity to tolerate 
multi-metal contaminated and multi-stress environmental 
conditions sites and accumulate multi-metals at once. Further 
attention will be required to plant–microbe-based bioremediation 
strategies to identify the novel plant–microbe pairs that will have 
high metal removal efficiency along with creating a favorable 
environment to accommodate other microbial diversity for indirectly 
improving the soil health. Additionally, further research on the 
application of nanomaterials and biochar along with microbes 
to enhance bioremediation efficiency is needed.
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