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Abstract
Background  Existing staging approaches fall short in precisely forecasting the likelihood of recurrence and survival 
outcomes among patients undergoing surgery for early-stage breast cancer (EBC). Our study hypothesized that 
multivariate long non-coding RNA (lncRNA) expression profiles, when systematically integrated into a composite 
model, may synergistically refine postoperative risk categorization and enhance prognostic forecasting precision in 
this patient cohort.

Methods  For the discovery set, lncRNA expression profiling associated with breast cancer progression was 
discovered by analyzing the differential expression profiles in three paired primary breast cancer tumor tissues and 
liver metastases. We found 12 distinctially expressed lncRNAs. A total of 400 patients were consecutively recruited 
and randomized to either training group or validation group. We first confirmed the expression of these lncRNAs 
using qRT-PCR. Subsequently, employing the LASSO Cox regression model with five lncRNA features as covariates, 
we constructed a five-lncRNA signature. We then validated this signature in an independent cohort to assess its 
prognostic and predictive capabilities in disease-free survival (DFS) duration.

Results  We constructed a classifier using the LASSO model, incorporating five specific lncRNAs: CBR3-AS1, 
HNF4A-AS1, LINC00622, LINC00993 and LINC00342. Utilizing this tool, we successfully stratified patients into two 
distinct categories: high- and low-risk groups. Significant differences were observed in both DFS and overall survival 
(OS) between the two groups. Within the initial patient cohort, significant differences of 5-year DFS was observed 
across high- and low-risk group (61.1% vs. 92.2%, HR 6.3, 95% CI 3.5–11.6; P < 0.001). The 5-year DFS rate was 72.9% and 
85.4% for high- and low-risk group respectively in validation cohort (HR 2.6, 95% CI: 1.5–4.5; P = 0.001). The 5-lncRNA 
signature emerged as an independent prognostic indicator, demonstrating superior prognostic value compared to 
conventional clinicopathological risk factors.
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Introduction
Most of breast cancer patients are early diagnosed. How-
ever, recurrence and metastasis occur after surgery in 
about 20–30% of these EBC patients [1]. Conventional 
recurrence risk stratification in EBC primarily relies 
on clinicopathological parameters including advanced 
tumor stage, extensive nodal involvement, high histologi-
cal grade, along with biomarkers such as hormone recep-
tor negativity/HER2 positivity, and younger patient age 
[2–4]. Nevertheless, current risk stratification systems 
exhibit limited discriminatory capacity in precisely delin-
eating recurrence risk tiers, while failing to identify sub-
sets requiring therapeutic intensification due to inherent 
biological heterogeneity in EBC progression. Therefore, 
incorporating prognostic molecular biomarkers into the 
existing staging system would enhance the precision of 
risk assessment and support more tailored therapeutic 
strategies.

lncRNAs are essential for cancer progression, including 
growth, metastasis, and drug sensitivity [5, 6]. Integrat-
ing clinicopathological factors into a nomogram repre-
sents a highly promising strategy, with the potential to 
significantly influence clinical decision-making [7, 8]. 
Systematic characterization of lncRNA regulatory net-
works has been documented in breast oncology research, 
and examined their potential clinical relevance [9, 10]. 
The concept of lncRNA signatures has garnered grow-
ing interest, as they may serve as potential predictors 
and prognostic biomarkers [11, 12]. Thus, integration of 
clinicopathological factors and lncRNA signature into a 
predicting model would enhance the accuracy and speci-
ficity of the model. However, validation in clinical set-
tings is still needed for these biomarkers and have not yet 
been used in routine clinical practice.

When screening a wide range of biomarkers simulta-
neously using high-throughput RNA sequencing, the 
number of covariates often outnumbers the observations. 
Traditional multivariable analysis methods, such as Cox-
based analysis, have been widely used for building covari-
ate models in survival data. However, these traditional 
multi-variable analysis methods are not suitable for high-
dimensional datasets and particularly fail to handle sce-
narios with the low ratio of sample size to variables [13, 
14]. Alternatively, the selection operator method LASSO 
and least absolute shrinkage method was applied to over-
come this limitation [15, 16].

In this research endeavor, we constructed a multi-
lncRNA signature using the LASSO Cox regression 

approach for forecasting DFS and OS for EBC patients 
who had already received surgery. Patients assigned 
a low-risk score exhibit better DFS and OS outcomes 
relative to their high-risk counterparts. Based on the 
signature, we developed a nomogram integrating a 
multi-lncRNA profile with clinicopathological variables 
to predict patient outcomes. Prognostic utility of this 
combined lncRNA-clinical model underwent systematic 
appraisal in training and validation cohorts. We further 
evaluated the prognostic performance of the classifier 
relative to single lncRNAs and traditional clinicopatho-
logical factors.

Methods
Patient enrollment
Consecutive patients who were diagnosed with EBC and 
underwent breast surgery between January 1, 2019, and 
December 31, 2019, were recruited for the current cohort 
study. We collected the primary tissues of those patients 
prospectively.

Primary samples of breast cancer patients who met all 
the criteria below: (1) Female patients with a diagnosis of 
unilateral breast disease. (2) Histopathological verifica-
tion of invasive carcinoma. (3) Initial pathological diag-
nosed with ductal invasive breast cancer. (4) Patients 
without any evidence of distant metastasis at diagnosis. 
(5) Sufficient tissues conserved in RNA later and avail-
able for further research. The elimination criteria include: 
bilateral breast cancer, breast carcinoma in situ, and T4 
stage.

Discovery cohort
Using the RNA-seq technique, we revealed a highly 
diverse lncRNA expression profile in paired breast can-
cer tumor and liver metastasis tissues. We performed a 
significance analysis of RNA-seq data to identify differen-
tially expressed lncRNAs between primary cancer tissues 
and their paired liver metastases. When the expression 
level of LncRNAs changes by at least fivefold, we clas-
sify them as differentially expressed, with significance 
determined by a P-value less than 0.05. Then use average 
linkage method and non central Pearson correlation coef-
ficient for hierarchical clustering.

Model development and validation cohorts
Building upon RNA-seq data, we further scrutinized 
breast cancer associated lncRNA expression levels via 
qRT-PCR to analyze in both training and validation 

Conclusions  The integrated model combining 5-lncRNA molecular signature with clinical parameters demonstrates 
significant prognostic stratification capacity and therapeutic decision-making value in EBC management. It may help 
patients consult and personalize disease management.
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cohort. As a result, a cohort of 400 consecutive breast 
cancer specimens were included. The Cohort was divided 
into two equal groups: 200 participants assigned to the 
training cohort, and another 200 participants assigned 
to the validation cohort. DFS was defined as the duri-
tion from the time of surgery to either the date of tumor 
recurrence or metastasis. For patients who did not expe-
rience any relapse during follow-up period, DFS was cen-
sored at the last follow-up time or time of death from 
other causes, respectively. We defined OS as the durition 
from the time of surgery until the time of death.

Fresh tissue specimens from patients were obtained 
during surgical procedures and preserved in RNAlater 
at -20℃. Extracting RNA using TRIzol® reagent. Vazyme 
Reverse Transcriptase enzyme was used to synthe-
size cDNA. Vazyme SYBR qPCR Master Mix was used 
to quantitate relative RNA levels. The qRT-PCR assay 
for each lncRNA was performed in triplicate for each 
patient. The sequences of specific primers for the lncRNA 
used can be found in Supplementary Table 1.

Statistical analysis
SPSS (v26; IBM Corp., USA) and R software (v3.5.2; R 
Foundation) were used for data analyses. Categorical 
variables statistics using χ2 and Fisher’s exact tests. Sur-
vival outcomes (DFS/OS) correlations were analyzed via 
Kaplan-Meier survival curves with log-rank comparisons. 
Multivariable analysis utilized Cox proportional hazards 
models. Optimal lncRNA expression cutoffs were deter-
mined through X-tile plots by maximizing DFS associa-
tion. X-tile v3.6.1 (Yale School of Medicine) was used to 
generate X-tile plots.

LASSO Cox regression provides a regularization 
approach in high-dimensional data settings [15]. To 
select the top list relevant prognostic markers from the 
progression-associated lncRNAs identified in the dis-
covery cohort, LASSO Cox regression was applied. A 
multi-lncRNA classifier was subsequently developed in 
the training set to predict DFS in patients included. The 
“glmnet” package in R software was used for LASSO 
analysis.

A nomogram was constructed with lncRNA signature 
and clinicopathological factors to predict prognosis of 
EBC patients. Calibration curves were constructed to 
evaluate concordance between nomogram-predicted 
probabilities and observed clinical outcomes. The 45° 
reference line indicates perfect model calibration (pre-
dicted-actual outcome exact alignment). All analyses 
were implemented using the rms package (Regression 
Modeling Strategies) in the R statistical environment 
(v4.2.1).

Time-dependent ROC analysis was used to assess the 
accuracy of each feature in predicting prognosis, includ-
ing the multi-lncRNA classifier, and the nomogram [17]. 
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We employed the survivalROC package in R platform to 
compute the area under ROC curve (AUC) for assessing 
the discrimination performance of the prediction model.

Results
Clinicopathological features of patients
A series of 200 patients of early-stage breast cancer were 
recruited. Patients were randomly divided into distinct 
training and validation groups described in the method-
ology section. The presenting clinical and pathological 
characteristics of participants were well balanced in each 
cohort inluding age, stage, molecularly defined subgroup, 
grade surgery type and lymph vascular invasion, which 
are summarized in Table 1. The study design is shown in 
Fig. 1A.

Construction of a tumor tissue LncRNA signature
In the discovery cohort, through hypothesis-free tran-
scriptome profiling, we uncovered progression-relevant 
lncRNAs of breast cancer. RNA-seq was performed to 
identify lncRNAs differently expressed in 3 paired breast 
cancer primary tumor and liver metastasis tissues. From 
the pool of lncRNA candidates detected by RNA-seq, we 
identified 12 that were differentially expressed (P < 0.05). 
From among these, 6 lncRNAs were upregulated (CBR3-
AS1, HNF4A-AS1, LINC02499, LINC00261, LINC00844 
and LINC01554), and 6 lncRNAs (LINC00993, 
LINC01578, LINC00342, LINC02381, LBX2-AS1 and 
LINC00622) were downregulated in the liver metastases 
tissues (Fig. 1C). Hierarchical clustering analysis, guided 
by differentially expressed lncRNAs, successfully segre-
gated primary tumor and metastatic liver tissue samples 
into two separate clusters (Fig. 1B).

Furthermore, we observed collinearity among those 
lncRNAs we mentioned above, which might distort the 
outcomes of ordinary Cox regression analysis. To address 
this, we utilized a LASSO Cox regression mothed to filter 
lncRNAs for predicting PFS in patients. The model incor-
porated 200 bootstrap replicates and relied on penalized 
maximum likelihood (Fig.  1D). We computed the regu-
larization path over a range of lambda values, resulting in 
the selection of five lncRNAs (CBR3-AS1, HNF4A-AS1, 
LINC00622, LINC00993, and LINC00342) from the orig-
inal 12. These findings were utilized in order to establish 
the optimal weighting coefficients that would enable the 
construction of a prognostic signature (Fig. 1E). Building 
upon the RNA quantification data of these five lncRNAs, 
we derived a formula to calculate prognostic risk score 
(RS)), were RS = (2.286 × expression of HNF4A-AS1) 
− (0.690 × expression of LINC00622) + (2.813 × expres-
sion of CBR3-AS1) − (3.329 × expression of LINC00993) 
− (0.136 × expression of LINC00342). Expression of 
each gene was calculated using the formular: expression 
value = 2– log10 (Δ Ct).

Evaluation of the RS formula
Using the RS formula, the training cohort patients were 
categorized into high- and low-risk subgroups. X-tile 
plots calculated the optimal cutoff score was 0.91 [18] 
(Supplementary Fig. 1A), was used based on its correla-
tion with PFS. Clinical-pathological parameters showed 
adequate equilibrium between the study groups, as 
indicated by non-significant statistical differences (all 
P > 0.05). (Table 1).

Between patients in training cohort with high RS and 
low RS, the 5-year DFS was 61.1% vs. 92.2% (HR 6.329, 
95% confidence interval (CI) 3.463–11.573; P < 0.001) 
(Fig. 2A), and 5-year OS was 88.9% vs. 99.2% (HR 3.315, 
95% CI 1.550-11.573; P = 0.002) (Fig. 2B).

For additional validation, the effectiveness of these 
five lncRNA-based signatures was examined. The for-
mula and cutoff setting were validated in the valida-
tion cohort. In the validation cohort, low score patients 
exhibited better prognosis outcomes than higher score 
patients (Fig. 2C, D). The 5-year DFS was 72.9% for high-
score patients compared to 85.4% for low-score patients 
(HR 2.565, 95% CI 1.448–4.534; P = 0.0012) (Fig. 2C). The 
5-year OS was 87.6% for high-score patients versus 94.2% 
for low-score patients (HR 2.070, 95% CI 0.913–4.696; 
P = 0.0816) (Fig. 2D).

Univariable and multivariable regression analyses in 
validation sets
Single-factor test revealed that each single lncRNA was 
a prognostic factor for EBC patients (Table 2). In multi-
variable analyses incorporating clinicopathological con-
founders, the 5-lncRNA signature retained independent 
prognostic significance across the full cohort (n = 400; 
HR = 3.584, 95% CI 2.227–5.769, P < 0.001). (Table  2). 
Furthermore, pN stage was an independent prognostic 
factor (Table 2).

Stratified COX analysis based on individual clinical and 
pathological features was performed when 5-lncRNA 
signature was considered as a continuous variable. The 
signature continued to be a significant model for predict-
ing DFS, independent of clinicopathological variables, 
including age, ER, PR and HER2 status. (Fig. 2E).

Nomogram combined LncRNAs signature and clinical-
related factors
To develop a quantitative method for predicting cancer 
progression probability, a nomogram were constructed. 
This nomogram included both clinical pathological fac-
tors and the 5-lncRNA signature (Fig.  3A). Calibration 
plots demonstrated the nomogram did well when com-
pare with an ideal model (Fig. 3B).

AUC curve was calculated to evaluate the 5-lncRNA 
signature cumulative impact on risk prediction for both 
of the training and validation cohorts. DFS predictive 
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Fig. 1  Establishing a molecular signature comprising five long non-coding RNAs (A) Procedures diagram for building predictive signature and validation 
in early-stage breast cancer patients. (B) Hierarchical clustering investigation demonstrated the collinearity of three paired primary breast cancer tissues 
and liver metastasis tissue. A correlation matrix heatmap was generated for each tissue type, with each cell in the matrix depicted Pearson correlation 
coefficient of the corresponding row and column tissues. The color gradient in the legend corresponds to the range of correlation coefficients. (C) Hier-
archical clustering of 12 lncRNAs expression level in three paired primary breast cancer tissues (in yellow) and liver metastasis tissues (in grey). In this rep-
resentation, rows correspond to distinct lncRNA entries while columns reflect individual biological samples. Relative expression intensities are visualized 
through pseudocolor gradients, scaled from − 1.5 (lowest) to 1.5 (highest). (D) Determine the optimal parameter selection for LASSO regression through 
cross validation. Select the optimal value based on the minimum criterion and 1-SE, two dotted vertivcal lines were drawn. (E) LASSO-based coefficient 
profiles of the 12 EBC-associated lncRNAs in the discovery cohort
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Fig. 2  Survival outcomes were analyzed using the five-lncRNA classifier, with stratification according to clinicopathological risk factors. (A-B) Kaplan-
Meier analysis of DFS and OS between high- and low- risk for EBC patients in training cohort (n = 200). (C-D) Kaplan-Meier analysis of DFS and OS between 
high- and low- risk EBC patients in validation cohort (n = 200). HR were calculated through Cox proportional hazards regression, with P-values determined 
by two-sided log-rank testing in combined training and validation cohorts. The 95% CI associated with HR estimates are graphically represented using 
square markers with error bars. (E) The forest plot illustrates DFS performance of the predictive risk score with stratification based on clinicopathological 
features, encompassing all 400 patients from training and validation cohorts. Two-sided log-rank test was used, with HR and 95% CI depicted through 
square markers and error bars
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performance metrics attained an AUC value of 0.72 
(95% CI: 0.63–0.79) in the training cohort via ROC curve 
analysis. (Fig. 4A). Similarly, the AUC for DFS in valida-
tion cohort was 0.71 (95% CI 0.62–0.78) (Fig. 4C). These 
results suggest that the signature is a stable predictor. The 
accuracy of the 5-lncRNA signature in predicting prog-
nosis was further compared to that of each individual 
lncRNA. The combined signature demonstrated a higher 
AUC than any of the single lncRNAs. (Fig. 4A, C).

The construction of prognostic nomogram combin-
ing both 5-lncRNA signature and clinical factors further 
improved the sensitivity and specificity of model. The 
AUC for DFS of nomogram were 0.79 (95% CI 0.71–0.87) 
in training cohort (Fig.  4A), 0.81 (95% CI 0.75–0.87) in 
validation cohort (Fig. 4C). The AUC of nomogram was 
significantly higher than 5-lncRNA signature (Fig. 4A, C). 

Compared to individual clinicopathological risk factors, 
the nomogram exhibited significantly higher specificity 
and sensitivity (P < 0.05) (Fig. 4B, D).

Discussion
To optimize clinical decision-making and enhance prog-
nosis for EBC patients, a novel molecular-based prog-
nostic model incorporating both molecular and clinical 
data has been established. This comprehensive approach 
enables accurate prediction of DFS and OS post-surgery 
in EBC patients. The model successfully distinguishes 
between high- and low-risk patients. The results revealed 
significant disparities in DFS and OS for these patients.

Furthermore, a LASSO Cox regression model was 
developed to integrate multiple lncRNAs within a sin-
gle prognostic predicting model, demonstrating greater 

Table 2  Cox regression analysis of 5-lncRNA signature and clinicopathological characteristics with DFS and OS
Univariate analysis Meltivariate analysis
HR 95%CI P value HR 95%CI P value

Disease-free survival
CBR3-AS1 < 0.001 ——
HNF4A-AS1 0.01 ——
LINC00622 0.035 ——
LINC00993 < 0.001 ——
LINC00342 0.043 ——
Signature (high vs. low) 3.757 2.432–5.806 < 0.001 3.584 2.227–5.769 < 0.001
Age 0.989 0.972–1.007 0.239 0.995 0.975–1.016 0.662
ER status (positive vs. negative) 0.465 0.269–0.804 0.006 1.091 0.603–1.974 0.774
PR status (positive vs. negative) 0.547 0.307–0.974 0.04 0.881 0.479–1.623 0.685
HER2 status (positive vs. negative) 1.300 0.722–2.342 0.381 1.290 0.800-2.078 0.296
Grade 1.607 1.081–2.389 0.019 1.299 0.824–2.046 0.260
pT stage 1.743 1.213–2.505 0.003 1.227 0.809–1.816 0.336
pN stage 1.638 1.384–1.938 < 0.001 1.630 1.290–2.060 < 0.001
Stage 2.224 1.626–3.040 < 0.001 ——
LVI (yes vs. no) 1.575 1.048–2.367 0.028 0.802 0.466–1.380 0.426
Overall survival
CBR3-AS1 < 0.001 ——
HNF4A-AS1 < 0.001 ——
LINC00622 0.027 ——
LINC00993 0.043 ——
LINC00342 0.356 ——
Signature (high vs. low) 2.437 1.398–4.249 0.002 1.912 1.049–3.485 0.034
Age 1.017 0.995–1.041 0.156 1.024 0.997–1.052 0.077
ER status (positive vs. negative) 0.416 0.241–0.720 0.002 0.515 0.236–1.124 0.095
PR status (positive vs. negative) 0.531 0.298–0.945 0.031 1.000 0.448–2.233 1.000
HER2 status (positive vs. negative) 1.408 0.781–2.537 0.255 1.037 0.548–1.962 0.911
Grade 2.410 1.408–4.123 0.001 1.384 0.784–2.559 0.301
pT stage 2.045 1.251–3.344 0.004 1.492 0.818–2.720 0.192
pN stage 1.804 1.439–2.263 < 0.001 1.838 1.360–2.484 < 0.001
Stage 2.591 1.681–3.993 < 0.001 ——
LVI (yes vs. no) 2.004 1.160–3.464 0.013 0.868 0.421–1.791 0.702
ER, estrogen recepter; PR, progestrone recepter; Her2, epidermal growth factor receptor-2; BCS, breast conserving surgery; LVI, lymphovascular invasion, HR hazard 
ratio, CI confidence interval

P-values were calculated with the two-sided log-rank test
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Fig. 3  Construction of nomogram including 5-lncRNAs signature and clinicopathological features. (A) Constructed a nomogram integrated 5-lncRNAs 
signature as well as clinical pathological factors to predict 3-year and 5-year DFS for EBC patients, including the 5-lncRNAs-based classifier, ER status, PR 
status, HER2 status, pT stage, pN stage and lymph-vascular invasion (LVI). (B) Plots illustrate the calibration curve of the nomogram by demonstrating 
agreement between the predicted and the observed 3-year and 5-year prognostic outcomes. The plot illustrates model performance, where the 45-de-
gree line signifies ideal predictive accuracy
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Fig. 4  Receiver operating characteristic (ROC) curves and area under curve (AUC) values. (A) ROC curves of prognostic accuracy in training cohort by 
the nomogram, 5-lncRNA signature and five single lncRNAs. (B) ROC curves of prognostic accuracy in training cohort by the nomogram and ER, PR, HER2 
status (positive vs. negative), pT stage (T1-3), pN stage (N0-3) and LVI (yes vs. no). (C) ROC curves of prognostic accuracy in validation cohort by the nomo-
gram, 5-lncRNA signature and five single lncRNAs. (D) ROC curves of prognostic accuracy in validation cohort by the nomogram and ER, PR, HER2 status 
(positive vs. negative), pT stage (T1-3), pN stage (N0-3) and LVI (yes vs. no). The AUC was computed, with its estimated 95% CI via Bootstrap resampling. P 
values were determined using two-sided Bootstrap tests
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accuracy in forecasting early breast cancer prognosis 
compared to individual lncRNA analysis. Using mul-
tivariable analysis, we demonstrated the 5-lncRNAs 
classifier is an independent prognostic factor. When par-
titioned according to clinicopathological characteristics, 
the 5-lncRNAs signature remains a strong prognostic 
prodicting model.

Earlier studies have detected multiple lncRNAs that 
have association witn the progress of breast cancer [19, 
20]. For example, MALAT1 [21], HOTAIR [22] and 
LINC-A [23] demonstrate established clinical relevance, 
correlating with survival trajectories and treatment 
responsiveness across breast cancer cohorts. The regula-
tion network of lncRNAs is complicated in breast cancer 
with large number of upregulated and down regulated 
lncRNAs. Thus, use of multi-lncRNAs model may further 
improve the clinical value of lncRNAs.

In our study, we identified and validated five lncRNAs: 
CBR3-AS1, HNF4A-AS1, LINC00622, LINC00993, and 
LINC00342. These lncRNAs are critical for the prog-
nosis of patients with EBC. The biological functions 
of these five lncRNAs have been reported in previous 
studies. CBR3-AS1 was identified accelerate the malig-
nant progression of osteosarcoma, lung cancer and ges-
tational choriocarcinoma [24–27]. Research has found 
that HNF4A-AS1 can promote a series of processes in 
neuroblastoma cells, including lactate production, gly-
colysis, glucose uptake, and ATP levels [28]. It might be a 
therapeutic target for the progression of aerobic glycoly-
sis and neurobldownoma [29]. Additionally, HNF4A-AS1 
has been shown to inhibit the hepatocellular carcinoma 
progression by facillitate the PCBP2 degradation through 
ubiquitin [30]. A previous study found that adipose-
derived stem cell-derived extracellular vesicles carried 
LINC00622, which inhibited neuroblastoma cell pro-
liferation, invasion, and migration [31]. Our study ini-
tially reported the prognostic value of LINC00622 and 
LINC00342 in breast cancer. LINC00993 was found to 
exhibit tumor-suppressive functionality in triple-negative 
breast cancer, as evidenced by its inhibition of malignant 
proliferation and metastasis [32]. This conclusion is simi-
lar as we demonstrated in this study, that we showed a 
high expression of LINC00993 is protective factor in 
breast cancer. LINC00342 was extensively explored in 
lung cancer [33], colon adenocarcinoma [34] and oral 
cancer [35].

Meanwhile, we constructed a nomogram includ-
ing both 5-lncRNAs signature and clinicopathologi-
cal risk factors. This nomogram can predict survival of 
EBC patients, which is better than 5-lncRNAs signature 
and other clinicopathological risk factors. This model 
enables precise stratification of patients with differential 
responsiveness to adjuvant therapy, suggesting current 

therapeutic regimens may require intensification for the 
identified high-risk molecular subset.

This study has same limitations. The absence of an 
external validation cohort. The clinical characteris-
tics may differ across hospitals and provinces, poten-
tially introducing selection bias. Further validations 
are required for further confirming the study’s findings 
through external cohorts or prospective clinical research.

In conclusion, The five prognostic tools based on 
lncRNA and the clinical pathological column chart 
of lncRNA can accurately stratify EBC patients into 
low-risk and high-risk categories, with significant dif-
ferences in prognosis. The findings highlight the poten-
tial of lncRNAs in predicting recurrence risk, offering 
valuable insights for therapeutic strategies and patient 
management.

The nomogram modeling has the characteristics of 
intuitiveness and ease of use, which can display prognos-
tic value independent of traditional clinical pathological 
features in multivariate analysis. It can enhance the clini-
cal relevance of the model and facilitate the screening 
of patients with different risks, which is of great signifi-
cance for personalized treatment and risk management 
[36–37].With these tools, we can better classify patients 
for personalized therapeutic regimen selection, so as to 
avoid overtreatment and insufficient treatment.
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