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Prognostic value of a IncRNA signature
in early-stage invasive breast cancer patients
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Abstract

Background Existing staging approaches fall short in precisely forecasting the likelihood of recurrence and survival
outcomes among patients undergoing surgery for early-stage breast cancer (EBC). Our study hypothesized that
multivariate long non-coding RNA (INncRNA) expression profiles, when systematically integrated into a composite
model, may synergistically refine postoperative risk categorization and enhance prognostic forecasting precision in
this patient cohort.

Methods For the discovery set, INCRNA expression profiling associated with breast cancer progression was
discovered by analyzing the differential expression profiles in three paired primary breast cancer tumor tissues and
liver metastases. We found 12 distinctially expressed IncRNAs. A total of 400 patients were consecutively recruited
and randomized to either training group or validation group. We first confirmed the expression of these INCRNAs
using gRT-PCR. Subsequently, employing the LASSO Cox regression model with five INcRNA features as covariates,
we constructed a five-IncRNA signature. We then validated this signature in an independent cohort to assess its
prognostic and predictive capabilities in disease-free survival (DFS) duration.

Results We constructed a classifier using the LASSO model, incorporating five specific IncRNAs: CBR3-AS1,
HNF4A-AS1, LINC00622, LINC00993 and LINC00342. Utilizing this tool, we successfully stratified patients into two
distinct categories: high- and low-risk groups. Significant differences were observed in both DFS and overall survival
(OS) between the two groups. Within the initial patient cohort, significant differences of 5-year DFS was observed
across high- and low-risk group (61.1% vs. 92.2%, HR 6.3, 95% Cl 3.5-11.6; P<0.001). The 5-year DFS rate was 72.9% and
85.4% for high- and low-risk group respectively in validation cohort (HR 2.6, 95% Cl: 1.5-4.5; P=0.001). The 5-IncRNA
signature emerged as an independent prognostic indicator, demonstrating superior prognostic value compared to
conventional clinicopathological risk factors.
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Conclusions The integrated model combining 5-INncRNA molecular signature with clinical parameters demonstrates
significant prognostic stratification capacity and therapeutic decision-making value in EBC management. It may help

patients consult and personalize disease management.
Keywords Breast cancer, LncRNAs signature, Prognosis

Introduction

Most of breast cancer patients are early diagnosed. How-
ever, recurrence and metastasis occur after surgery in
about 20-30% of these EBC patients [1]. Conventional
recurrence risk stratification in EBC primarily relies
on clinicopathological parameters including advanced
tumor stage, extensive nodal involvement, high histologi-
cal grade, along with biomarkers such as hormone recep-
tor negativity/ HER2 positivity, and younger patient age
[2—-4]. Nevertheless, current risk stratification systems
exhibit limited discriminatory capacity in precisely delin-
eating recurrence risk tiers, while failing to identify sub-
sets requiring therapeutic intensification due to inherent
biological heterogeneity in EBC progression. Therefore,
incorporating prognostic molecular biomarkers into the
existing staging system would enhance the precision of
risk assessment and support more tailored therapeutic
strategies.

IncRNAs are essential for cancer progression, including
growth, metastasis, and drug sensitivity [5, 6]. Integrat-
ing clinicopathological factors into a nomogram repre-
sents a highly promising strategy, with the potential to
significantly influence clinical decision-making [7, 8].
Systematic characterization of IncRNA regulatory net-
works has been documented in breast oncology research,
and examined their potential clinical relevance [9, 10].
The concept of IncRNA signatures has garnered grow-
ing interest, as they may serve as potential predictors
and prognostic biomarkers [11, 12]. Thus, integration of
clinicopathological factors and IncRNA signature into a
predicting model would enhance the accuracy and speci-
ficity of the model. However, validation in clinical set-
tings is still needed for these biomarkers and have not yet
been used in routine clinical practice.

When screening a wide range of biomarkers simulta-
neously using high-throughput RNA sequencing, the
number of covariates often outnumbers the observations.
Traditional multivariable analysis methods, such as Cox-
based analysis, have been widely used for building covari-
ate models in survival data. However, these traditional
multi-variable analysis methods are not suitable for high-
dimensional datasets and particularly fail to handle sce-
narios with the low ratio of sample size to variables [13,
14]. Alternatively, the selection operator method LASSO
and least absolute shrinkage method was applied to over-
come this limitation [15, 16].

In this research endeavor, we constructed a multi-
IncRNA signature using the LASSO Cox regression

approach for forecasting DFS and OS for EBC patients
who had already received surgery. Patients assigned
a low-risk score exhibit better DFS and OS outcomes
relative to their high-risk counterparts. Based on the
signature, we developed a nomogram integrating a
multi-IncRNA profile with clinicopathological variables
to predict patient outcomes. Prognostic utility of this
combined IncRNA-clinical model underwent systematic
appraisal in training and validation cohorts. We further
evaluated the prognostic performance of the classifier
relative to single IncRNAs and traditional clinicopatho-
logical factors.

Methods

Patient enrollment

Consecutive patients who were diagnosed with EBC and
underwent breast surgery between January 1, 2019, and
December 31, 2019, were recruited for the current cohort
study. We collected the primary tissues of those patients
prospectively.

Primary samples of breast cancer patients who met all
the criteria below: (1) Female patients with a diagnosis of
unilateral breast disease. (2) Histopathological verifica-
tion of invasive carcinoma. (3) Initial pathological diag-
nosed with ductal invasive breast cancer. (4) Patients
without any evidence of distant metastasis at diagnosis.
(5) Sufficient tissues conserved in RNA later and avail-
able for further research. The elimination criteria include:
bilateral breast cancer, breast carcinoma in situ, and T4
stage.

Discovery cohort

Using the RNA-seq technique, we revealed a highly
diverse IncRNA expression profile in paired breast can-
cer tumor and liver metastasis tissues. We performed a
significance analysis of RNA-seq data to identify differen-
tially expressed IncRNAs between primary cancer tissues
and their paired liver metastases. When the expression
level of LncRNAs changes by at least fivefold, we clas-
sify them as differentially expressed, with significance
determined by a P-value less than 0.05. Then use average
linkage method and non central Pearson correlation coef-
ficient for hierarchical clustering.

Model development and validation cohorts

Building upon RNA-seq data, we further scrutinized
breast cancer associated IncRNA expression levels via
qRT-PCR to analyze in both training and validation
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cohort. As a result, a cohort of 400 consecutive breast
cancer specimens were included. The Cohort was divided
into two equal groups: 200 participants assigned to the
training cohort, and another 200 participants assigned
to the validation cohort. DFS was defined as the duri-
tion from the time of surgery to either the date of tumor
recurrence or metastasis. For patients who did not expe-
rience any relapse during follow-up period, DFS was cen-
sored at the last follow-up time or time of death from
other causes, respectively. We defined OS as the durition
from the time of surgery until the time of death.

Fresh tissue specimens from patients were obtained
during surgical procedures and preserved in RNAlater
at -20°C. Extracting RNA using TRIzol® reagent. Vazyme
Reverse Transcriptase enzyme was used to synthe-
size cDNA. Vazyme SYBR qPCR Master Mix was used
to quantitate relative RNA levels. The qRT-PCR assay
for each IncRNA was performed in triplicate for each
patient. The sequences of specific primers for the IncRNA
used can be found in Supplementary Table 1.

P value (Training vs. Validation)

0.863
0.137

P value (high vs. low)

61.17 0.633

1262 0.121
34.95
3.88

87.38

=200)
low score (n
103)
3
90
36

Statistical analysis

SPSS (v26; IBM Corp., USA) and R software (v3.5.2; R
Foundation) were used for data analyses. Categorical
variables statistics using x> and Fisher’s exact tests. Sur-
vival outcomes (DFS/OS) correlations were analyzed via
Kaplan-Meier survival curves with log-rank comparisons.
Multivariable analysis utilized Cox proportional hazards
models. Optimal IncRNA expression cutoffs were deter-
mined through X-tile plots by maximizing DFS associa-
tion. X-tile v3.6.1 (Yale School of Medicine) was used to
generate X-tile plots.

LASSO Cox regression provides a regularization
approach in high-dimensional data settings [15]. To
select the top list relevant prognostic markers from the
progression-associated IncRNAs identified in the dis-
covery cohort, LASSO Cox regression was applied. A
multi-IncRNA classifier was subsequently developed in
the training set to predict DES in patients included. The
“glmnet” package in R software was used for LASSO
analysis.

A nomogram was constructed with IncRNA signature
and clinicopathological factors to predict prognosis of
EBC patients. Calibration curves were constructed to
evaluate concordance between nomogram-predicted
probabilities and observed clinical outcomes. The 45°
reference line indicates perfect model calibration (pre-
dicted-actual outcome exact alignment). All analyses
were implemented using the rms package (Regression
Modeling Strategies) in the R statistical environment
(v4.2.1).

Time-dependent ROC analysis was used to assess the
accuracy of each feature in predicting prognosis, includ-
ing the multi-IncRNA classifier, and the nomogram [17].

5464 63

6.19
93.81
40.21
515

high score (n
97)

Internal validation cohort (n
all(n=
200) =
19 950 6
81 9050 91
116 5800 53
3750 39
4.50

75
9

P value (high vs. low)
0.789

51.56 0.966

8.59
9141
46.09
234

low score (n

128)
17

4722 59

5000 66
278

=200)
high score (n
=72)
7 9.72
182 91.00 65 90.28
4650 34

2.50
ER, estrogen recepter; PR, progestrone recepter; Her2, epidermal growth factor receptor-2; BCS, breast conserving surgery; LVI, lymphovascular invasion

Training cohort (n
all(n=

200)

18 9.00

102 51.00 36

93
5
P value from Chi-squared test or Fisher’s exact test for nominal categories

Table 1 (continued)
BCS

Mastectomy

LVI

Negtive

Positive

Unknow

*Fisher’s exact test
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We employed the survivalROC package in R platform to
compute the area under ROC curve (AUC) for assessing
the discrimination performance of the prediction model.

Results

Clinicopathological features of patients

A series of 200 patients of early-stage breast cancer were
recruited. Patients were randomly divided into distinct
training and validation groups described in the method-
ology section. The presenting clinical and pathological
characteristics of participants were well balanced in each
cohort inluding age, stage, molecularly defined subgroup,
grade surgery type and lymph vascular invasion, which
are summarized in Table 1. The study design is shown in
Fig. 1A.

Construction of a tumor tissue LncRNA signature

In the discovery cohort, through hypothesis-free tran-
scriptome profiling, we uncovered progression-relevant
IncRNAs of breast cancer. RNA-seq was performed to
identify IncRNAs differently expressed in 3 paired breast
cancer primary tumor and liver metastasis tissues. From
the pool of IncRNA candidates detected by RNA-seq, we
identified 12 that were differentially expressed (P<0.05).
From among these, 6 IncRNAs were upregulated (CBR3-
AS1, HNF4A-AS1, LINC02499, LINC00261, LINC00844
and LINCO01554), and 6 IncRNAs (LINC00993,
LINCO01578, LINC00342, LINC02381, LBX2-AS1 and
LINCO00622) were downregulated in the liver metastases
tissues (Fig. 1C). Hierarchical clustering analysis, guided
by differentially expressed IncRNAs, successfully segre-
gated primary tumor and metastatic liver tissue samples
into two separate clusters (Fig. 1B).

Furthermore, we observed collinearity among those
IncRNAs we mentioned above, which might distort the
outcomes of ordinary Cox regression analysis. To address
this, we utilized a LASSO Cox regression mothed to filter
IncRNAs for predicting PES in patients. The model incor-
porated 200 bootstrap replicates and relied on penalized
maximum likelihood (Fig. 1D). We computed the regu-
larization path over a range of lambda values, resulting in
the selection of five IncRNAs (CBR3-AS1, HNF4A-ASI,
LINC00622, LINC00993, and LINC00342) from the orig-
inal 12. These findings were utilized in order to establish
the optimal weighting coefficients that would enable the
construction of a prognostic signature (Fig. 1E). Building
upon the RNA quantification data of these five IncRNAs,
we derived a formula to calculate prognostic risk score
(RS)), were RS = (2.286 x expression of HNF4A-AS1)
- (0.690 x expression of LINC00622) + (2.813 x expres-
sion of CBR3-AS1) - (3.329 x expression of LINC00993)
- (0.136 x expression of LINC00342). Expression of
each gene was calculated using the formular: expression
value =2- log,, (A Ct).
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Evaluation of the RS formula

Using the RS formula, the training cohort patients were
categorized into high- and low-risk subgroups. X-tile
plots calculated the optimal cutoff score was 0.91 [18]
(Supplementary Fig. 1A), was used based on its correla-
tion with PFS. Clinical-pathological parameters showed
adequate equilibrium between the study groups, as
indicated by non-significant statistical differences (all
P>0.05). (Table 1).

Between patients in training cohort with high RS and
low RS, the 5-year DFS was 61.1% vs. 92.2% (HR 6.329,
95% confidence interval (CI) 3.463-11.573; P<0.001)
(Fig. 2A), and 5-year OS was 88.9% vs. 99.2% (HR 3.315,
95% CI 1.550-11.573; P=0.002) (Fig. 2B).

For additional validation, the effectiveness of these
five IncRNA-based signatures was examined. The for-
mula and cutoff setting were validated in the valida-
tion cohort. In the validation cohort, low score patients
exhibited better prognosis outcomes than higher score
patients (Fig. 2C, D). The 5-year DFS was 72.9% for high-
score patients compared to 85.4% for low-score patients
(HR 2.565, 95% CI 1.448-4.534; P=0.0012) (Fig. 2C). The
5-year OS was 87.6% for high-score patients versus 94.2%
for low-score patients (HR 2.070, 95% CI 0.913—-4.696;
P=0.0816) (Fig. 2D).

Univariable and multivariable regression analyses in
validation sets

Single-factor test revealed that each single IncRNA was
a prognostic factor for EBC patients (Table 2). In multi-
variable analyses incorporating clinicopathological con-
founders, the 5-IncRNA signature retained independent
prognostic significance across the full cohort (n=400;
HR=3.584, 95% CI 2.227-5.769, P<0.001). (Table 2).
Furthermore, pN stage was an independent prognostic
factor (Table 2).

Stratified COX analysis based on individual clinical and
pathological features was performed when 5-IncRNA
signature was considered as a continuous variable. The
signature continued to be a significant model for predict-
ing DFS, independent of clinicopathological variables,
including age, ER, PR and HER? status. (Fig. 2E).

Nomogram combined LncRNAs signature and clinical-
related factors
To develop a quantitative method for predicting cancer
progression probability, a nomogram were constructed.
This nomogram included both clinical pathological fac-
tors and the 5-IncRNA signature (Fig. 3A). Calibration
plots demonstrated the nomogram did well when com-
pare with an ideal model (Fig. 3B).

AUC curve was calculated to evaluate the 5-IncRNA
signature cumulative impact on risk prediction for both
of the training and validation cohorts. DFS predictive
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Fig.1 Establishing a molecular signature comprising five long non-coding RNAs (A) Procedures diagram for building predictive signature and validation
in early-stage breast cancer patients. (B) Hierarchical clustering investigation demonstrated the collinearity of three paired primary breast cancer tissues
and liver metastasis tissue. A correlation matrix heatmap was generated for each tissue type, with each cell in the matrix depicted Pearson correlation
coefficient of the corresponding row and column tissues. The color gradient in the legend corresponds to the range of correlation coefficients. (C) Hier-
archical clustering of 12 IncRNAs expression level in three paired primary breast cancer tissues (in yellow) and liver metastasis tissues (in grey). In this rep-
resentation, rows correspond to distinct INcRNA entries while columns reflect individual biological samples. Relative expression intensities are visualized
through pseudocolor gradients, scaled from — 1.5 (lowest) to 1.5 (highest). (D) Determine the optimal parameter selection for LASSO regression through
cross validation. Select the optimal value based on the minimum criterion and 1-SE, two dotted vertivcal lines were drawn. (E) LASSO-based coefficient
profiles of the 12 EBC-associated IncRNAs in the discovery cohort
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Fig. 2 Survival outcomes were analyzed using the five-IncRNA classifier, with stratification according to clinicopathological risk factors. (A-B) Kaplan-
Meier analysis of DFS and OS between high- and low- risk for EBC patients in training cohort (n =200). (C-D) Kaplan-Meier analysis of DFS and OS between
high-and low- risk EBC patients in validation cohort (n=200). HR were calculated through Cox proportional hazards regression, with P-values determined
by two-sided log-rank testing in combined training and validation cohorts. The 95% Cl associated with HR estimates are graphically represented using
square markers with error bars. (E) The forest plot illustrates DFS performance of the predictive risk score with stratification based on clinicopathological
features, encompassing all 400 patients from training and validation cohorts. Two-sided log-rank test was used, with HR and 95% Cl depicted through

square markers and error bars
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Table 2 Cox regression analysis of 5-IncRNA signature and clinicopathological characteristics with DFS and OS

Univariate analysis Meltivariate analysis

HR 95%Cl Pvalue HR 95%Cl Pvalue
Disease-free survival
CBR3-AST1 <0.001 _
HNF4A-AS1 0.01 _
LINC00622 0.035 _
LINC00993 <0.001 _
LINC00342 0.043 _
Signature (high vs. low) 3.757 2.432-5.806 <0.001 3.584 2.227-5.769 <0.001
Age 0.989 0.972-1.007 0.239 0.995 0.975-1.016 0.662
ER status (positive vs. negative) 0.465 0.269-0.804 0.006 1.091 0.603-1.974 0.774
PR status (positive vs. negative) 0.547 0.307-0.974 0.04 0.881 0479-1.623 0.685
HER?2 status (positive vs. negative) 1.300 0.722-2.342 0.381 1.290 0.800-2.078 0.296
Grade 1.607 1.081-2.389 0.019 1.299 0.824-2.046 0.260
pTl stage 1.743 1.213-2.505 0.003 1.227 0.809-1.816 0336
pN stage 1.638 1.384-1.938 <0.001 1.630 1.290-2.060 <0.001
Stage 2224 1.626-3.040 <0.001 —_
LVI (yes vs. no) 1.575 1.048-2.367 0.028 0.802 0.466-1.380 0426
Overall survival
CBR3-AST <0.001 _
HNF4A-AS1 <0.001 _
LINC00622 0.027 _
LINC00993 0.043 _
LINC00342 0.356 _
Signature (high vs. low) 2437 1.398-4.249 0.002 1912 1.049-3.485 0.034
Age 1.017 0.995-1.041 0.156 1.024 0.997-1.052 0.077
ER status (positive vs. negative) 0416 0.241-0.720 0.002 0515 0.236-1.124 0.095
PR status (positive vs. negative) 0.531 0.298-0.945 0.031 1.000 0.448-2.233 1.000
HER?2 status (positive vs. negative) 1.408 0.781-2.537 0.255 1.037 0.548-1.962 0911
Grade 2410 1.408-4.123 0.001 1.384 0.784-2.559 0.301
pTl stage 2.045 1.251-3.344 0.004 1492 0.818-2.720 0.192
pN stage 1.804 1.439-2.263 <0.001 1.838 1.360-2.484 <0.001
Stage 2.591 1.681-3.993 <0.001 _
LVI (yes vs. no) 2.004 1.160-3.464 0.013 0.868 0.421-1.791 0.702

ER, estrogen recepter; PR, progestrone recepter; Her2, epidermal growth factor receptor-2; BCS, breast conserving surgery; LVI, lymphovascular invasion, HR hazard

ratio, Cl confidence interval

P-values were calculated with the two-sided log-rank test

performance metrics attained an AUC value of 0.72
(95% CI: 0.63—0.79) in the training cohort via ROC curve
analysis. (Fig. 4A). Similarly, the AUC for DES in valida-
tion cohort was 0.71 (95% CI 0.62—0.78) (Fig. 4C). These
results suggest that the signature is a stable predictor. The
accuracy of the 5-IncRNA signature in predicting prog-
nosis was further compared to that of each individual
IncRNA. The combined signature demonstrated a higher
AUC than any of the single IncRNAs. (Fig. 4A, C).

The construction of prognostic nomogram combin-
ing both 5-IncRNA signature and clinical factors further
improved the sensitivity and specificity of model. The
AUC for DFS of nomogram were 0.79 (95% CI 0.71-0.87)
in training cohort (Fig. 4A), 0.81 (95% CI 0.75-0.87) in
validation cohort (Fig. 4C). The AUC of nomogram was
significantly higher than 5-IncRNA signature (Fig. 4A, C).

Compared to individual clinicopathological risk factors,
the nomogram exhibited significantly higher specificity
and sensitivity (P<0.05) (Fig. 4B, D).

Discussion
To optimize clinical decision-making and enhance prog-
nosis for EBC patients, a novel molecular-based prog-
nostic model incorporating both molecular and clinical
data has been established. This comprehensive approach
enables accurate prediction of DFS and OS post-surgery
in EBC patients. The model successfully distinguishes
between high- and low-risk patients. The results revealed
significant disparities in DFS and OS for these patients.
Furthermore, a LASSO Cox regression model was
developed to integrate multiple IncRNAs within a sin-
gle prognostic predicting model, demonstrating greater
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(positive vs. negative), pT stage (T1-3), pN stage (NO-3) and LVI (yes vs. no). The AUC was computed, with its estimated 95% Cl via Bootstrap resampling. P
values were determined using two-sided Bootstrap tests
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accuracy in forecasting early breast cancer prognosis
compared to individual IncRNA analysis. Using mul-
tivariable analysis, we demonstrated the 5-IncRNAs
classifier is an independent prognostic factor. When par-
titioned according to clinicopathological characteristics,
the 5-IncRNAs signature remains a strong prognostic
prodicting model.

Earlier studies have detected multiple IncRNAs that
have association witn the progress of breast cancer [19,
20]. For example, MALAT1 [21], HOTAIR [22] and
LINC-A [23] demonstrate established clinical relevance,
correlating with survival trajectories and treatment
responsiveness across breast cancer cohorts. The regula-
tion network of IncRNAs is complicated in breast cancer
with large number of upregulated and down regulated
IncRNAs. Thus, use of multi-IncRNAs model may further
improve the clinical value of IncRNAs.

In our study, we identified and validated five IncRNAs:
CBR3-AS1, HNF4A-AS1, LINC00622, LINC00993, and
LINCO00342. These IncRNAs are critical for the prog-
nosis of patients with EBC. The biological functions
of these five IncRNAs have been reported in previous
studies. CBR3-AS1 was identified accelerate the malig-
nant progression of osteosarcoma, lung cancer and ges-
tational choriocarcinoma [24—27]. Research has found
that HNF4A-AS1 can promote a series of processes in
neuroblastoma cells, including lactate production, gly-
colysis, glucose uptake, and ATP levels [28]. It might be a
therapeutic target for the progression of aerobic glycoly-
sis and neurobldownoma [29]. Additionally, HNF4A-AS1
has been shown to inhibit the hepatocellular carcinoma
progression by facillitate the PCBP2 degradation through
ubiquitin [30]. A previous study found that adipose-
derived stem cell-derived extracellular vesicles carried
LINCO00622, which inhibited neuroblastoma cell pro-
liferation, invasion, and migration [31]. Our study ini-
tially reported the prognostic value of LINC00622 and
LINCO00342 in breast cancer. LINC00993 was found to
exhibit tumor-suppressive functionality in triple-negative
breast cancer, as evidenced by its inhibition of malignant
proliferation and metastasis [32]. This conclusion is simi-
lar as we demonstrated in this study, that we showed a
high expression of LINCO00993 is protective factor in
breast cancer. LINC00342 was extensively explored in
lung cancer [33], colon adenocarcinoma [34] and oral
cancer [35].

Meanwhile, we constructed a nomogram includ-
ing both 5-IncRNAs signature and clinicopathologi-
cal risk factors. This nomogram can predict survival of
EBC patients, which is better than 5-IncRNAs signature
and other clinicopathological risk factors. This model
enables precise stratification of patients with differential
responsiveness to adjuvant therapy, suggesting current
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therapeutic regimens may require intensification for the
identified high-risk molecular subset.

This study has same limitations. The absence of an
external validation cohort. The clinical characteris-
tics may differ across hospitals and provinces, poten-
tially introducing selection bias. Further validations
are required for further confirming the study’s findings
through external cohorts or prospective clinical research.

In conclusion, The five prognostic tools based on
IncRNA and the clinical pathological column chart
of IncRNA can accurately stratify EBC patients into
low-risk and high-risk categories, with significant dif-
ferences in prognosis. The findings highlight the poten-
tial of IncRNAs in predicting recurrence risk, offering
valuable insights for therapeutic strategies and patient
management.

The nomogram modeling has the characteristics of
intuitiveness and ease of use, which can display prognos-
tic value independent of traditional clinical pathological
features in multivariate analysis. It can enhance the clini-
cal relevance of the model and facilitate the screening
of patients with different risks, which is of great signifi-
cance for personalized treatment and risk management
[36—37].With these tools, we can better classify patients
for personalized therapeutic regimen selection, so as to
avoid overtreatment and insufficient treatment.
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