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OBJECTIVE—The aim of this study was to investigate whether
apolipoprotein B100 of LDL suffers increased damage by glyca-
tion, oxidation, and nitration in patients with type 2 diabetes,
including patients receiving metformin therapy.

RESEARCH DESIGN AND METHODS—For this study, 32
type 2 diabetic patients and 21 healthy control subjects were
recruited; 13 diabetic patients were receiving metformin therapy
(median dose: 1.50 g/day). LDL was isolated from venous plasma
by ultracentrifugation, delipidated, digested, and analyzed for
protein glycation, oxidation, and nitration adducts by stable
isotopic dilution analysis tandem mass spectrometry.

RESULTS—Advanced glycation end product (AGE) content of
apolipoprotein B100 of LDL from type 2 diabetic patients was
higher than from healthy subjects: arginine-derived AGE, 15.8 vs.
5.3 mol% (P � 0.001); and lysine-derived AGE, 2.5 vs. 1.5 mol%
(P � 0.05). Oxidative damage, mainly methionine sulfoxide
residues, was also increased: 2.5 vs. 1.1 molar equivalents (P �
0.001). 3-Nitrotyrosine content was decreased: 0.04 vs. 0.12 mol%
(P � 0.05). In diabetic patients receiving metformin therapy,
arginine-derived AGE and methionine sulfoxide were lower than
in patients not receiving metformin: 19.3 vs. 8.9 mol% (P � 0.01)
and 2.9 vs. 1.9 mol% (P � 0.05), respectively; 3-nitrotyrosine
content was higher: 0.10 vs. 0.03 mol% (P � 0.05). Fructosyl-
lysine residue content correlated positively with fasting plasma
glucose. Arginine-derived AGE residue contents were intercorre-
lated and also correlated positively with methionine sulfoxide.

CONCLUSIONS—Patients with type 2 diabetes had increased
arginine-derived AGEs and oxidative damage in apolipoprotein
B100 of LDL. This was lower in patients receiving metformin
therapy, which may contribute to decreased oxidative damage,
atherogenicity, and cardiovascular disease. Diabetes 59:1038–

1045, 2010

C
ardiovascular disease (CVD) is the major cause
of premature death in diabetes. Type 2 diabetes
is associated with a twofold to threefold in-
creased risk of coronary heart disease in men

and a threefold to fivefold increased risk in women,
relative to the nondiabetic population (1). Dyslipidemia is
a key feature of diabetic CVD where small dense LDL
particles pose a major atherogenic threat. The underlying
mechanism producing small, dense LDL is related to
hepatic oversecretion of apolipoprotein B100 (apoB100)
and impaired clearance of LDL by the high-affinity LDL
receptor in which both hepatic and peripheral tissues
participate (2). The normal residence time of LDL in
plasma is 3 days but this is increased to 5 days for small,
dense, highly atherogenic LDL (3). Atherogenicity and
plasma residence time of LDL may be influenced by
damage to apoB100 by glycation, oxidation, and nitration
but the quantitative amounts of damage in healthy human
subjects and diabetic patients remain unclear.

Glycation of proteins is a complex series of parallel and
sequential reactions collectively called the Maillard reac-
tion. Early stage reactions are directed to lysine and
NH2-terminal amino acid residues leading to the formation
of the early glycation adduct, fructosyl-lysine (FL), and
other fructosamine derivatives. Later stage reactions form
advanced glycation end products (AGEs). FL degrades
slowly to form AGEs. Glyoxal, methylglyoxal, and 3-de-
oxyglucosone (3-DG) are physiological dicarbonyl metab-
olites and potent glycating agents formed by the
degradation of glycolytic intermediates, glycated proteins,
and lipid peroxidation. They react with proteins to form
AGEs directed mainly to arginine residues—often func-
tionally important arginine residues. The most important
AGEs quantitatively are hydroimidazolones derived from
arginine residues modified by glyoxal, methylglyoxal, and
3-DG: G-H1, MG-H1, and 3DG-H, respectively. N�-carboxy-
methyl-arginine (CMA) is a further arginine-derived adduct
formed by glyoxal. Other important and widely studied
AGEs are Nε-carboxymethyl-lysine (CML), Nε-carboxy-
ethyl-lysine (CEL), and pentosidine. Markers of oxidative
damage to proteins are methionine sulfoxide (MetSO),
formed by the oxidation of methionine, and dityrosine,
formed by oxidative cross-linking of tyrosine. A widely
studied marker of nitration damage to proteins is 3-nitro-
tyrosine (3-NT) (rev. in 4) (Fig. 1).

Metformin is the most widely prescribed oral glucose-
lowering agent for the treatment of type 2 diabetes. It
improves glycemic control and decreases the risk of CVD
(5). Metformin therapy of type 2 diabetic patients in-
creased LDL particle size (6) and decreased plasma con-
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centrations of remnant lipoprotein cholesterol, a predictor
of myocardial infarction and thought to reflect increased
residence time and atherogenicity of cholesterol ester–
rich chylomicrons and VLDL (7). Metformin also de-
creased the plasma concentrations of methylglyoxal in
diabetic patients (8) and may decrease oxidative stress
and related oxidation of LDL (9).

In this study, we used the gold standard method of
stable isotopic dilution analysis liquid chromatography–
tandem mass spectrometry (LC-MS/MS) to measure pro-
tein glycation, oxidation, and nitration adducts in apoB100
of LDL to assess whether there is increased lipoprotein
damage in patients with type 2 diabetes with respect to
normal healthy control subjects and to investigate the
effect of metformin therapy.

RESEARCH DESIGN AND METHODS

Patients and normal healthy volunteers. Diabetic patients were recruited
from patients attending the Diabetes Clinics at Colchester General Hospital
(Colchester, U.K.) and University Hospital of Coventry and Warwickshire

(Coventry, U.K.). Healthy control volunteers were recruited from partners and
friends of the patients and investigators. Ethical approval for the study was
given by the local ethics committees (North and Mid-Essex Local Research
Ethics Committee, Chelmsford, U.K. and Coventry Research Ethics Commit-
tee, Coventry, U.K.). Inclusion criteria were type 2 diabetes with normoalbu-
minuria (albumin excretion rate �30 mg/24 h), age 40–80 years, diabetes
duration of �1 year, and A1C �13%. Exclusion criteria were individuals with
significant comorbidities who participated in an intervention study within 30
days, recipients of renal and/or pancreatic transplants, and women who
were pregnant or breastfeeding or of child-bearing potential not using
adequate contraceptive precautions. Metformin therapy was given in the
dose range 0.85–3 g/day; median 1.50. The duration of metformin therapy
was in the range 1–20 years; median 4 years. Other therapy (number of
patients without/with metformin therapy) was insulin (17/5), gliclazide
(2/3), glimepiride (1/2), and antihypertensive therapy (0/4). Participant
characteristics are shown in Table 1. Venous blood samples (fasting) were
taken after informed consent. Plasma was separated immediately and
stored at �80°C until analysis.
Isolation of LDL. For rapid, same-day preparation of LDL, a self-generating
gradient of iodixanol in a vertical rotor (S120VT) was used in a Sorvall MTX
150 microultracentrifuge (Hitachi). The density of plasma was increased to
12% using 60% iodixanol solution (OptiPrep; Axis-Shield). Plasma (0.9 ml) was
layered under 0.9 ml of 9% iodixanol in a 2-ml ultracentrifuge tube (polyal-

FIG. 1. Molecular structures of protein glycation, oxidation, and nitration residues.
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lomer, no. S302897A; Hitachi) and further void filled with 0.2 ml nitrogen-
purged PBS. The sample was centrifuged (501,000g, 16°C, 2.5 h) with low
acceleration and deceleration. LDL was washed with nitrogen-purged water (4
ml � 3) over 100-kDa microspin filters (Amicon) to remove iodixanol. The
LDL was stored at �20°C until further analysis. Sample handling was
performed under subdued light. Protein concentration was measured by
Bradford assay. Lipid peroxidation of LDL was assessed by measuring
thiobarbituric acid reactive substances (TBARS). TBARS were quantified by
reference of the chromophoric response to a standard curve constructed from
malondialdehyde tetramethyl acetal and expressed as malondialdehyde equiv-
alents (10). The purity of LDL was assessed by SDS-PAGE denaturing and
agarose nondenaturing electrophoresis.
In vitro modification of LDL. LDL was glycated minimally by methylglyoxal
and glucose in vitro to assess the major glycation adducts formed. LDL
glycated minimally by methylglyoxal (MGmin-LDL) was prepared by incuba-
tion of methylglyoxal (200 �mol/l) with LDL (4.2 mg/ml) in PBS (0.4 mmol/l
diethylenetriaminepentaacetic acid [DETAPAC], pH 7.4) at 37°C for 6 h. The
glycated and control LDL was washed extensively with argon-purged ice-cold
water using ultra-spin filters (Amicon 100-kDa cutoff membrane from Milli-
pore) at 4°C, and stored at 4°C under argon and used within 2 weeks. LDL
glycated minimally by glucose (AGEmin-LDL) was prepared by incubation of
glucose (25 mmol/l) with LDL (3 mg/ml) in PBS (0.4 mmol/l DETAPAC, pH 7.4)
under argon (0.5 ml) at 37°C for 7 days under sterile conditions. Control LDL
was incubated without glucose. The glycated and control LDL was washed
with argon-purged water ultrafiltration at 4°C, and stored at 4°C under argon
until further analysis. Electrophoretic mobility of native and modified LDL on
agarose gel electrophoresis was performed using a gel lipoprotein electro-
phoresis kit using barbital buffer, pH 8.6 (Helena).
Delipidation of LDL. An aliquot of LDL solution (20 �l, 100 �g) was
transferred into a glass tube (50 � 7.5 mm) containing butylated hydroxytolu-
ene in methanol (5 �l, 2 mg/ml), 20% trichloroacetic acid (100 �l), and water
(75 �l), mixed well, left on ice for 10 min, and then centrifuged (10,000g, 15
min, 4°C). The supernatant was removed and the pellet washed with acetone
(200 �l) and diethyl ether (200 �l) and dried under argon.
Enzymatic digestion of apoB100. Delipidated protein was hydrolyzed
exhaustively by modification of our published procedure (11). Protein was
suspended in 100 mmol/l potassium phosphate buffer, pH 7.4 (50 �l). Pronase
E (20 �l, 2 mg/ml in 10 mmol/l KH2PO4 buffer, pH 7.4) and 10 �l penicillin (50
units/ml) and streptomycin (50 �g/ml) were added and the samples incubated
at 37°C for 24 h. Thereafter, 10 �l each of prolidase and aminopeptidase
solutions (2 mg/ml in 10 mmol/l KH2PO4 buffer, pH 7.4) was added, and
samples were incubated for a further 48 h. All steps were performed under
argon. A similar method was used previously to quantify the oxidative marker
5-hydroxy-2-aminovaleric acid in apoB100 (12).
Protein biomarker determination by LC-MS/MS. Fructosyl-lysine, ad-
vanced glycation end products, and oxidation and nitration markers were
determined in enzymatic hydrolysates of delipidated lipoprotein by stable
isotopic dilution analysis LC-MS/MS (13).
Statistics. Data are mean � SD for parametric data and median (minimum –
maximum) or (lower – upper quartile) for nonparametric data. Significance of

difference between means was assessed by Student t test and significance of
difference between medians, by the Mann-Whitney U test. Difference of
proportions was assessed using Finney contingency tables.

RESULTS

Isolation of LDL and glycation by methylglyoxal and
glucose in vitro. A new rapid method for isolation of LDL
was developed and used in this study. This method used a
single ultracentrifugation step for 2.5 h only with samples
at 16°C (14). High purity was confirmed by a single protein
band in denaturing SDS-PAGE and agarose nondenaturing
electrophoresis (data not shown). Lipid peroxidation of
isolated LDL from normal healthy control subjects, as
judged by TBARS content, was low: 0.81 � 0.45 nmol/mg
protein (n � 12).

LDL glycated minimally by methylglyoxal and glucose
showed increased levels of AGE residues. For glycation by
methylglyoxal, MGmin-LDL showed increased content of
MG-H1, CEL, and MOLD residues. The major AGE formed
by glycation with methylglyoxal was MG-H1 (98.4%) with
minor formation of CEL (1.4%) and MOLD (0.2%). For
glycation of LDL by glucose, the major increase in glyca-
tion adducts was of FL residues with a minor increase in
CML residues (Table 2).
Protein damage markers in apolipoprotein B100 of
LDL of healthy human subjects and patients with
type 2 diabetes. In apoB100 of LDL of healthy human
subjects, the mean FL residue content was 2,900 pmol/mg
apoB100, equivalent to 1.49 mol/mol apoB100 or 4.17
mmol/mol Lys. Major AGE residues quantitatively were
MG-H1, median content 46.8 pmol/mg apoB100, equivalent
to 0.024 mol/mol apoB100 or 0.16 mmol/mol Arg; and CML,
median content 24.0 pmol/mg apoB100, equivalent to 0.012
mol/mol apoB100 or 0.035 mmol/mol Lys. Median total
arginine-derived AGE residue content (G-H1 � MG-H1 �
3DG-H � CMA � pentosidine) was 103 pmol/mg apoB100,
equivalent to 0.062 mol/mol or 0.42 mmol/mol Arg. Median
total lysine-derived AGE residue content (CML � CEL �
MOLD � pentosidine) was 33 pmol/mg apoB100, equivalent
to 0.017 mol/mol or 0.047 mmol/mol Lys. The major oxidative
marker was MetSO residues with mean content of 2084
pmol/mg apoB100, equivalent to 1.07 mol/mol apoB100 or

TABLE 1
Characteristics of type 2 diabetic patients and normal healthy control subjects

Study group Control subjects
All type 2

diabetic subjects

Type 2 diabetic subjects
not receiving

metformin therapy

Type 2 diabetic subjects
receiving metformin

therapy

n 21 32 19 13
Age (years) 56.5 � 9.7 60.5 � 12.2 64.1 � 12.8* 55.2 � 9.5†
Sex (M/F) 10/11 14/18 11/8 3/10
BMI (kg/m2) 28.6 � 3.6 33.7 � 6.3‡ 31.5 � 6.3 37.1 � 4.8†‡
Duration of diabetes (years) — 11 (1–35) 13 (1–35) 8 (1–25)
FPG (mM) 5.14 � 0.74 8.75 � 2.51‡ 9.15 � 2.41‡ 8.17 � 2.62§
HbA1c (%) 5.48 � 0.57 8.20 � 1.94 8.25 � 2.04‡ 8.13 � 1.85‡
Total cholesterol (mM) 5.11 � 1.43 4.90 � 1.02 4.71 � 1.00 5.18 � 1.01
LDL cholesterol (mM) 3.18 � 1.41 3.01 � 1.01 2.89 � 1.04 3.17 � 0.98
HDL cholesterol (mM) 1.55 � 0.81 1.24 � 0.30 1.18 � 0.23 1.34 � 0.36
Triglycerides (mM) 1.16 � 0.31 2.23 � 1.02‡ 2.13 � 1.09§ 2.37 � 0.94‡
Systolic blood pressure (mmHg) 130 � 20 141 � 22 140 � 24 142 � 21
Diastolic blood pressure (mmHg) 77 � 8 78 � 8 77 � 10 78 � 10
GFR (ml/min) 99 � 20 100 � 42 89 � 30 116 � 52

Data are mean � SD or median (minimum � maximum). Significance: *P � 0.05, §P � 0.01, and ‡P � 0.001, with respect to normal healthy
control subjects; and †P � 0.05, with respect to type 2 diabetic patients receiving conventional therapy. GFR, glomerular filtration rate.

DECREASED apoB100 DAMAGE WITH METFORMIN

1040 DIABETES, VOL. 59, APRIL 2010 diabetes.diabetesjournals.org



13.7 mmol/mol Met. The nitration marker 3-NT had a median
residue content of 2.3 pmol/mg apoB100, equivalent to 0.0012
mol/mol apoB100 or 0.0078 mmol/mol Tyr (Table 3).

Considering all type 2 diabetic patients studied, the mean
fasting plasma glucose (FPG) concentration was increased
70% and glycated hemoglobin was increased by 2.7% total
hemoglobin with respect to control subjects (Table 1). FL
residue content of apoB100 of LDL was not increased signif-
icantly. Marked increases were found, however, for contents
of dicarbonyl-derived AGE residues: CEL fivefold, G-H1
ninefold, MG-H1 fourfold, 3DG-H threefold, MOLD fivefold,
and pentosidine threefold. Median total arginine-derived
AGE residue content was increased more than threefold, 316
vs. 103 pmol/mg apoB100 (P � 0.001); whereas total lysine-
derived AGE residue content was increased only 47%, 49 vs.
33 pmol/mg apoB100 (P � 0.05). For oxidative markers,
MetSO residue content of apoB100 of type 2 diabetic patients
was increased twofold and dityrosine residue content was
increased 64-fold. 3-NT residue content of apoB100 was
decreased 61% in type 2 diabetic patients (Table 3). Only one
protein damage marker of apoB100 in diabetic patients was
linked to donor sex: median CML content was 13.3 pmol/mg
for males and 30.3 for females (P � 0.05).
Correlation analysis for markers of glycemic control
and protein damage in plasma apoB100 of type 2
diabetic patients. There was no correlation of protein
damage marker content of apoB100 with patient age,

suggesting that the significant age difference of diabetic
patients with and without metformin therapy did not
compromise protein damage marker of these study
groups. For markers of glycemic control, FPG concentra-
tion correlated positively with A1C and also with FL
residue content of apoB100. FL residue content correlated
positively with CEL, MG-H1, and 3DG-H residue contents.
There was a cluster of correlations of dicarbonyl-derived
AGE residue contents: G-H1 correlated positively with
MG-H1 and CMA; MG-H1 also correlated positively with
CMA and 3DG-H, and also with CML and pentosidine; and
3DG-H correlated positively with CMA. There was also a
cluster of correlations of oxidative marker residues with
AGE residue contents: MetSO correlated positively with
CEL, G-H1, MG-H1, 3DG-H, CMA, and pentosidine; and
CML and MOLD correlated positively with dityrosine
(Table 4). There were negative correlations of 3-NT with
MG-H1 and 3DG-H.
Protein damage markers in apolipoprotein B100 of
LDL of patients with type 2 diabetes receiving met-
formin. Patients receiving metformin therapy were
slightly younger and more obese than those not receiving
metformin therapy, although all other conventional clin-
ical variables were not significantly different (Table 1).
ApoB100 of LDL from patients receiving metformin
therapy had lower contents of AGEs (G-H1, MG-H1,
3DG-H, and CMA) and MetSO but higher 3-NT content

TABLE 3
Markers of protein damage in apolipoprotein B100 of LDL

Type of modification/
Analyte Control subjects

All type 2
diabetic subjects

Type 2 diabetic subjects
not receiving metformin

therapy

Type 2 diabetic subjects
receiving metformin

therapy

n 21 32 19 13
Fructosamine

FL 2,900 � 1,402 3,347 � 1,914 3,789 � 1,971 2,682 � 1,688
AGE

CML 24.0 (0.7–143.7) 20.6 (1.7–58.9) 20.5 (3.9–58.9) 24.1 (1.7–56.4)
CEL 3.5 (0.2–38.9) 17.3 (3.5–59.6)* 21.9 (3.5–59.6)* 14.6 (4.6–33.4)†
G-H1 3.6 (0.1–50.4) 31.5 (1.2–188.3) 44.0 (1.8–188.3)* 25.0 (1.2–59.0)†‡
MG-H1 46.8 (15.9–219.4) 197.0 (3.0–474.4)* 235.8 (45.5–474.4)* 91.3 (3.0–309.4)§
3DG-H 19.4 (2.2–138.9) 60.0 (4.8–163.8)* 82.3 (4.8–163.8)* 39.4 (6.3–86.2)�‡
CMA 20.3 (0.4–47.9) 26.8 (0.7–112.8) 38.3 (0.7–112.8)† 8.9 (1.6–74.6)‡
MOLD 1.8 (0.3–51.5) 9.0 (0.2–31.8)� 12.2 (0.2–31.8)� 7.6 (1.5–27.3)†
Pentosidine 0.26 (0.03–0.84) 0.76 (0.08–2.13)* 0.75 (0.18–2.13)* 0.76 (0.08–1.61)�

Oxidation
MetSO 2,084 � 1,360 4,738 � 3,367* 5,633 � 3,837* 3,857 � 2,641‡
Dityrosine 0.26 (0.05–6.86) 16.7 (0.2–68.4)* 16.8 (5.8–34.8)* 11.0 (0.2–47.1)*

Nitration
3-NT 2.3 (0.3–49.1) 0.9 (0.1–24.1)† 0.7 (0.1–15.4)� 2.0 (0.1–24.1)‡

Data are pmol/mg apoB100; mean � SD or median (minimum � maximum). Significance: †P � 0.05, �P � 0.01, and *P � 0.001, with respect
to normal healthy control subjects; and ‡P � 0.05 and §P � 0.01, with respect to type 2 diabetic patients not receiving metformin therapy.

TABLE 2
Changes in protein glycation adduct residues in human LDL minimally modified by methylglyoxal and glucose in vitro

Glycation adduct Control 1 MGmin-LDL Control 2 AGEmin-LDL

FL 2.21 � 0.21 1.99 � 0.06 3.10 � 0.67 6.08 � 0.37*
CML 0.031 � 0.004 0.032 � 0.007 0.056 � 0.009 0.070 � 0.003†
CEL 0.004 � 0.001 0.024 � 0.003* 0.011 � 0.003 0.013 � 0.003
MG-H1 0.15 � 0.02 1.57 � 0.37* 0.23 � 0.03 0.21 � 0.01
MOLD 0.0002 � 0.0001 0.0025 � 0.0009* 0.0057 � 0.001 0.0092 � 0.002

Data are mol adduct/mol apoB100; mean � SD (n � 3). Control 1 and control 2 are incubations of LDL for 6 h and 7 days without
methylglyoxal and glucose, respectively. Significance: *P � 0.001. †P � 0.01. Other adduct residues, G-H1, 3DG-H, CMA, pentosidine, MetSO,
dityrosine, and 3-NT, were not changed significantly during the incubation with glycating agents.
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than apoB100 of LDL from patients not receiving met-
formin therapy. MG-H1, CMA, MetSO, and 3-NT residue
contents of apoB100 of LDL from diabetic patients receiv-
ing metformin therapy were not significantly different from
those of normal healthy subjects (Fig. 2 and Table 3).

DISCUSSION

A new method for rapid isolation of LDL is described and
used here with a single ultracentrifugation step of only
2.5 h at 16°C, whereas the conventional method of LDL
isolation involves ultracentrifugation for 20–22 h at 15°C
(14). This rapid method has potential to decrease the risk
of apoB100 damage in preanalytic processing and could
facilitate clinical studies of LDL.

Glycation of LDL by glucose in vitro to form AGEmin-
LDL showed that the major glycation adduct formed in
apoB100 was FL residues with related minor increase of
CML residue content. CML is formed by the oxidation
degradation of FL. Glycation of LDL by methylglyoxal in
vitro to form MGmin-LDL showed that the major glycation
adduct formed in apoB100 was MG-H1 residues with
concurrent minor formation of CEL and MOLD residues.
Assuming initial rate conditions (the rate of glycation was
approximately constant during the incubation time) and
that the rate of glycation was first order with respect to
LDL and glycating agent, the rate constants kLDL, Glycating agent
for glycation of LDL by glucose and methylglyoxal
are kLDL, Glucose � 11.2 (mol/l)�1 � day�1 and kLDL, MG �
28,800 (mol/l)�1 � day�1, respectively, at pH 7.4 and 37°C.
This suggests that methylglyoxal is 	2,600-fold more
reactive with LDL than is glucose. The predicted in situ
rates of glycation of LDL rLDL, Glycating agent by glucose
and methylglyoxal in plasma, assuming concentrations of
LDL, glucose, and methylglyoxal of 1.3 �mol/l, 5 mmol/l,
and 100 nmol/l, respectively (8,15), are 	rLDL, Glucose � 73
nmol/l � day�1 and rLDL, MG 4 nmol/l � day�1, suggesting that
the rate of LDL glycation by glucose is 	18-fold faster than
by methylglyoxal in plasma. The apparent switch of rela-
tive reactivity of glucose and methylglyoxal with LDL in
situ is due to the markedly lower concentration of meth-
ylglyoxal than glucose in plasma: 100 nmol/l vs. 5 mmol/l.
The ratio of FL to methylglyoxal-derived adducts in

apoB100 of healthy control was 	56. ApoB100 is probably
also glycated prior to assimilation into LDL.

The protein damage marker of highest quantitative
content in apoB100 of LDL in healthy human subjects was
the early glycation adduct FL, equivalent to 0.42% lysine
residues. These levels are threefold lower than reported in
earlier studies using the tritiated borohydride reduction
technique (1.3% [16]) but similar to the 2–3 nmol FL
residues per milligram apoB100 estimates using the fu-
rosine technique (17). FL, MG-H1, MetSO, and 3-NT are
major adducts of early glycation, advanced glycation,
oxidation, and nitration of apoB100, LDL, and also total
plasma protein. The rates of damage of LDL and plasma
protein can be predicted, assuming these rates are equal
to the rate of clearance of adducts in the steady state
and taking into account half-lives of LDL and serum
albumin—the major plasma protein—are 	3 and 19 days,
respectively (18,19). The outcome of these predictions is
shown in Table 5. Estimates of kLDL, Glucose [69 (mol/l)�1 �
day�1] and kLDL, MG [55,452 (mol/l)�1 � day�1] from these
deductions were not markedly dissimilar from estimates
from in vitro glycation studies (see above). Overestimation
of rates from in vivo data may be attributed to glycation of
apoB100 prior to assimilation in LDL particles. Overall
apoB100 of LDL is far more reactive to damage by these
modifications than is albumin, even when the eightfold
greater molecular mass of apoB100 relative to albumin is
taken into account. ApoB100 is highly susceptible to
damage and may be a particularly good sensor of it. From
the predicted in situ rates of modification, the rate of early
and advanced glycation of LDL is only 17 and 4% of that of
albumin, whereas the in situ rates of oxidation and nitra-
tion are 10 and 76% greater than those of albumin. As LDL
has a short plasma half-life, however, the steady levels of
protein glycation, oxidation, and nitration adducts in
apoB100 represent only a minor part of the total plasma
adduct concentration (Table 5). The adduct content in
apoB100 of diabetic patients may be increased by effects
of both increased rate of modification, caused by in-
creased plasma concentrations of modifying agents, and
decreased rate of elimination.

In type 2 diabetic patients, the FL and CML residue

TABLE 4
Correlation triangle of glycemic control and protein damage-related variables of type 2 diabetic patients

Glycemic
control FPG

HbA1c 0.46**
FL 0.58***

AGE CML
CEL 0.39*
G-H1
MG-H1 0.42* 0.42* 0.67***
3DG-H 0.43* 0.76***
CMA 0.61*** 0.80*** 0.68***
MOLD 0.51**
Pent 0.37* 0.41*

Oxidative
damage MetSO 0.38* 0.60*** 0.62*** 0.43* 0.77*** 0.53**

DT 0.63*** 0.68**
3-NT �0.31* �0.55**
Analyte FPG HbA1c FL CML CEL G-H1 MG-H1 3DG-H CMA MOLD Pent MetSO DT 3-NT

Glycemic control AGE Oxidative damage

Data are correlation coefficients (Spearman) with significance: *P � 0.05, **P � 0.01, and ***P � 0.001. Correlation was of glycemic control
indicators and protein damage markers of apoB100 in type 2 diabetic patients with and without metformin therapy.
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content of apoB100 is not significantly different from that
of apoB100 from healthy subjects. Increased plasma glu-
cose concentration in type 2 diabetic patients did not
produce a significant increase in FL residue content of
apoB100. This may indicate that formation of FL residues
in apoB100 by glucose is less favored when the extent of
glycation exceeds 2 molar equivalents, limiting further
increase of FL residue content in diabetes. Dicarbonyl-
derived AGE content of apoB100 from type 2 diabetic
patients was, however, increased markedly. This suggests
that dicarbonyl glycation is the main cause of increased
AGE content of apoB100 of LDL in type 2 diabetic patients.

Arginine-derived AGE residue contents of apoB100 in
these patients increased more than threefold.

Major quantitative oxidative damage—MetSO residue
content—of apoB100 in type 2 diabetic patients was
twofold higher than in apoB100 of healthy control sub-
jects. This is commensurate with increased plasma perox-
ide concentration in type 2 diabetes (21). There is no
repair of MetSO by MetSO reductase in plasma, hence
plasma MetSO likely reflects increased plasma reactive
oxygen species in diabetes and decreased plasma reactive
oxygen species production for patients treated with met-
formin. The 64-fold increase of dityrosine residue content

FIG. 2. Advanced glycation end product and methionine sulfoxide residue contents of apolipoprotein B100 of LDL of type 2 diabetic patients with
and without metformin therapy. (A) CEL, (B) G-H1, (C) MG-H1, (D) 3DG-H, (E) CMA, and (F) MetSO. Data are median (lower – upper quartile)
except for MetSO, which is mean � SD. Significance: *P < 0.05, **P < 0.01, and ***P < 0.001, with respect to normal healthy control subjects;
and oP < 0.05 and ooP < 0.01, with respect to type 2 diabetic patients not receiving metformin therapy.
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of apoB100 in diabetic patients, however, far exceeds this.
Dityrosine residues are formed by both spontaneous and
enzymatic processes. Enzymatic formation is catalyzed by
dual oxidase-1 (22)—a member of the NADPH oxidase
family of enzymes implicated in signaling in vascular
disease in diabetes (23). Activation of NADPH oxidase/
dual oxidase isozymes in diabetes may markedly enhance
the formation of dityrosine residues in apoB100 (24).
Dityrosine content of apoB100 of diabetic patients (	0.06
mmol/mol Tyr) was intermediate between that of normal
control subjects (	0.001 mmol/mol Tyr) and of apoB100
isolated form atherosclerotic plaques (	0.25 mmol/mol
Tyr) (25).

For type 2 diabetic patients receiving metformin ther-
apy, there were lower contents of dicarbonyl-derived AGE
and MetSO residues than in patients not receiving met-
formin therapy. CML residue content of apoB100 of LDL
was linked to patient sex; imperfect matching of sex may
have masked change in CML residue content in patients
receiving metformin therapy. Metformin decreased the
concentration of methylglyoxal in type 2 diabetic patients
(8). It is also expected to react with glyoxal and 3-DG
similarly, and thereby decrease plasma levels of these
dicarbonyls and prevent related formation of AGE resi-
dues. Metformin reacts with methylglyoxal in vivo, form-
ing a triazepinone adduct that has been detected in plasma
and urine (26). This decreases methylglyoxal by a scav-
enging action, although the relatively slow kinetics of this
reaction prompted consideration of other mechanisms
(27). Improvement of glycemic control by metformin de-
creases dicarbonyl formation and thereby decreased AGE
formation of apoB100 indirectly, as suggested by the
correlation of FL residue content of apoB100 with con-
tents of CEL, MG-H1, and 3DG-H residues. Both mecha-
nisms are likely involved.

A remarkable finding was the decrease in MetSO residue
content of apoB100 in patients receiving metformin ther-
apy. In correlation analysis, there were strong correlations
of MetSO with G-H1, MG-H1, and CMA residue contents of
apB100. These correlations were not found in similar
analysis of total plasma protein (28), which suggests these
relationships are specific to LDL. This likely relates to the
most important physiological impact of our findings: our
recent research suggests that formation of MG-H1 residues
in apoB100 increases binding of LDL to proteoglycan,
which may increase the half-life of LDL in the extracellular

compartment and thereby susceptibility to oxidation (29).
Decreased fractional clearance of apoB100 has been
linked to oxidative damage of apoB100 and atherogenicity
(12). Increased binding to proteoglycan in the subendothe-
lium is thought to be integral to this process (30). Met-
formin may decrease dicarbonyl glycation of apoB100 and
in so doing prevent decreased plasma clearance and
increased oxidation and atherogenicity of LDL in type 2
diabetes. In future studies, it will be of interest to test this
hypothesis in prospective placebo-controlled studies.

In this study, 3-NT residue content of apoB100 of LDL
was lower in diabetic patients not receiving metformin
therapy than healthy control subjects and normalized in
patients with metformin therapy. The quantitative amount
of 3-NT residues (0.03–0.1 mol%) is unlikely to be damag-
ing, but it may be a marker of nitric oxide bioavailability.
Metformin therapy has recently been shown to be linked
to activation of endothelial nitric oxide synthase (31). The
changes in 3-NT residues of apoB100 of LDL here may
reflect bioavailability of nitric oxide in diabetic patients,
thereby suggesting that diabetic patients receiving met-
formin therapy may achieve normal vascular nitric oxide
bioavailability. This provides a further mechanism how
metformin may be protective to the vasculature in di-
abetes.
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