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Microsomes are derived mostly from endoplasmic reticulum and are an ideal target to investigate compound metabolism,
membrane-bound enzyme functions, lipid-protein interactions, and drug-drug interactions. To better understand the molecular
mechanisms of the liver and its diseases, mouse liver microsomes were isolated and enriched with differential centrifugation and
sucrose gradient centrifugation, and microsome membrane proteins were further extracted from isolated microsomal fractions
by the carbonate method. The enriched microsome proteins were arrayed with two-dimensional gel electrophoresis (2DE) and
carbonate-extracted microsome membrane proteins with one-dimensional gel electrophoresis (1DE). A total of 183 2DE-arrayed
proteins and 99 1DE-separated proteins were identified with tandem mass spectrometry. A total of 259 nonredundant microsomal
proteins were obtained and represent the proteomic profile of mouse liver microsomes, including 62 definite microsome
membrane proteins. The comprehensive bioinformatics analyses revealed the functional categories of those microsome proteins
and provided clues into biological functions of the liver. The systematic analyses of the proteomic profile of mouse liver microsomes
not only reveal essential, valuable information about the biological function of the liver, but they also provide important reference

data to analyze liver disease-related microsome proteins for biomarker discovery and mechanism clarification of liver disease.

1. Introduction

The liver, a vital organ, has a wide range of physiological
functions and plays a major role in metabolism, biosynthesis,
and chemical neutralizing. Liver diseases, such as viral
hepatitis and liver cancer, pose a worldwide public health
challenge. The Human Liver Proteome Project (HLPP)
was launched in 2002 to better understand molecular
liver functions and diseases, and liver proteome expres-
sion profile is one of the major parts of HLPP [1].
Because of the complexity, no single proteomic analysis
strategy can sufficiently address all components of a pro-
teome. Analysis of the subcellular proteome would pro-
vide insight into the functions of a given tissue or cell
line. Subcellular proteomics reduces the complexity of a
proteome [2, 3], detects some low-abundance proteins,

and offers more detailed information that would con-
tribute to the understanding of the function of the entire
proteome.

Microsomes are composed primarily of closed sacs of
membrane called vesicles that are derived mostly from
endoplasmic reticulum (ER). As for liver, in addition to
components of the protein secretary pathway, microsomes
contain a multitude of proteins that are involved in
lipid/lipoprotein biosynthesis and drug metabolism. The
liver microsome is an ideal way to study the metabolism
of compounds, the functional properties of membrane-
bound enzymes, lipid-protein interactions, and drug-drug
interactions [4, 5]. The proteomic profiling of the micro-
somes combined with bioinformatics analysis can reveal
more essential information about the biological function of
the liver. The main goal of this study was to systematically
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identify the protein components of the liver microsomes,
to conduct the functional annotation with bioinformatics
analysis, and to provide insight into the biological functions
of the liver.

Two-dimensional gel electrophoresis (2DE) is one of
the most widespread techniques for the proteomic profiling
of soluble proteins and visualizes isoforms and posttrans-
lational modifications in a proteome [6, 7]. Membrane
proteins, however, are less amenable to solubilization in
protein extraction buffers and are also susceptible to pre-
cipitation during isoelectric focusing (IEF) because of their
hydrophobicity and alkaline pH value. One study showed
that the analytical performance of one-dimensional gel
electrophoresis (1DE) that separates endoplasmic reticulum
membrane proteins is incomparably greater than that of 2DE
[8]. Other studies [7, 9] demonstrated that the proteomic
analysis of subcellular organelles, such as microsomes that
contain a considerable number of highly hydrophobic mem-
brane proteins, should be performed by combining 1DE and
2DE.

Although many of microsome proteins have been
studied, many more remain to be isolated and charac-
terized. With the improvement of current methodologies
and experimental techniques, more proteomic data will be
obtained. Also, biological interpretation of proteomic data
and extracting biological knowledge are essential to further
understanding liver function.

In our study, 2DE was first used to array the isolated
microsome proteins of the liver. Because of the low perfor-
mance of 2DE in separating membrane proteins [10] and
the high efficiency of the carbonate procedure in separating
membrane proteins [11, 12], the membrane proteins from
Na, COs-treated microsomes were separated by 1DE. More-
over, bioinformatics analysis of microsome proteomic data
was performed to discover biological roles of the proteins.
The results showed that the combination of 1DE and 2DE
was more efficient for analyzing microsomes. Bioinformatics
analysis can provide a valuable molecular basis to interpret
the mechanisms underlying microsome biological functions
and give insight into the biological function of the liver at the
level of microsomes.

2. Material and Methods

2.1. Animals. Male C57 mice (9 weeks old) were pur-
chased from the Experimental Animal Center of Central
South University (Changsha, China). The mice were starved
overnight for liver subcellular fractionation. All experiments
were performed with the approval of the institutional ethics
committee on animal research.

2.2. Preparation, Validation, and 2DE Analysis of Microsomes

2.2.1. Preparation of Microsomes. Microsome apparatus-rich
fractions were prepared from mice livers with differen-
tial centrifugation and sucrose gradient centrifugation as
described [13]. Mice livers (approximately 10 g each) were
drained of blood, minced thoroughly with scalpels, and
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transferred to 50mL of chilled homogenization medium
(0.25M sucrose, pH 7.4) for 5-10 min with occasional
stirring. The liquid was decanted and replaced with 50 mL of
fresh homogenization medium followed by homogenization
(30—60 sec.) on a TAMATO homogenizer (1,000 rpm X 3 and
1,500 rpm X 3). The homogenate was squeezed through a
single layer of microcloth and centrifuged (10 min, 1,000 g;
HITACHI centrifuge). The supernatant was centrifuged
(30 min, 3,000g), and sequentially centrifuged (30 min,
8,000g) after discarding the sediment. The remainder
supernatant was centrifuged (30 min, 34,000g), carefully
decanted, and centrifuged again (130,000g, 1h; Beckman
Instruments, Palo Alto, CA) to get the “light” microsomes.
The pink sediment was gently resuspended with a glass
homogenizer in ~7 mL of 52% sucrose-0.1 M H3PO, buffer
(pH 7.1), and the density of sucrose was adjusted to 43.7%.
The fraction was placed in one type-70i rotor centrifuge tube;
overlayered sequentially with 7mL, 5mL, 5mL, and 6 mL
of 38.7%, 36.0%, 33.0%, and 29.0% sucrose, respectively,
and centrifuged (80,000g, 1h). The upper four layers of
the sucrose gradient were discarded by aspiration, and the
bottom layer (43.7%) was diluted with two volumes of cold
distilled water and centrifuged (130,000g, 1h) in a type-
70i rotor to get the “heavy” microsomes. The pellets, light
and heavy microsomes, were suspended in 3 mL of 0.25M
sucrose (pH 7.0) and combined. The mixture was diluted
to 14 mL with 0.25M sucrose containing CsCl with its final
concentration of 0.015 M. The suspension was layered into
an equal volume of 1.3 M sucrose/0.015M CsCl and then
centrifuged (240,000 g, 1 h) in an SW 55Ti rotor. The rough
microsomes were in the pink sediment, and the smooth
microsomes were at the interface. The smooth microsomes
were diluted with an equal volume of 0.25 M sucrose (pH 7.0)
and centrifuged (140,000 g, 1 h) in an SW 55i rotor.

2.2.2. Detection and Validation of the Purity of Microsomes.
Electron microscopy and Western blotting were used to
detect and validate the purity of prepared microsomes. For
electron microscope analysis, the prepared microsomes were
fixed with 2.5% glutaraldehyde for 24 h and 2% OsO4 for
2 h, dehydrated with alcohol (50%, 70%, 90%, and 100% in
turn), and processed into epoxy resin. Thin sections (500 A)
were prepared and stained with uranyl acetate and lead cit-
rate then examined with a transmission electron microscope
(H-600-1, Hitachi, Japan). For Western blotting analysis,
the microsome fractions were lysed (4°C; 30 min) in lysis
buffer (50 mM Tris-Hcl, 150 mM NaCl, 1 mM EDTA, 1%
Triton-X100, and 0.1% SDS). The protein samples (50 ug)
were subjected to electrophoresis on SDS-PAGE with 12%
gel and transferred to PVDF membrane (Millipore). The
PVDF membranes with proteins were immunoblotted with
antibodies to endoplasmin (ER marker), OxPhos complex
IV subunit I (mitochondrial marker), catalase (peroxisomal
marker), and cadherin (cytoplasmic marker), respectively.

2.2.3. Separation of Microsome Proteins by 2DE. 2DE was
performed as described by the manufacturer (Amersham
Biosciences). Protein samples (400 ug) were diluted to 450 uL
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with rehydration solution (7 mol/L urea, 2 mol/L thiourea,
0.2% DTT, 0.5% (v/v) pH3-10 NL IPG buffer, and trace
bromophenol blue) and applied to IPG strips (pH 3-10 NL;
24 cm) for rehydration (14 h; 30 V). Proteins were focused
successively (1h at 500V, 1 h at 1,000V, and 8.5 h at 8,000 V)
to give a total of 68 kVh on an IPGphor. After equilibration,
SDS-PAGE was performed with 12% gel on Ettan DALT II
system. Then, the blue silver staining method was used to
visualize the protein spots on the 2DE gels [14].

2.3. Na, COs5 Extraction and 1DE Analysis of Microsome Mem-
brane Proteins. Microsome membrane proteins were further
extracted by the carbonate method from isolated microsomal
fractions [12]. Microsomal fractions were diluted 50- to
1,000-fold with 100 mM sodium carbonate (pH 11.5; final
protein concentration to 0.02 to 1 mg/mL), and incubated
(0°C; 30 min) with slow stirring and accompanying son-
ication for 15sec at 3-4 W at O min, 15min, and 30 min.
The suspensions were centrifuged and decanted, and the
membrane pellets were gently rinsed three times with
ice-cold distilled water. These pellets were diluted with
denaturing sample buffer (5% mercaptoethanol, 2% SDS,
0.06 M Tris-HCI, pH 6.8, and 10% glycerol), heated (95°C;
5min), and then subjected to 1D SDS-PAGE with a 12% gel.
Electrophoresis was performed at 80V for 20 min, followed
by 100V for 2h. Gels were visualized with Coomassie
Brilliant Blue G [14].

2.4. Tandem Mass Spectrometry (MS/MS)
Identification of Proteins

2.4.1. In-Gel Digestion. The proteins contained in the 2D gel
spots and 1D gel bands were subjected to in-gel digestion
with trypsin. Gel spots or bands were excised and destained
with 100mM NH,HCO; in 50% acetonitrile (ACN) at
room temperature. The proteins were reduced with 10 mM
dithiothreitol (DDT) (56°C; 30min) and alkylated with
50 mM iodoacetamide in 100 mM NH,HCOj; (dark, room
temperature, 30 min). The gel pieces that contained proteins
were dried and then incubated in the digestion solution
(40 mM NH4HCO3, 9% ACN, and 20 yg/mL trypsin; 18 h,
37°C). The tryptic peptides were extracted with 50%
ACN/2.5% TFA and then dried using a Speed-Vac.

2.4.2. Nanoliquid Chromatography (LC) MS/MS and Pro-
tein Identification. The tryptic peptide mixture was frac-
tionated with reverse-phase (RP) high-performance lig-
uid chromatography (HPLC) by using an Ultimate nano-
HPLC system (Dionex). Peptide samples were purified and
concentrated with a C18-PepMap precolumn and then
separated on an analytical C18-PepMap column (75um
ID x 150mm, 100 A pore size, 3mm particle size) at a
column flow rate of 300 nL/min. The ACN gradient (solution
A: 0.1% formic acid, 2% ACN; solution B: 0.1% formic
acid, 80% ACN) started at 5% B and ended at 70% B in
45min. Mass spectrometry (MS) and MS/MS data were
acquired using a Micromass quadrupole time of flight
Micromass spectrometer (Waters). Database searches were

carried out with the MASCOT server by using a decoy
database (concatenated forward-reverse mouse IPI database,
version 3.07; release date June 20, 2005). A mass tolerance of
0.3 Da for both parent (MS) and fragmented (MS/MS) ions,
allowance for up to one trypsin miscleavage, variable amino
acid modifications consisting of methionine oxidation and
cysteine carbamidomethylation were used. MS/MS ion score
threshold was determined to produce a false-positive rate less
than 5% for a significant hit (P < 0.05). The false-positive
rate was calculated with 2* reverse/(reverse + forward)/100.
In the current study, the MS/MS ion score threshold was
23 and a false-positive rate was approximately 3.1%. For all
the proteins that were identified with only one peptide, each
MS/MS spectrum was checked manually.

2.5. Bioinformatics Analysis of Identified Proteins. Protein
annotations were obtained primarily from UniProt 7.0
including accession, entry name, comments such as func-
tion, catalytic activity, subcellular location, and similarity.
The Cytoscape plugin, Biological Networks Gene Ontology
(BinGO), was used to find statistically overrepresented GO
categories of the protein dataset. An online tool, WebGestalt
(http://bioinfo.vanderbilt.edu/webgestalt/), was used to map
target proteins to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. The pathway visualization was based on
the pathway mapping service provided in KEGG.

3. Results

3.1. Characterization and Detection of Liver Microsomes. It
was essential to obtain a highly pure fraction to conduct
proteomic characterization of microsomes. The purity of
prepared microsomes was monitored with electron micro-
scope and Western blotting analysis. A large number of
nearly spherical membrane vesicles were visualized with
electron microscope without other contaminated organelle
compositions (see Supplemental Figure 1(a) in Supplemen-
tary Material available online at doi:10.1155/2012/832569).
Western blotting analyses showed that, with the standard
immunoblotting protocol, the ER marker endoplasmin
was enriched in the isolated microsome fractions without
the contamination marker (mitochondrial marker OxPhos
Complex IV subunit I, peroxisomal marker catalase, and
cytoplasmic marker cadherin) being detected (Supplemental
Figure 1(b)). The results demonstrated an optimized prepa-
ration of microsomes.

3.2. Fractionation and Identification of Microsome Proteins
Identified by 2DE and MS/MS. The 2DE reference maps
display 514 + 83 protein spots (n = 10 gels). A representative
2DE map of microsome proteins was shown (Figure 1). A
total of 183 proteins were identified with ESI-Q-TOF MS/MS
from 204 excised gel spots. Those proteins are summarized
(Table 1 and Supplemental Table 1), including 2D gel-spot
number, IPI number, protein name, predicted TMD, and
subcellular location. The microsomal marker proteins such
as endoplasmin (Spot 2) and UDP glucuronosyltransferase
(Spots 6 and 7) were identified. Those proteins were located
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F1GURE 1: 2DE pattern of mouse liver microsome. Microsomal proteins (400 ug) were arrayed by 2DE with IPG strip (pH 3-10 NL; 24 cm)
and SDS-PAGE with 12% gel and visualized with blue silver staining method. A total of 204 spots denoted by circles were MS-analyzed.

in different subcellular locations (Table 1) including ER,
mitochondrial membrane, cytoplasmic, ribosome, micro-
body, microsome membrane, nuclear, vesicular membrane,
sarcolemma, extracellular space, cilium, ER-Golgi interme-
diate compartment, and secreted proteins. Supplemental
Figure 2 shows the percentage of each group of proteins,
according to their subcellular locations, derived from the
annotations in the Swiss-Prot database and Gene Ontology:
22% of proteins (n = 41) from ER and Golgi, 11% of proteins
(n = 20) from mitochondria and other membranes, 50% of
proteins (n = 91) from cytosolic and other soluble proteins,
8% of secreted proteins (n = 15), and 9% of proteins without
unambiguous location (n = 16).

3.3. Fractionation and Identification of Microsomal Membrane
Proteins Identified by 1DE and MS/MS. The Na,COs-treated
microsome membrane proteins were separated on SDS-
PAGE gels and visualized with Coomassie brilliant blue stain-
ing (Figure 2(a)). A total of 99 proteins (Table 2 and Supple-
mental Table 2) was identified with electrospray ionization-
(ESI-) Q-TOF MS/MS from 17 gel bands (Figure 2(a)).
Those proteins were derived from the ER, type I/II mem-
brane proteins, integral membrane proteins, major histo-
compatibility complex class I protein, ER-Golgi intermedi-
ate compartment, mitochondrial membrane, nuclear, cyto-
plasm, microbody, sarcolemma, and secreted and unknown
proteins (Table 2). Those membrane proteins were classified

into three categories (Figure 2(b)): (a) proteins with known
membrane associations (55%; n = 54), (b) putative
membrane proteins (5%; n = 5), and (c) other proteins
(40%; n = 40). Those identified proteins were categorized
according to the reported annotation in the UniProt database
(http://www.uniprot.org/) and predictions for transmem-
brane regions (http://www.cbs.dtu.dk/servicessTMHMM/).
Of the 99 proteins, 59 (60%) were described as “membrane-
associated” proteins (category (a) and (b)), including ER-
characteristic proteins (cytochromes P-450 and b5, calnexin,
integral membrane enzymes such as NADPH-cytochrome ¢
reductase, and microsomal glutathione S-transferase 1).

Hydrophobicity is an important characteristic of a mem-
brane protein. The grand average of hydropathy (GRAVY)
scores (> —0.4) (http://us.expasy.org/tools/protparam.html)
is an index to evaluate the hydrophobic status of a protein,
indicates a hydrophobic protein, and suggests a membrane
association. In the current study, 69 (70%) of the 99 proteins
identified from 1DE had a GRAVY > —0.4 (Supplemental
Figure 3), a score indicating the probability for membrane
association. Moreover, some alkaline proteins with PI values
close to or greater than 10 were separated by 1DE (Sup-
plemental Figure 4), but they could not be detected in a
conventional 2DE map.

3.4. Comparison of 2DE and 1DE Datasets. Among the
2DE dataset (n = 183 proteins; Table 1) and 1DE dataset


http://www.uniprot.org/
http://www.cbs.dtu.dk/services/TMHMM/
http://us.expasy.org/tools/protparam.html
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FIGURE 2: 1DE pattern and membrane-associated characteristic classification of Na, COj-extracted microsomal membrane proteins. (a) IDE
pattern. Molecular weight markers are shown on the left and bands excised for MS analysis are indicated on the right. Lanes S1 and S2 were
loaded with the same protein samples (50 ug per lane). (b) Classification via membrane-associated characteristic. The criteria used for this
classification were published reports, annotations in the genome database (http://www.uniprot.org/), and predictions for transmembrane

regions (http://www.cbs.dtu.dk/servicess TMHMMY/).

(n = 99 proteins; Table 2), only 23 proteins (Table 3)
were consistent between 2DE and 1DE datasets (23% of
1DE dataset, and 13% of 2DE dataset). A total of 259
nonredundant proteins (n = 183 + 99 — 23) were identified
in the microsome fraction through the strategy of combining
2DE with 1DE protein-separation technologies followed
by ESI-Q-TOF MS/MS. The microsome consisted of a
complex network of continuous membranes including ER,
ER-Golgi intermediate complex—also referred to as the
vesiculotubular clusters or pre-Golgi intermediates—and
the Golgi apparatus [5]. Among those identified proteins,
62 located in ER and Golgi were definitely classified as
microsome proteins by annotation in the Swiss-Prot database
and the Gene Ontology (GO).

3.5. Significantly Enriched GO Terms for Mouse Liver Micro-
some Proteins. Biological Networks Gene Ontology [15] and
Cytoscape [16] plugins to find statistically overrepresented
GO categories were used for the enrichment analysis of
our protein dataset. The microsome protein dataset (n =
259, from 1DE and 2DE datasets) was compared to a
reference set of complete mouse proteome (IPI mouse)
that was provided by Biological Networks Gene Ontology.
The analysis was done with a hypergeometric test, and
all significant (P < 0.01) GO terms were selected after
correcting for a multiple term testing with a Benjamini and
Hochberg false discovery rate. The analysis was performed
separately for molecular function, cellular component, and
biological process categories, and x-fold enrichment for
every overrepresented term in three GO categories was
calculated (Supplemental Figure 5). The results showed

that the terms were related to mostly catalytic activity in
terms of molecular function, including metabolism-related
oxidoreductase, hydrolase, and dehydrogenase. Similarly,
terms belonging to the cellular component namespace
include mitochondrion, ER, and ribosome. Finally, terms
from the biological process namespace included metabolic
process, localization, transport, and translation. All of the
information suggested the main functions and compositions
of microsome.

3.6. Significant Enrichment of KEGG Pathway for Mouse
Liver Microsome Proteins. Biological pathways analysis based
on KEGG pathway database was performed with an
analysis toolkit—WebGestalt (http://bioinfo.vanderbilt.edu/
webgestalt/) [17]. This toolkit allowed the functional anno-
tation of gene/protein sets into well-characterized functional
signaling pathways (KEGG: http://www.genome.jp/kegg/).
In addition, an enrichment score was obtained of the
frequency of occurrence of a specific protein (or gene)
within any given experimental subset with respect to a
species-specific background set. Thus, an enrichment factor
(the observed frequency in input set/the expected frequency
in background set) was created with a statistical value
that indicated that the protein (or gene) was specifically
overrepresented in the input dataset. In this current study,
all the proteins except 81 (n = 259 — 81 = 178) were
linked to a total of 99 biological pathways in the KEGG,
including metabolic pathway, glycolysis/gluconeogenesis,
metabolism of xenobiotics by cytochrome P450, and PPAR
signaling pathway. Among those pathways, 34 significantly
(P < 0.01) enriched biological processes analyzed by
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TaBLE 3: Proteins that are consistently present in both 2DE dataset of microsomal proteins (Table 1) and 1DE dataset of Na,COj;-extracted

microsomal proteins (Table 2).

Accession number  Protein name Predicted TMD GRAVY scores PI value Location
IP100108454 Similar to 40S ribosomal protein S6 0 —-0.918 10.68 ER
1PI00112322% UDP-glucuronosyltransferase 2B5 precursor 1 —-0.031 7.94 ER
00129526 o segted provny 0 0 ER
IP100133522 Protein disulfide-isomerase precursor 0 —-0.386 4.79 ER
IP100222496* Protein disulfide isomerase-associated 6 1 —-0.292 5.05 ER
1P100230108 SGel(llllf;)rsli;regulated protein, full insert 0 0479 5.78 ER
IP100319992 78 kDa glucose-regulated protein precursor 0 —0.481 5.07 ER
IP100331322° Microsomal glutathione S-transferase 1 3 0.14 9.67 ER and mitochondrial
outer membrane
IP100319973* iﬁ%ﬂfé‘jﬁ”oc‘ated progesterone receptor 1 ~0.616 4.57 ER, membrane bound
IPI00109061 Tubulin beta-4 chain homolog 0 —0.406 4.78 Cytoplasmic
1P100110827 Actin, alpha skeletal muscle 0 -0.232 5.23 Cytoplasmic
IPI00110850 Actin, cytoplasmic 1 0 -0.2 5.29 Cytoplasmic
IPI00111908 Predicted: carbamoyl-phosphate synthetase 1 0 —-0.12 6.42 Cytoplasmic
IP100117348 Tubulin alpha-2 chain 0 -0.23 4.94 Cytoplasmic
IP1I00117914 Arginase 1 0 -0.187 6.52 Cytoplasmic
IP100134746 Argininosuccinate synthase 0 —-0.361 8.36 Cytoplasmic
o Cedronscordss b Visfm s gy gy Midenditime
sz G S v miocondl e Moo
IPI00122547¢ ;/;)gizigrelz—zdependent anion-selective channel 0 0223 7 44 Outeirn ?iobilggleldrial
1P100124790° Polyposis locus protein 1-like 1 3 0.375 6.82 Integral to membrane
IP1I00138406° Ras-related protein Rap-1A 0 —-0.375 6.39 Membrane
IPI00121788 Peroxiredoxin 1 0 —-0.221 8.26 Microbody
IPI00131366 Keratin, type II cytoskeletal 6B 0 —0.488 8.32 Sarcolemma

a . . . .. .
Membrane proteins with one or more predicted trans-membrane origins or validated by references.

WebGestalt were obtained (Figure 3). Those biological pro-
cesses were involved in cell metabolism, benzoate degra-
dation, metabolism of xenobiotics, ribosome, biosynthesis,
signaling pathway, and oxidative stress. Those results are
known to be related to microsome.

To ascertain the coverage of our dataset with the enriched
pathways or biological processes, the KEGG search service
was used to map our dataset on KEGG pathways. Two of
the aforementioned enriched KEGG pathways (metabolism
of xenobiotics and ribosome) were related to the well-known
function and composition of the microsome (Figure 4).
Enzyme Commission numbers (EC no., e.g, 1.14.14.1) are
used to represent enzymes in metabolism. Highlighted in
green background are known mouse enzymes annotated
in the KEGG database and the red boxed are enzymes in
our dataset (Figure 4(a)). All enzymes (n = 9) that played
a key role in every pathway of metabolism of xenobiotics
were included in our dataset (Table 4). Thirteen proteins
from large and small subunits of ribosome were also found
in our dataset (Table 4) and are indicated with a red box

(Figure 4(b)). These proteins interact physically with each
other and form a large protein complex—the ribosome.
All the identified proteins that are involved in those two
pathways are summarized in Table 4, including their KEGG
pathway, protein ID, and protein name.

4. Discussion

Proteome analysis of the cell membrane-bound organelles is
a daunting task mainly because of (a) isolation of membrane
that is free from nonconstituents and (b) solubilization of
membrane proteins in a manner amenable to isoelectric
focusing [10]. 2DE is an effective tool to survey biological
complexity at the molecular level and provides a systematic
and comprehensive study of the proteins. However, because
of the PI value range limited by the IPG strip and the high
dependence on sample preparation, some problems exist for
the available 2DE protocols to resolve membrane-associated
proteins [10, 22]. Therefore, in the current study, the whole



16

Benzoate degradation via hydroxylation
Fatty acid elongation in mitochondria
Prion disease
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Metabolism of xenobiotics by cytochrome P450
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Alzheimer's disease

Valine, leucine, and isoleucine degradation
Fatty acid metabolism
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Neurodegenerative disorders

PPAR signaling pathway
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Alanine and aspartate metabolism
Glycolysis/gluconeogenesis
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Pancreatic cancer

Adherens junction
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Regulation of actin cytoskeleton

Leukocyte transendothelial migration
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FiGure 3: Significantly enriched KEGG pathways for mouse liver microsome proteins (n =
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Fold

259) that were derived from 1DE and 2DE

strategies. KEGG pathway enrichment analysis was performed using WebGestalt. The pathways having enrichment (P < 0.01) are presented.
For each KEGG pathway, the bar shows the x-fold enrichment of the pathway in our dataset.

microsome lysate was arrayed with 2DE, and the membrane
fraction of microsomes purified by the carbonate procedure
was separated with 1DE. The complementary 2DE and 1DE
approaches provided a much wider coverage of microsome
proteome.

Hydrophobicity and relatively low abundance causes a
challenge for proteomic technology to separate and identify
membrane proteins. The hydrophobicity of proteins is
frequently expressed as GRAVY scores (http://us.expasy.org/
tools/protparam.html). A calculated GRAVY score of up to —
0.4 indicates a hydrophobic protein, suggesting a membrane
association [21]. In the current study, 69 (70%) of the 99
proteins identified from 1DE had a GRAVY > —0.4 (Supple-
mental Figure 3), indicating the probability for membrane
association [21]. As shown in Supplemental Figure 4, some
alkaline proteins with PI values close to or greater than
10 were separated by 1DE; they could not be detected in
conventional 2DE map. Only 23 proteins were found to be
consistent between 2DE and 1DE datasets with 6 proteins
classified as membrane proteins (Table 3). All these results
indicate that 1DE is a potent supplement to 2DE, and the

combination of the two approaches is necessary in protein
profiling of microsomes.

Microsome-sealed vesicles could be converted into flat
membrane sheets with cisternal contents that were released
effectively with the treatment solution (100 mM Na,COs;
0°C). It appears to be as effective as the low detergent
procedure in selectively releasing microsomal content. In
the current study, some proteins that were identified from
Na,COs-extracted fraction were classified as membrane
associated mainly based on published reports, even though
their predicted transmembrane domains (TMDs) did not
suggest a membrane origin. The observations point out the
fact that structure alone may not be the deciding factor,
as far as the association of proteins with cell membrane
is concerned. First, the proteins may be bound to the
membrane simply to perform their functional obligations.
Consequently, they could become part of complexes involv-
ing membrane proteins and may not depart from them easily
under the conditions of sample preparation. For example,
many enzymes were identified in the extracted membrane
fraction, such as Cis-retinol androgen dehydrogenase 1
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FIGURE 4: Metabolism of xenobiotics by cytochrome P450 pathway, and ribosome map views of identified proteins. The two enriched
metabolic pathway maps were generated by KEGG, which incorporated the proteomic data into the KEGG pathway maps. All of the genes
in mouse are colored; the genes contained in the protein dataset are red.

(short-chain dehydrogenase family). It is anchored to the ER
membrane facing the cytoplasm by an N-terminal signaling
sequence of 22 residues and takes part in the membrane-
associated retinoid metabolism [23], so is fatty acid-binding
protein, which participates in the palmitic acid or retinylester
metabolism that is incorporated in microsomal membranes
[24] and the free fatty acid transferation to the membrane.
Second, some truly cytosolic proteins may simply integrate
with membrane vesicles during the sonication process and
become difficult to remove by the extraction methods [25].
Studies [5] have demonstrated that hepatic microsomes are
derived from the ER and other cell organelles. The ER
represents a membrane tubular network that crosses the
cytoplasm from the nucleus membrane to the plasma mem-
brane. Moreover, some proteins perform their functions
between cytoplasm and ER, such as fatty-acid-binding pro-
teins [26]. From this point of view, taking all of the portions
into account, 60%-70% of the proteins identified can be
regarded as microsome proteins in this research. A part
(~15%) of identified proteins did not have unambiguous
locations in published reports or annotations in the genome
database. This current study provides information relevant
to subcellular locations of these proteins for subsequent
studies.

Two datasets from 1DE and 2DE are part of the com-
plete protein composition of microsomes. A bioinforma-
tics analysis of the two datasets combined offers more

information. For an overview of the proteomic data and
comprehending their biological importance, biological net-
works GO (BinGO) (http://www.psb.ugent.be/cbd/papers/
BiNGO/index.html) was used to identify GO-category sig-
nificant enrichment with all the identified proteins. BINGO
is a plugin for Cytoscape, which is an open source bi-
oinformatics software platform to visualize and integrate
molecular interaction networks. BinGO maps the predom-
inant functional themes of a given gene set on the GO
hierarchy. Of the 259 target proteins and direct partners
analyzed, 182 target proteins linked to one or more GO
terms. GO-term enrichment analysis revealed that the most
highly represented GO terms in the cellular GO category
component were organelles such as ER, mitochondrial, and
organelle membrane. An analysis of the proteins that were
identified according to their potential roles in biological
processes indicated that the proteins were mainly involved
in metabolic process, localization, transport, and translation.
All the results were highly statistically significant.

The KEGG pathway database integrates current knowl-
edge on molecular interaction networks in biological pro-
cesses. To gain a broad understanding of our dataset,
WebGestalt (a web-based gene set analysis toolkit) was
used to map the identified proteins to KEGG pathways.
The results showed that 112 of the total proteins were
associated with one or more KEGG pathways. Meanwhile,
97 of 112 target proteins (87%) fell into 34 KEGG pathways;
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TABLE 4: Proteins involved in KEGG pathways. (a) Metabolism of xenobiotics. (b) Ribosome.

KEGG pathway Protein ID Protein name MS-identified proteins
eA); é\(/)[gtizlt’g;sm of EC:1.14.14.1  IPI00128287  Cytochrome P450 1A2 +
IP100123964 Cytochrome P450 2A5 +
1P100116572 Cytochrome P450 2D9 +
1P100323908 Cytochrome P450 2D10 +
1P100321644 Cytochrome P450 2D26 +
IP100114779 Cytochrome P450 2C38 +
1P100308328 Cytochrome P450 2F2 +
EC:2.5.1.18 IP100331322 Microsomal glutathione S-transferase 1 +
EC:1.1.1.1 IP100221400 Alcohol dehydrogenase A chain +
B. Ribosome Small subunit IP100135640 26S protease regulatory subunit 8 +
IP100125971 26S protease regulatory subunit SI0B +
1P100331092 40S ribosomal protein S4, X isoform +
IP100116908 Similar to 40s ribosomal protein S12 +
1P100322562 40S ribosomal protein S14 +
IP100465880 40S ribosomal protein S17 +
IP100113241 40S ribosomal protein S19 +
IP100123604 40S ribosomal protein SA +
1P100314950 60S acidic ribosomal protein PO +
Large subunit IPI00331461 60S ribosomal protein L11 +
IP100849793 60S ribosomal protein L12 +
IP100222546 60S ribosomal protein L22 +
IP100139780 60S ribosomal protein L23 +

they were specifically enriched (P < 0.01) compared
to statistical expectations. Pathways that are involved in
benzoate degradation, metabolism of xenobiotic, glutamate
metabolism, and cysteine metabolism were among the most
enriched biologically. This finding was consistent with the
fact that microsomes were used to investigate the metabolism
of compounds and to examine drug-drug interaction by in
vitro studies.

Collectively, the bioinformatics analysis via enrichment
analysis of GO annotation and KEGG pathways derived
meaning from the proteomic data and assisted in the
understanding of the function of liver at the subcellular level.

Novelty and Limitation. Mammalian liver microsome pro-
teomes have been studied by several groups [18-20]. Com-
parison of the current study with the literature data [18-20]
was shown in Tables 5 and 6. Zgoda et al. [18] studied
differential ultracentrifugation-separated mouse liver micro-
some proteome; 2DE and silver stain yielded 1,100 protein
spots, and 138 proteins contained in 2D gel spots were
identified with peptide mass fingerprint (PMF). Zgoda et al.
[19] also studied differential ultracentrifugation-separated
mouse liver microsome proteome with 1DE and MS/MS;
519 proteins were identified including 138 (138/519 = 27%)
predicted membrane proteins. Gilchrist et al. [20] used 1DE
and MS/MS to analyze rat ER and Golgi that were separated
with differential ultracentrifugation and density gradient

centrifugation; 832 ER proteins were identified including
183 (183/832 = 22%) membrane proteins. This current
study combined differential ultracentrifugation and sucrose
gradient centrifugation to prepare mouse liver microsomes;
2DE and Coomassie brilliant blue stain yielded 514 protein
spots, and 183 proteins were identified with MS/MS from 204
excised gel spots, including 41 (41/183 = 22%) membrane
proteins. Na,COs was used to further extract membrane
proteins from isolated microsomes; 1DE and Coomassie
brilliant blue stain yield 17 protein bands, and 99 proteins
were identified with MS/MS from those 17 protein bands,
including 54 (54/99 = 55%) membrane proteins. A total
of 259 nonredundant proteins were identified including
62 (62/259 = 24%) membrane proteins. Compared to the
documented data [18-20], the novelty of this current study
is that the carbonate method significantly increased the iden-
tification rate of microsomal membrane proteins, that some
proteins and functional annotations from this current study
have not been identified in other literature, which expanded
and enriched the documented data, and that the established
analysis system and data will benefit the discovery of liver
disease-related microsomal membrane proteins. Meanwhile,
we also noted that the current study had a relatively low
coverage (n = 259 proteins) of mouse liver microsome
proteome relative to the documented data (n = 519 proteins
[19] and 832 proteins [20]), which might be derived from
several factors: (i) inconsistent protein-extracted procedures
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and protein-stained methods were used, (ii) only part of
2D gel spots were excised to identify proteins, (iii) only
visualized 1D gel bands (not the entire 1D gel lane) were
used for protein identification, (iv) MS/MS (not PMF) was
used to identify 2D gel proteins, (v) different sensitivity mass
spectrometers were used, (vi) different parameters were used
to search protein database. The use of 2D/3D LC-MS/MS
[19] and carbonate extraction of isolated microsomes would
significantly improve the coverage of microsomal membrane
proteome.

5. Conclusions

The preparation of liver microsomes was optimized. The data
presented here demonstrated that 1DE and 2DE are comple-
mentary approaches to analyze the intracellular microsomes
that contain considerable numbers of highly hydrophobic
membrane proteins. An integrated bioinformatics analysis
of all of the microsome proteins identified with 1DE and
2DE can provide a relatively complete understanding of
the protein composition and cellular function of the target
microsome organelles. The information presented here will
be useful for successful analysis of other membranous
organelles. Our data will assist in understanding the function
of liver and are an important reference for subsequent
analysis of liver disease-related microsome proteins for
biomarker discovery and mechanism clarification of a liver
disease.
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ACN:  Acetonitrile

BinGO: Biological Networks Gene Ontology
DTT:  Dithiothreitol

IDE:  One-dimensional gel electrophoresis
2DE:  Two-dimensional gel electrophoresis
ER: Endoplasmic reticulum
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GRAVY: Grand average of hydropathy

HLPP: Human Liver Proteome Project

IEF: Isoelectric focusing

KEGG: Kyoto Encyclopedia of Genes and
Genomes
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Q-TOEF: Quadrupole-time of flight
RP: Reverse phase

TMD: Transmembrane domains.
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