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We will present the latest developments in CutLang, the runtime interpreter of a recently-
developed analysis description language (ADL) for collider data analysis. ADL is a domain-
specific, declarative language that describes the contents of an analysis in a standard and
unambiguous way, independent of any computing framework. In ADL, analyses are written
in human-readable plain text files, separating object, variable and event selection
definitions in blocks, with a syntax that includes mathematical and logical operations,
comparison and optimisation operators, reducers, four-vector algebra and commonly
used functions. Adopting ADLs would bring numerous benefits to the LHC experimental
and phenomenological communities, ranging from analysis preservation beyond the
lifetimes of experiments or analysis software to facilitating the abstraction, design,
visualization, validation, combination, reproduction, interpretation and overall
communication of the analysis contents. Since their initial release, ADL and CutLang
have been used for implementing and running numerous LHC analyses. In this process,
the original syntax fromCutLang v1 has beenmodified for better ADL compatibility, and the
interpreter has been adapted to work with that syntax, resulting in the current release v2.
Furthermore, CutLang has been enhanced to handle object combinatorics, to include
tables and weights, to save events at any analysis stage, to benefit from multi-core/multi-
CPU hardware among other improvements. In this contribution, these and other
enhancements are discussed in details. In addition, real life examples from LHC
analyses are presented together with a user manual.
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1 INTRODUCTION: DOMAIN SPECIFIC LANGUAGES FOR HIGH
ENERGY PHYSICS ANALYSIS

High energy physics (HEP) collider data analyses nowadays are performed using complex software
frameworks that integrate a diverse set of operations from data access to event selection, from
histogramming to statistical analysis. Mastering these frameworks requires a high level knowledge of
general purpose languages and software architecture. Such requirements erect a barrier between data
and the physicist who may simply wish to try an analysis idea. Moreover, even for experienced
physicists, obtaining a complete view of an analysis is difficult because the physics content (e.g.,
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object definitions, event selections, background estimation
methods, etc.) is often scattered throughout the different
components of the framework. This makes developing,
understanding, communicating and interpreting analyses very
challenging. At the LHC, almost all analysis teams have their own
frameworks. There are also frameworks like CheckMate (Drees
et al., 2015; Kim et al., 2015; Tattersall et al., 2016) and
MadAnalysis (Conte et al., 2013; Conte and Fuks, 2014) for
phenomenology studies, and Rivet (Waugh et al., 2006;
Buckley et al., 2013) focused on preserving LHC analyses with
unfolded results for comparison with Monte Carlo event
generator predictions. Yet, working with multiple frameworks
is an extra challenge, since each framework has a different way of
implementing the physics content.

It is therefore crucial to invest time in alternative approaches
aiming towards the rather elusive point of easy to learn,
expressive, extensible, and effective analysis ecosystem that
would allow to shift the focus away from programming
technicalities to physics analysis design. One way to achieve
this is via a well-constructed set of libraries in a GPL
supplemented with a well-designed interfaces that intrinsically
imply a standard and user-friendly analysis structure. A most
promising example in this area is the Scientific Python ecosystem
SciPy1 which brings together a popular GPL and a rich collection
of already existing bricks of classic numerical methods, plotting
and data processing tools. Frameworks can be built based on the
SciPy ecosystem for effective analysis, such as Coffea framework
(Gray et al., 2020) that provides a user interface for columnar
analysis of HEP data.

The approach that we propose in this paper to address these
difficulties is the consideration of a domain specific language
(DSL) capable of describing the analysis flow in a standard and
unambiguous way. A DSL could be based on a completely original
syntax, or it could be based on the syntax of a general purpose
language, such as Python. The important aspect would be to
provide a unique and organized way of expressing the analysis
content. Applying the DSL concept to HEP analysis was first
thoroughly explored as a community initiative by a group of
experimentalists and phenomenologists in the 2015 Les Houches
PhysTeV workshop led to the initial design of LHADA (Les
Houches Analysis Description Accord), to systematically
document and run the contents of LHC physics analyses
(Brooijmans et al., 2016; Brooijmans et al., 2018; Brooijmans
et al., 2020). At the same time, some of the LHADA designers
were already developing CutLang (Sekmen and Unel, 2018; Unel
et al., 2019), an interpreted language directly executable on
events. Being based on the same principles, in 2019, LHADA
and CutLang were merged by combining the best ideas from both
into a unified DSL called “Analysis Description Language (ADL)”
(Prosper et al., 2020), which is described in this paper.

While the prototyping of LHADA, CutLang and ADL was in
progress, parallel efforts arose in the LHC community with the
aim to improve and systematize analysis development
infrastructures. One approach views each event as a database

that can be queried using a language inspired by SQL, and has
been prototyped in LINQtoROOT (Gordon, 2010) and
FemtoCode (Pivarski, 2006a). The SQL-like model is being
further explored in hep_tables and dataframe_expressions
(Watts, 2020) that work together to allow easy columnar-like
access to hierarchical data, and in the recent experimental
language PartiQL (Pivarski, 2006b) designed to inject new
ideas into DSL development and its extension AwkwardQL
(Gray, 2020), designed to perform set operations on data
expressed as awkward arrays. Another study explored building
a DSL embedded within YAML to describe and manage analysis
content such as definitions, event selection, histogramming as
well as perform data processing. The YAML-based language was
integrated into the generic Python framework F.A.S.T. (Krikler,
2020).

The focused DSL developments for analyses are relatively new,
but a DSL has been long embedded within the ROOT framework
(Brun and Rademakers, 1997) under the guise of TTreeFormula,
TTree::Draw and TTree::Scan, which allow visual or textual
representation of TTree contents for simple and quick
exploratory analysis This DSL is however limited only to
simple arithmetic operations, mathematical functions and
basic selection criteria. Recently, ROOT developers introduced
RDataFrame, a tool to process and analyze columnar datasets as a
modern alternative for data analysis (Piparo et al., 2019).
Although RDataFrame is not a DSL itself, it implements
declarative analysis by using keywords for transformations
(e.g., filtering data, defining new variables) and actions (e.g.,
creating histograms), and is interfaced to the ROOT classes
TTreeReader and TTreeDraw. RDataFrame recently led to the
development of the preliminary version of another DSL and its
interpreter called NAIL (Natural Analysis Implementation
Language) (Rizzi, 2020a). NAIL, written in Python. It takes
CMS NanoAOD (Rizzi, 2020b) as an input event format and
generates RDataFrame-based C++ code, either as a C++ program
or as a C++ library loadable with ROOT.

All these different approaches and developments were
discussed among experimentalists, phenomenologists and
computer scientists in the first dedicated workshop “Analysis
Description Languages for the LHC” at Fermilab, in May 2019.2

The workshop resulted in an overall agreement on the potential
usefulness of DSLs for HEP analysis, elements of a DSL scope and
an inclination to pursue multiple alternatives with the ultimate
goal of a common DSL for the LHC that combines the best
elements of the different approaches (Sekmen et al., 2020). The
activities in DSL development are therefore ongoing with a
fast pace.

This initial positive feedback has motivated further progress in
ADL, which will be described here. ADL is a declarative language
that can express the mathematical and logical algorithm of a
physics analysis in a human-readable and standalone way,
independent of any computing frameworks. Being declarative,
ADL expresses the analysis logic without explicitly coding the

1“SciPy: Scientific Computing Tools for Python.”

2“Workshop: Analysis Description Languages for the LHC, 6–8 May 2019,
Fermilab LHC Physics Center.” https://indico.cern.ch/event/769263/.
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control flow, and is designed to describe what needs to be done,
but not how to do it. This consequently leads to a more tidy and
efficient expression and eliminates programming errors. At its
current state, ADL is capable of describing many standard
operations in LHC analyses. However, it is being continuously
improved and generalized to address an even wider range of
analysis operations.

ADL is designed as a language that can be executed on data
and used in real life data analyses. An analysis written with ADL
could be executed by any computing framework that is capable of
parsing and interpreting ADL, hence satisfying the framework
independence. Currently, two approaches have been studied to
realize this purpose. One is the transpiler approach, where ADL is
first converted into a general purpose language, which is in turn
compiled into code executable on events. A transpiler called
adl2tnm converting ADL to C++ code is currently under
development (Brooijmans et al., 2018). Earlier prototype
transpilers converting LHADA into code snippets that could
be integrated within CheckMate (Drees et al., 2015; Kim et al.,
2015; Tattersall et al., 2016) and Rivet (Waugh et al., 2006;
Buckley et al., 2013) frameworks were also studied. The other
approach is that of runtime interpretation. Here ADL is directly
executed on events without being intermediately converted into a
code requiring compilation. This approach was used for
developing CutLang (Sekmen and Unel, 2018; Unel et al., 2019).

In this paper, we focus on CutLang and present in detail its
current state denoted as CutLang v2, which was achieved after
many improvements on the early prototype CutLang v1
introduced in (Sekmen and Unel, 2018). Hereafter, CutLang
v2 will be referred to as CutLang for brevity. The main text
emphasizes the novelties that led to ADL and improved CutLang.
We start with an overview of ADL in Section 2, then proceed with
describing technicalities of runtime interpretation with CutLang
in Section 3. We next present the ADL file structure and analysis
components that can be expressed by ADL, focusing on the new
developments and recently added functionalities in Section 4.
This is followed by Section 5 describing analysis output, again
focusing on new additions, Section 6, explaining the newly-added
multi-threaded run functionality, Section 7 on CutLang code
maintenance and recently incorporated continuous integration,
Section 8 detailing studies on analyses implementation, and
conclusions in Section 9. The full description of the current
language syntax is given in the form of a user manual in
Supplementary Appendix A, followed by a note on the
CutLang framework and external user functions in
Supplementary Appendix B.

2 ANALYSIS DESCRIPTION LANGUAGE
OVERVIEW: FILE AND FUNCTIONS

In ADL, the description of the analysis flow is done in a plain,
easy-to-read text file, using syntax rules that include standard
mathematical and logical operations and 4-vector algebra. In this
ADL file, object, variable, event selection definitions are clearly
separated into blocks with a keyword value/expression structure,
where keywords specify analysis concepts and operations. Syntax

includes mathematical and logical operations, comparison and
optimization operators, reducers, 4-vector algebra and HEP-
specific functions (e.g., dϕ, dR). However, an analysis may
contain variables with complex algorithms non-trivial to
express with the ADL syntax [e.g., MT2 (Barr et al., 2003),
aplanarity] or non-analytic variables (e.g., efficiency tables,
machine learning discriminators). Such variables are
encapsulated in self-contained, standalone functions which
accompany the ADL file. Variables defined by these functions
are referred to from within the ADL file. As a generic rule, all
keywords, operators and function names are case-insensitive. n
The language content, syntax rules, and working examples of self-
contained functions will be presented in the coming sections,
after a technical introduction of the CutLang interpreter.

3 TECHNICAL BACKGROUND OF THE
CUTLANG INTERPRETER

An interpreted analysis system makes adding new event selection
criteria, changing the execution order or cancelling analysis steps
more practical. Therefore CutLang was designed to function as a
runtime interpreter and bypass the inherent inefficiency of the
modify-compile-run cycle. Avoiding the integration of the
analysis description in the framework code also brings the
huge advantage of being able to run many alternative analysis
ideas in parallel, without having to make any code changes, hence
making the analysis design phase more flexible compared to the
conventional compiled framework approach.

CutLang runtime interpreter is written in C++, around
function pointer trees representing different operations such as
event selection or histogramming. Therefore processing an event
with a cutflow table becomes equivalent to traversing multiple
expression trees with arbitrary complexities, such as the one
shown in Figure 1. Here physics objects are given as arguments.

Handling of the Lorentz vector operations, pseudo-random
number generation, input-output file and histogram

FIGURE 1 | An expression tree example: the program traverses the tree
from right to left evaluating the encountered functions from bottom to top.
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manipulations are all based on classes of the ROOT data analysis
framework (Brun and Rademakers, 1997). The actual parsing of
the ADL text relies on automatically generated dictionaries and
grammar based on traditional Unix tools, namely, Lex and Yacc.3

The ADL file is split into tokens by Lex, and the hierarchical
structure of the algorithm is found by Yacc. Consequently,
CutLang can be compiled and operated in any modern Unix-
like environment. The interpreter should be compiled only once,
during the installation or when optional external functions for
complex variables are added. Once the work environment is set
up, the remainder is mostly a think-edit-run-observe cycle.
The parsing tools also address the issue of possible user
mistakes with respect to the syntax. CutLang output clearly
indicates the problem, and the line number of the offending
syntax error. However the logical inconsistencies, such as
imposing a selection on the third jet’s momentum while
only requesting at least two jets are not yet handled.
Ensuring the consistency of the algorithm needs to be done
by the user. Input and output to CutLang is via ROOT files.
The description of the input files and event formats are given
below while the description of the output file and its contents
are given in Section 5.

3.1 Event Input
The CutLang framework takes the input event information in
the ROOT ntuple format and can work with different input
event data types each implemented as a plug-in. Widely used
event formats such as ATLAS and CMS open data,4 CMS
NanoAOD (Rizzi, 2020b), Delphes (de Favereau et al., 2014)
and LHCO event are by default recognized and can be directly
used. New or custom input event formats can also be easily
added via usage of event class headers via a well-defined
procedure described in Supplementary Appendix B.3. The
potential changes in the existing event formats and addition of
new event formats currently need to be adapted manually
following the mentioned procedure. CutLang has its own
internal event format called LVL0. The contents of the
input event formats including all particle types and event
properties are worked through an internal abstraction layer
and adapted to LVL0, which, in turn connects to the syntax of
ADL. The purpose of this approach is to have ADL be
independent of the input file format and be capable of
running the same ADL analysis with CutLang on any input
file. This implies that only a subset of event content is readily
recognized via CutLang when expressed within the ADL
syntax. However, any event variables or attributes included
in the existing event files and formats can be easily added
through external user functions. This way, they can be referred
to within the ADL files and be recognized by CutLang. The
practical details of this procedure can be found in
Supplementary Appendix B.2.

4 DESCRIPTION OF THE ANALYSIS
CONTENTS

We will now explain in detail which analysis components and
physics algorithms can be described by ADL and processes with
CutLang. We will prioritize highlighting the many novelties
added and improvements that took place since the original
versions CutLang v1 and LHADA. The descriptions here
concentrates on the concepts and content that can be
expressed and processed by ADL and functionalities of
CutLang v2, rather than attempting to give a full layout of
syntax rules, which is independently provided in the user
manual in Supplementary Appendix A.

4.1 Analysis Description Language File
Structure in CutLang
As a runtime interpreter, CutLang processes events in a well-
defined order. It executes the commands in the ADL file from
top to bottom. Therefore, the ADL files are required to
describe the analysis flow in a certain order. Some
dedicated execution commands are also used within the
ADL file, in order to facilitate the runtime interpretation.
Throughout the ADL file, the mass, energy and momentum
are all written in Giga Electron Volt (GEV) and angles in
radians. User comments and explanations should be
preceded by a hash (#) sign. To be executable with
CutLang, an ADL file would consist of five possible
sections described below, out of which, existence of one
section is mandatory:

initializations: This section contains commands that are
related to analysis initialization and set up, for which, the
relevant keywords are summarized in Table 1. The keywords
and values are separated by an equal sign. The last two lines in
the table refer to the lepton (electron or muon) triggers. Their
utilization is described in Supplementary Appendix A.2, it is
worth noting at this point that Monte Carlo (MC) simulation
weights are not taken into account when the trigger value is set
to data.
countformats: This section is used for setting up the recording
of already existing event counts and errors, e.g., from an
experimental paper publication. It is therefore not directly
relevant for event processing, but rather for studying the
interplay between the results of the current analysis and its
published experimental counterpart. More generally, it is used
to express any set of pre-existing counts of various signals,

TABLE 1 | Initialization keywords and their possible values.

Keyword Explanation

SkipHistos Skip (�1) or Display (�0) the histograms in final efficiency table
SkipEffs Skip (�1) or Display (�0) the final efficiency table
TRGm 0�Off, 1�Data, 2�MC for muons
TRGe 0�Off, 1�Data, 2�MC for electrons
RandomSeed random number generator seed, an integer

3“Lex and Yacc Page.” http://dinosaur.compilertools.net.
4“CERN Open Data Portal.” http://opendata.cern.ch.
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backgrounds, and data (together with their error) of an
analysis.
definitions1: This section is used for defining aliases for
objects and variables, in order to render them more easily
referable and readable in the rest of the analysis description.
For example, it can introduce shortcuts like Zhreco for a
hadronically reconstructed Z boson, or values like mH,
i.e., mass of a reconstructed Higgs boson. These definitions
can only be based on the predefined keywords and objects.
objects: This section can be used to define new objects based
on predefined physics objects and shorthand notations
declared in definitions1.
definitions2: This section is allocated for further alias or
shorthand definitions. Definitions here can be based on
objects in the previous section and predefined particles.
event categorization: This section is used for defining event
selection regions and criteria in each region. Running with
CutLang requires having at least one selection region with at
least one command, which may include either a selection
criterion or a special instruction to include MC weight
factors or to fill histograms.

We next describe the detailed contents and usage of these
sections.

4.2 Object Definitions
Generally, the starting point in an analysis algorithm is defining
and selecting the collections of objects, such as jets, b jets,
electrons, muons, taus, missing transverse energy, etc. that will
be used in the next steps of the analysis. Usually, the input events
contain very generic and loose collections for objects, which need
to be further refined for analysis needs. CutLang is capable of
performing a large variety of operations on objects, including
deriving new objects via selection, combining objects to
reconstruct new objects, accessing the daughters and
constituents of objects. Once an object is defined, it is also
possible to find objects with a minimum and maximum of a
given attribute within the object’s collection, or sort the collection
according to an attribute.

In the ADL notation, object collection definitions are clearly
separated from the other analysis tasks. Here the term object is
used interchangeably with object collection. Each object is defined
within an individual object block uniquely identified with the
object’s name. These blocks, starting with the input object
collection(s)’s name(s), list different types of operations
afterwards.

CutLang automatically retrieves all standard object collections
from the input event file without the need for any explicit user
statements within the ADL file. It can read events with different
formats, such as Delphes fast simulation (de Favereau et al., 2014)
output, CMS NanoAOD (Rizzi, 2020b), ATLAS or CMS open
data4 ntuples and recognize the object collections in these. One
property unique to CutLang is that it is designed to map input
object collections to common, standard object names with a
standard set of attributes, as described in Supplementary
Appendices A.2 and A.3. For example, AK4jets collection in
CMSNanoAOD and JET collection in Delphes are both mapped

to Jet. This approach allows to process the same ADL file on
different input event formats, and has proven very useful in
several simple practical applications. However, we also
recognize that this approach only works when different
input collections have matching properties, e.g., when
Delphes electrons and CMS electrons have to the same
identification criteria which can be mapped to the same
identification attribute, or a Delphes jet and an ATLAS jet
use the same b-tagging algorithm that can be mapped to the
same b-tagging attribute. Therefore, other interpreters of ADL
may choose to use input collection and attribute names as they
are, in order to be more unambiguous. Allowing to practice
different approaches with advantages for different use cases,
while still adhering to the principle of clarity is a significant
aspect of ADL.

The most common object operation is to take the input object
collection and filter a subset by applying a set of selection criteria
on object attributes. This can be done very straightforwardly in
ADL by listing each selection criterion in consecutive lines. The
objects in the input collection satisfying the criteria can be either
selected or rejected using the select or reject keywords.
Comparison operators such as �, ! � > , < , > �, < � can
directly be used for expressing the criteria. Logical operators
AND, OR and NOT can be used for expressing composite or
reverted criteria. A complete list of these operators can be found
in Supplementary Appendix A.5.

It is also possible to filter an object collection based on other
object collections, such as in the cases of object cleaning or
matching. For example, one can reject jets overlapping with
photons, or select boosted W jets matching generator level W
bosons. Such operations involve intrinsic loops, which are readily
handled by CutLang. Functions such as δϕ or angular distance δR
can be readily used when comparing objects. Given an initial
object collection, one can consecutively derive several objects. For
example jets can be filtered to obtain cleanjets, while cleanjets can
be further filtered to obtain verycleanjets. One can also use the
same initial collection to define different collections such as
taking muons and imposing different criteria to obtain
loosemuons and tightmuons.

Another very common operation is to combine objects to
reconstruct new objects, such as combining two leptons to form a
Z boson. Sometimes, the reconstruction could be very
straightforward, as in requesting to reconstruct only a single Z
boson per each event. However, in other cases, one might have to
reconstruct as many Z bosons as possible. In each case,
reconstructed candidates might undergo filtering or selection
of a single most optimal candidate among all candidates.
Combination operations are very diverse, and finding a
completely generic expression for them is non-trivial. In its v1,
CutLang could reconstruct an explicitly defined number of
objects per event. It could find the object satisfying given
criteria by performing optimization operations. In v2, CutLang
has been generalized to reconstruct any number of objects, by
taking into account the combinatorics. Selection criteria can also
be imposed on both the input and reconstructed objects.
Technical information on how to perform combinations is
provided in Supplementary Appendix A.9.3.
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Another common situation is when objects in a collection are
individually associated to other collections. Examples include
mothers or daughters of generator level particles, subjets or
constituents of jets, associated tracks of leptons or jets. As a
first CutLang was adapted in v2 to work with jet constituents
using the syntax described in Supplementary Appendix A.9.7.
Another example of association is daughters of generator truth
level particles. If an analysis if performed directly on generator
level particles, or if a study is required on truth level particles,
information such as PDGID codes or decay chain become
relevant. CutLang is now capable of accessing PDGID and the
decay products of a particle (referred as “daughters” in HEP),
with the syntax described in Supplementary Appendices A.3.1
and A.9.8. CutLang provides both the number of daughters and a
modifier to refer to the daughters. Work is in progress for finding
a generalizable syntax for object association expressions.

Members of object collections can be directly accessed via their
indices. Being declarative, ADL syntax does not include explicit
statements for looping over object collections, and CutLang is
capable of interpreting this implicit looping. For example,
when filtering a jet collection, one might apply a cleaning
criterion which requires no electron to be in the proximity of
the jet defined by a radius. Applying this criterion requires
looping over electrons, however it suffices to write the electron
object’s name in order for CutLang to interpret implicit
looping based on the context. In other cases, it might be
necessary to access only a subset of the collection, such as
when imposing a selection on the δϕ between first 3 jets with
highest pT and the missing transverse momentum. ADL and
CutLang were updated to allow such operations. The Python
slice notation has been adapted for expressing subset ranges
in object collections, as described in Supplementary
Appendix A.9.4.

Input or defined object collections are by default sorted by
CutLang in the order of decreasing transverse momentum pT .
ADL can express sorting object collections according to any
feature, in ascending or descending order, and CutLang is
capable of performing such sorting operations. Moreover, so-
called “reducers” can be applied for extracting values from
existing object collections. One case is the capability to extract
the maximum or minimum value of a given attribute in an object
collection. For example, CutLang can give the maximum pT
possessed by a jet in a jet collection, or minimum value of
isolation possessed by an electron in an electron collection.
Another case is the summation operation, where one can sum
over the values of a given attribute over the whole collection. The
most common use case here is the summation of object pTs to
obtain event variables such as the hadronic transverse energy HT .
Sorting and reducers are recent additions to ADL and CutLang
and the details on their implementation and usage are given in
Supplementary Appendices A.9.2, A.9.5, A.9.6 and in the
examples referred to in Section 8.

4.3 Object or Event Variables
An object variable is a quantity defined once per object, such as a
jet’s transverse momentum pT or an electron’s relative isolation.
An event variable is a quantity defined once per event, such as

missing transverse energy Emiss
T , number of electrons selected

using the tight criteria, pT of the highest pT jet, transverse mass
calculated using the highest pT lepton and Emiss

T . Object and event
variables used in object definitions or event categorization in
an analysis are not always fully provided in the input event
data. These quantities therefore need to be computed during
the analysis using the existing inputs. ADL is designed to
allow definition of such new variables in two ways. Simple
variables that could be described analytically using a single
line formula can be expressed within the ADL file using
mathematical operations. A classic example would be that
of the definition of transverse mass obtained from a visible
object, such as a lepton, and the missing transverse energy. To
enable writing these simple formulas, CutLang is capable of
parsing and processing operators such as +, −, *, /, $̂ . CutLang
has also incorporated a series of internal functions to express
other operations such as abs(), sqrt(), sin(), cos(), tan() and
log(). Reducer operators used for reducing collections to a
single value, e.g., size(), sum(), min(), max() are also available
for computing quantities. For example, the hadronic
transverse momentum HT can be computed from all jets in
an event using the sum() reducer as sum(pT(jets)).

However, in many cases, variables are defined by complex
algorithms non-trivial to express. Examples such as angular
separation dR, aplanarity, stransverse mass MT2 (Barr et al.,
2003), razor variables (Rogan, 2010), etc. either cannot be
easily written using the available operators or require multiple
steps of calculation. Some of these algorithms, like angular
separation and razor variables were predefined as internal
functions in CutLang, and more, like HT and MT2 were
added recently. A list of existing variables can be found in
Supplementary Appendix A.3. Other algorithms can be easily
incorporated by the user following the recently generalized
recipe in Supplementary Appendix B. Another class of
sophisticated variables include quantities defined from
numerical functions, such as object or trigger efficiencies
used to compute object or event weights, provided in tables
or histograms, or discriminators/efficiencies computed via
machine learning models. All these variables are
incorporated by being defined in independent, self-
encapsulated functions outside the ADL file and referring to
them within the ADL file. These external user functions should
be seen as a natural extension of the language. The ultimate
aim is to provide these functions in a well-defined and
straightforwardly extendable database.

The expressions for variables, whether they are built directly
using the available mathematical operators or indirectly via
internal or user functions, can be written openly in the place
of usage, e.g., in the line when a selection is applied on the
variable. Alternatively, if the variable is used multiple times in an
analysis, e.g., in different selection regions, it can be defined once,
using the define keyword, which allows to assign an alias name to
the variable. Currently, defining aliases using the define keyword
is only possible for event variables in CutLang, but not for object
variables. In CutLang, the define expressions are uniquely placed
at the end of the object blocks and before the beginning of the
event selection.
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4.4 Event Categorization
In a typical collider analysis, events are categorized based on
different sets of selection criteria applied on event variables into a
multitude of signal regions enhancing the presence of the signal of
interest, or control or validation regions used for estimating
backgrounds. These regions can be derived from each other,
and can be correlated or uncorrelated depending on the case.
ADL organizes event categorization by defining each selection
region in an independent region block5 and labels each region
with a unique name. The region blocks mainly consist of a list of
selection criteria. As in the case for objects, each criterion is stated
in a line starting with a select or a reject keyword, which allows to
select or reject the events satisfying the criterion, respectively.
Comparison operators, logical operators and ternary operator,
syntax for which is described in Supplementary Appendix A.5
are used for expressing the criteria. Another operation that can be
performed within the context of event classification is χ2

optimization for reconstructed quantities, whose syntax is
described in Supplementary Appendix A.6. An example
would be finding among several top quark candidates, the
candidate with mass closest to the top quark mass, and using
the optimal candidate’s properties for further selection.

ADL and CutLang allow deriving selection regions from each
other, e.g., deriving multiple signal regions from a baseline
selection region. This is done by simply referring to the
baseline region by name in the new region’s block, and not
repeating the whole selection every time.

In many analyses, especially those targeting searches for new
physics, events in given search regions are partitioned into many
bins based on one or more variables, e.g., HT , Emiss

T or some
invariant mass. Data counts and background estimates in these
bins constitute the result of the analysis. With the increased data,
recent LHC analyses, especially inclusive searches for new physics
may contain hundreds of bins. Treating each bin as an
independent search region and writing a separate block for
each would be highly impractical. As an alternative, recently,
the capability of binning the events in a given region was added to
ADL and CutLang through the bin keyword. Bins in a region, by
definition, are to be non-overlapping. The CutLang interpreter
and framework operate based on this principle, and skip an event
once it is classified into a bin. This property distinguishes bins
from regions, as different regions can be overlapping, and a given
event is evaluated for all regions, independent of whether it is
selected or not by the preceding regions. Bins can be described in
two ways: when the binning is done using only a single variable,
all bins can be defined in a single line, by specifying the variable
name and the bin intervals. When bins are defined based on
multiple variables, this way of description can become
ambiguous, and a more explicit description, where each bin is
defined in one dedicated line can be used. The usage and syntax of
the bin keyword is described in Supplementary Appendix
A.11.1. In case multiple regions would have the same binning

(e.g., a signal region and several control regions from which the
background is estimated), currently, the binning definitions must
be separately specified in each region independently. We are
searching for a more practical way of expression which would
avoid the repetition, while keeping with the human readability
principle.

4.5 Event Weights
In an analysis, events, especially simulated events are usually
weighted in order to match the real data luminosity or to correct
for detector effects. CutLang has been recently adapted to
incorporate the capability of applying event weights. Event
weights can be applied within the region blocks via usage of
the weight keyword as described in Supplementary Appendix
A.10.2. A particular event selected by two different regions can
receive different weights. Event weights can be either constant
numbers or functions of variables. These functions may include
analytical or numerical internal or user functions. Weights based
on numerical functions, such as efficiencies (e.g., trigger
efficiencies) can also be applied from tables written within the
ADL file, as described in Supplementary Appendix A.8. The
systematic way for expressing efficiencies in tables and applying
them to objects and events was incorporated recently in ADL and
CutLang.

4.6 Applying Efficiencies to Objects and
Events Using the Hit-and-Miss Method
As mentioned above, applying efficiencies to events and objects,
such as trigger efficiencies or object reconstruction, identification
and isolation efficiencies is a common part of many analyses.
Section 4.5 described how to apply the effect of event efficiencies
as event weights. There is, however, another approach, which
involves emulating the effects of efficiencies. This approach
involves randomly accepting events or objects having a certain
property, such that the total selected percentage reflects that of
the efficiency. For example, if the overall reconstruction and
identification efficiency for an electron with 20< pT < 40 GeV and∣∣∣∣η∣∣∣∣< 2.1 is 60%, a givenMC truth electron in that pT and

∣∣∣∣η∣∣∣∣ range
is allowed to pass the selection only with a 0.6 probability. The
decision for selection is made by sampling a uniform random
number between 0 and 1, and accepting the event or object if the
uniform random number is greater than the efficiency value.
Usually, the uncertainty on the efficiency is also taken into
account when making the pass/fail decision. This is called the
hit-and-miss method.

Emulating efficiencies using the hit-and-miss method is
regularly used in parameterized fast simulation frameworks. It
is also becoming increasingly relevant to incorporate this
functionality in the analysis step, especially for the benefit of
phenomenological studies targeting interpretation or testing new
analysis ideas. These studies generally use events produced by fast
simulation or even at truth level instead of real collision data
events or MC events produced by full detector simulation as used
in experimental analyses. Experimental analyses use complicated
object identification criteria, which cannot be implemented by
fast simulation. Moreover, it is common to see different analyses

5This block was called algo in the original CutLang syntax. Even though algo is still
valid in CutLang, we generally refer to the block as region, as the latter is a more
domain specific word.
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working with different identification methods for a given object
(e.g., cut-based identification versus multivariate analysis-based
identification for electrons), as different methods may perform
better for different physics cases. Consequently, working with
different phenomenology analyses each using different
identification criteria requires implementing all these criteria
in the simulation step, which is highly impractical. Therefore,
it is helpful for the infrastructure handling the analysis step to
have the capability to emulate using efficiencies.

Emulating efficiencies with uncertainties was recently
incorporated in CutLang. The hit-and-miss method is applied
via the internal function applyHM. In the current
implementation, the efficiency values and errors versus object
properties are input via table blocks in the ADL file. This will be
generalized to reading efficiencies from other formats, e.g., input
histograms or numerical external functions in the near future.

The applyHM function uses a uniform distribution to decide if
the central value was hit (below the value) or missed (above the
value), the central value itself is recalculated in case the table
contains errors. The new value is recalculated each time based on
a double Gaussian function with positive and negative widths
which are the errors of the associated bin in the efficiency table:

dg(x) ≡
�������

2
πpϵu*ϵd

√
*[e− (x − μ)2

2 * ϵ2d
× θ(μ) + e−

(x − μ)2
2 * ϵ2u

], (1)

where μ is the central value of the relevant bin from efficiency
table, ϵu and ϵd are the errors in the same bin and finally θ is the
unit step function. The applyHM function can both be used in the
object blocks for defining derived object collections. It can also be
used in the region blocks to apply efficiencies on a particular
object, e.g., to check whether the jet with the highest pT is a
b-tagged jet or not. Syntax for the applyHM function can be
found in Supplementary Appendix A.9.9.

4.7 Histogramming
As described in the introduction, the main scope of ADL is the
description of the physics content and algorithmic flow of an
analysis. The language content presented up to this point serves
this purpose. However further auxiliary functionalities are
required for practicality while running the analysis on events.
One such functionality is histogramming. Since the start of its
design, CutLang has been capable of filling one-dimensional
histograms of event variables. Recently, the capability of
drawing two-dimensional histograms has been added. The
syntax for histogramming can be found in Supplementary
Appendix A.11.3. Histogramming is currently only available
for event variables. It will be added for object properties in the
near future.

4.8 Alternatives Vocabulary and Syntax
The main priority of the ongoing developments is to establish the
principles of ADL as a language. Here, we refer to a language as a
set of instructions to implement algorithms that produce various
kinds of output through abstractions for defining and
manipulating data structures or controlling the flow of
execution. It is however important to distinguish that a

language can be expressed using alternative vocabulary or
syntax. Here, vocabulary is the words with a particular
meaning in the language, such as block or keyword names,
and syntax is the set of rules that defines the combinations of
symbols that are considered to be a correctly structured
expression of the language. Our experience on the way from
CutLang v1 and LHADA to ADL showed that there might not
always be a single best syntax for expressing a given content.
Alternative syntax options may be more favorable in different use
cases, due to practicality or simply due to different tastes of the
users. Recognizing this, we recently opted to host multiple
syntactic alternatives in ADL and CutLang for several cases.
The most obvious case is the syntax for expression of object
attributes, as described in Supplementary Appendix A.2. It
should be noted that these alternatives can only exist for
simple, localized syntactic expressions but not for the overall
content and structure of the language. A more minor example is
the name for the event classification block keyword, i.e. both
region and algo are valid. Another is in the expression of
specifying the input object collection in an object block, where
either take keyword, using keyword or a colon “:” are valid.
CutLang was recently updated to be able to parse and interpret
different alternatives in such cases. We believe such flexibility will
allow users to find the best ways to express their ideas and
moreover will help CutLang to grow its overall user base.

5 ANALYSIS OUTPUT

CutLang as an analysis framework is designed to output
information and data that would be used for further analysis.
The main output obtained after running an analysis in CutLang is
provided in a ROOT file. The file, first of all, includes a copy of the
ADL file content in order to document the provenance of the
analysis. It also includes histograms with all the event counts and
uncertainties obtained from the analysis and all histograms
defined by the user. CutLang is also capable of skimming and
saving events using the auxiliary save keyword in its internal
format LVL0, as described in Supplementary Appendix A.10.3.
In case event saving is specified in the ADL file, the ROOT file also
stores the saved events.

The output ROOT file includes a directory for each event
categorization region, i.e. each region block. These directories
contain all user-defined histograms specified in the ADL file. The
prototype version of CutLang also had a basic cutflow histogram
listing the number of events surviving each step of the selection in
the given region. The cutflows, including the statistical errors on
counts are also given as text output. In the current version, the
cutflow histograms are improved to include the selection criteria
as bin labels. Moreover, in case binning is used in a region, a
bincounts histogram is also added, where each histogram bin
shows the event counts and errors in each selection bin, and the
histogram bin labels show the bin definition. The cutflow and
bincounts histograms can be directly used in the subsequent
statistical analysis of the results. A screenshot of a simple example
output can be seen in Figure 4 in Supplementary
Appendix A.11.3.
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5.1 Incorporation of Existing Counts
In some cases, event counts and uncertainties from external
sources are needed to be systematically accessible in order to
be processed together with the counts and uncertainties obtained
from running the analysis via CutLang. One example is
phenomenological interpretation studies, where the analysis is
only run through signal samples, while the experimental results,
consisting of data counts and background estimates are usually
taken from the experimental publication. Having the data counts
and background estimates directly available in a format
compatible with the signal counts is necessary for subsequent
statistical analysis. Moreover, for this particular case, it is also
highly desirable to have this information documented directly
within the ADL file. Another example is validation studies, when
either multiple teams in an experimental group are synchronizing
their cutflows, or a reimplemented analysis for a
phenomenological interpretation study is validated against a
cutflow provided by the original experimental publication.
Similarly, having the validation counts and uncertainties in the
same format would make comparison very practical.

Recently, a syntax was developed in ADL for systematically
storing external counts and uncertainties within the ADL file. The
physics process for which the information is given, and the
format of the information is provided within the countsformat
block using the process keyword, while the values are given in the
relevant region blocks right after the definition of the relevant
selection criteria using the counts keywords. The syntax is
detailed in Supplementary Appendix A.11.2. When an ADL
file including external counts and errors is run with CutLang, the
counts and errors are converted into cutflow and bincounts
histograms with a similar format to those hosting the CutLang
output. The histogram and are placed under the relevant region
directories, and physics process is included in the
histogram names.

6 PERFORMANCE AND MULTI-THREADED
RUNS

The CutLang run-time interpreter is eventually aimed for use in
the analysis of very large amounts of experimental data. Therefore
its speed and performance needs to be close to those of analyses
tools based on GPLs. It is expected that the process of run-time
interpretation would decrease the performance due to additional
tasks including lexical analysis, tokenization, etc. Yet, at its
current state, CutLang’s speed is only partially less than that
of a C++ analyzer. For a numerical test, a sufficiently complicated
supersymmetry search analysis (CMS et al., 2019)6 involving
multiple objects, 12 event categorization regions and several
variable calculations based on external functions was run both
with CutLang and the C++-based ADL transpiler adl2tnm using
up to 1M supersymmetry signal events with the CMS NanoAOD
format. The speed comparison for running in a Mac OS setup is

shown in Figure 2. Overall, CutLang is about 20% slower
compared to the same analysis performed using a pure C++ code.

CutLang has been also recently enhanced with the capability of
multi-threaded execution of an analysis to optimally utilize the
available resources and therefore get faster results. Adding -j n to
the command to start the analysis execution enables using n
number of cores, e.g., as

./CLA.sh [inputrootfile] [inputeventformat] -i
[adlfilename] -j 2

for 2 cores. The requirement for n is to be an integer between 0
and the total number of cores on the processor, where the case of
-j 0 is used to select one less than the total number of cores to
maximize performance for demanding analyses while leaving the
operating system necessary part of the resources.

Figure 3 shows the run time dependence on multi-threading.
The mean and standard deviation of these results are further
given in Table 2. The computer used during the test has Intel(R)
Core(TM) i5-8300H with 4 cores, 8 threads and runs Ubuntu
18.04.4 LTS. The number of events analyzed was limited to 3
million due to memory restrictions in the current ROOT
implementation. Although this is not the only possible way to
collect results, it was convenient enough for a first
implementation. It is surely possible to improve this
implementation when the need arises by saving data on disk
to free memory while continuing to run.

As can be seen from the results, total event processing rate
increases linearly as the number of cores increase up to 4. Due to
the processor having only 4 physical cores with 2 logical cores
each, the runs that use more than 4 threads showed minimal
improvement. Simultaneous processing efficiency, resource
demand of background processes and recombination of results
that are obtained in parallel also contribute to the decline in the
multi-threaded run performance.

FIGURE 2 | Speed comparison of CutLang versus the C++ ADL
transpiler adl2tnm on a CMS supersymmetry analysis (CMS et al., 2019)6

using up to 1M supersymmetry signal events with the CMS NanoAOD format
in a Mac OS setup.

6“ADL Implementation of the CMS SUSY Razor Analysis.” https://github.com/
ADL4HEP/ADLLHCanalyses/tree/master/CMS-SUS-16-017.
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In a different performance test, run times for 1, 2, 4 and 8
threaded analyses for varying numbers of events are given in
Table 3. To simplify, a normalized version of Table 3 is also
provided in Table 4, where the run time of an analysis that used a
single core is taken to be the norm. Looking at these tables, it can
be seen that, as the analyses get more complex, higher levels of
multi-threading performance gets increasingly better.

A simple analysis task uses time mainly on reading data from
disk and performing memory transfers. One should note that
having a multicore system does not make an extra contribution in
this scenario as there is only one disk. If the analysis becomes
more complicated, the impact of read and copy operations gets
reduced and CPU-intensive calculations start taking more time.
Therefore in a CPU-intensive complex analysis, the benefit of
having multiple cores becomes more pronounced.

7 CODE MAINTENANCE AND
CONTINUOUS INTEGRATION

The CutLang source code is public and resides in the popular
software development platform GitHub7:

https://github.com/unelg/CutLang

CutLang uses GitHub functionalities for parallel code
development across multiple developers. This development
platform, apart from a wiki page for documentation and
possibility for error reporting, also offers a continuous
integration setup which includes a series of tasks that could be
initiated at a specific time or by a trigger such as a commit to the
main branch. The continuous integration setup was recently
incorporated to automatically validate the code. The setup
compiles the CutLang source code from scratch, and runs the
resulting executable over a set of example ADL files from the
package on a multitude of input data files and formats. By
comparing the output from the examples to a reference output
from earlier runs that were successfully executed and validated,
any coding errors could be automatically detected and reported
by email. The total compilation and execution time is greatly
reduced by using a pre-compiled version of ROOT and by pre-
installing the necessary event files onto a Docker8 image
integrated to a recent Linux (Ubuntu) virtual computer made
available by the development platform.

8 ANALYSIS EXAMPLES

ADL and CutLang are continuously being used for implementing
a diverse set of LHC analyses and running these on events. The
analyses implemented are being collected in the following GitHub
repository9:

https://github.com/ADL4HEP/ADLLHCanalyses

FIGURE 3 | Events processed per second when analysis is divided into 1, 2, 4, 6 and 8 threads for varying number of events. Error bars aremultiplied by 10 tomake
them visible.

TABLE 2 | Data points given in Figure 3.

Threads Mean no. of events/s SD

1 3,063.4 14.5
2 5,853.5 18.5
4 10,223.3 22.3
6 11,028.0 29.6
8 11,272.0 119.6

7“CutLang GitHub Repository.” https://github.com/unelg/CutLang.

8“Docker Web Page.” https://www.docker.com/.
9“ADL LHC Analyses Repository.” https://github.com/ADL4HEP/
ADLLHCanalyses.
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The main focus so far has been to implement analyses
designed for new physics searches, in particular
supersymmetry searches. These supersymmetry analyses are
intended to be directly used to create model efficiency maps to
be used by the reinterpretation framework SModelS (Kraml et al.,
2014; Ambrogi et al., 2018; Ambrogi et al., 2020). The results
obtained by running some of the implemented analyses have also
been validated within dedicated exercises performed during the
Les Houches PhysTeV workshops, in comparison to other
analysis frameworks (Brooijmans et al., 2020). The available
analysis spectrum is currently being extended to cover Higgs
and other SM analyses. Furthermore, studies are ongoing to
improve the functionalities of ADL and CutLang for use in
searches or interpretation studies with long-lived particles,
which involve highly non-conventional objects and signatures.
More recently, analyses examples for CMS Open Data4 and a
sensitivity study case for High Luminosity LHC and the Future
Circular Collider were also added (Paul et al., 2021). In addition,
ADL and CutLang were used as main tools in an analysis school
which took place in Istanbul in February 2020 for undergraduate
students, and several analyses were implemented by the
participating students (Adiguzel et al., 2008). ADL and
CutLang were also used to prepare hands-on exercises for data
analysis at the 26th Vietnam School of Physics (VSOP) in
December 2020.10 The VSOP exercises involving running
CutLang and further analysis of resulting histograms with
ROOT were also adapted for direct use via Jupyter notebooks,
and are documented in detail in VSOP hands-on exercises.11 The
experience in both schools justified ADL and CutLang as highly

intuitive tools for introducing high energy physics data analysis to
undergraduate and masters students with nearly no experience in
analysis.

Implementing analyses with a variety of physics content led to
incorporating a wider range of object and selection operations
and helped to make the ADL syntax more generic and inclusive.
Syntax for generalizing object combinations, numerical efficiency
applications, hit-and-miss method, bins and counts and many
others were introduced as a result of these studies. Consequently,
the scope and functionality of CutLang interpreter and
framework was also enhanced. Many internal and external
functions were added to CutLang to address direct
requirements of the various implemented analyses. Running
different analyses on events also allowed to thoroughly test the
capacity of CutLang in performing complete, realistic
analysis tasks.

9 CONCLUSIONS

We presented the recent developments in CutLang, leading
towards a more complete analysis description language and a
more robust runtime interpreter. The original syntax of the earlier
CutLang prototype version and its event processingmethods have
been modified after a multitude of discussions with other
scientists in the field interested in decoupling the physics
analysis algorithms from the computational details and after
implementing many HEP analyses. Modifications include
significant enhancement of object definition and event
classification expressions, addition of more functions for
calculating event variables, incorporation of tables for applying
efficiencies, adaptation of a system for including external counts,
and more. Although these modifications broke the strict
backward compatibility of the earlier version of the language,
we believe they should be considered as improvements as they
certainly will lead to a cleaner, more robust and a widely accepted
analysis description language. The improved syntax processing
relies on formal lexical and grammar definition tools widely
available in all Unix-like operating systems.

One direct result of the syntax modifications originating from
community-wide discussions is that, in the presented version
there are more than a single way of expressing the same idea in
CutLang. We believe this is a desirable property: after all, in
human languages (that we try to imitate) as well, the same idea
can be expressed in multiple ways. To give an example to reject
events with a property smaller than a certain threshold amounts
to accepting events greater than the same threshold. Such a
property should not be considered as a source of potential
confusion and error, but as a fertility of the language.

CutLang still follows the approach of runtime interpretation.
We strongly believe that direct interpretation of the human
readable commands and algorithms, although slower in
execution as compared to a compiled binary, leads to faster
and less error-prone algorithm development. The possible
event processing speed issues can be cured by parallel
processing of independent events and regions. The interpreted
and human readable nature of CutLang and ADL have a potential

TABLE 4 | Runtimes as percentages of single core runtime.

Processed events Normalized process time

1 2 4 8

104 100 98.7 101 149
105 100 57.2 38.6 45.7
106 100 50.7 29.8 32.0
2.5 × 106 100 51.9 29.4 27.0
4.5 × 106 100 51.3 29.6 26.6

TABLE 3 | Variation of run times with changing number of threads.

Processed events Process time for core used (s)

1 2 4 8

104 3.081 3.041 3.124 4.600
105 21.085 12.062 8.316 9.630
106 306.064 155.195 91.201 97.968
2.5 × 106 776.133 402.723 227.817 209.623
4.5 × 106 1,409.416 722.901 416.964 374.946

10“26th Vietnam School of Physics: Particles and DarkMatter, 29 Nov 2020–11 Dec
2020, Quy Nhon.” https://indico.in2p3.fr/event/19437/overviewhttps://indico.
in2p3.fr/event/19437/overview.
11“VSOP Hands-On Exercises.” https://github.com/unelg/CutLang/wiki/
VSOP26HandsOnEx.
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area of growth and development: with the advance of machine
learning hardware and software tools, the dream of being able to
perform an LHC-type analysis just by talking to the computer in
one’s native tongue might not be too far-fetched.

The advances described in this paper brought ADL and
CutLang to a state where they can handle many standard
analysis expressions and operations and have developed the
earlier prototype into a practically usable infrastructure.
CutLang at its current stage can directly perform
phenomenological studies and some simple experimental
studies. However there are still some limitations to address in
the language and the interpreter. In the near future, ADL syntax
will be further expanded by inclusion of a generic way to describe
arbitrary combinations of objects to form new ones, the capability
of adding new object attributes and defining object associations,
lower level objects or non-standard objects such as long-lived
particles. One major addition would be the capability to express
and handle variations due to systematic uncertainties. Moreover,
the interpreter would benefit from further automatizing the
incorporation of new input data types or external functions,
which currently require manual intervention from the users.
Enabling an automated syntax verification and providing
explicit guidance for possible syntax errors would further
facilitate the analysis process. Plans are underway to improve
the design of the CutLang infrastructure in the near future based
on current best practices in compiler construction to
accommodate all these features and arrive at a more robust,
yet flexible and user-friendly analysis ecosystem. With the
growing data, our field will undoubtedly continue conceiving
new analysis concepts and methods which may not be
immediately applicable in ADL and CutLang. The current
developer team is dedicated to following and implementing
these features. Yet, we foresee that the planned improvements
in the fundamental design of ADL and CutLang will lead the
progress towards the ultimate goal of analysis automation.

Finally, as any language, CutLang/ADL grows with the people
that use it to solve new problems. With every analysis requiring a
new functionality, the list of already-solved problems grows. We
hope that, such an internal library together with the script assisted

addition of external user functions will allow the analysts of the
future to spend less time on previously solved problems and to
focus their energy in innovating solutions to the analysis
problems of the post LHC era colliders.
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