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Abstract
Molecular subtyping of cancer is a critical step towards more individualized therapy and provides important
biological insights into cancer heterogeneity. Although gene expression signature-based classification has been
widely demonstrated to be an effective approach in the last decade, the widespread implementation has long
been limited by platform differences, batch effects, and the difficulty to classify individual patient samples. Here,
we describe a novel supervised cancer classification framework, deep cancer subtype classification (DeepCC),
based on deep learning of functional spectra quantifying activities of biological pathways. In two case studies
about colorectal and breast cancer classification, DeepCC classifiers and DeepCC single sample predictors both
achieved overall higher sensitivity, specificity, and accuracy compared with other widely used classification
methods such as random forests (RF), support vector machine (SVM), gradient boosting machine (GBM), and
multinomial logistic regression algorithms. Simulation analysis based on random subsampling of genes
demonstrated the robustness of DeepCC to missing data. Moreover, deep features learned by DeepCC captured
biological characteristics associated with distinct molecular subtypes, enabling more compact within-subtype
distribution and between-subtype separation of patient samples, and therefore greatly reduce the number of
unclassifiable samples previously. In summary, DeepCC provides a novel cancer classification framework that is
platform independent, robust to missing data, and can be used for single sample prediction facilitating clinical
implementation of cancer molecular subtyping.

Introduction
Cancer subtyping is important for selection of patients

that benefit most from specified therapies and design of
novel targeted agents. Traditionally, cancer classification
is largely based on histopathological and clinical char-
acteristics, which makes it difficult to implement uni-
formly, as individual expertize of the clinicians is often a

major determinant1,2. Although the prognostic value of
these classifications is undisputed, they fall behind in
predicting drug efficacy due to the lack of a clear mole-
cular basis. Instead, as an example in colorectal cancer
(CRC), genetic features, such as KRAS mutation and
microsatellite instability (MSI) status3, have proven pre-
dictive power regarding anti-EGFR and 5-FU efficacy,
respectively. However, classifications based on these
molecular characteristics still leave much of additional
cancer heterogeneity unaccounted for4. Therefore, in
recent years, whole transcriptome-based cancer subtyping
has been widely demonstrated as an efficient approach for
dissecting cancer heterogeneity5. The evident benefit of
this approach is the integration of genetic, epigenetic, and
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microenvironmental features that impact on cancer biol-
ogy and clinical presentation. A widely-implemented
strategy involves consensus clustering for determination
of an optimal number of cancer subgroups, and classifi-
cation with feature selection, i.e., selection of a list of
signature genes6.
While several consensus clustering methods7,8 have

been well established and widely adopted, the classifica-
tion step suffers several critical limitations. First, a sig-
nature gene-based approach places sole emphasis on the
role of individual genes, without effective incorporation of
biological knowledge such as pathway activity, which
often leads to poor interpretability9–11. Second, signature
genes for classification are not always available due to
unpaired gene annotation caused by platform differences,
which hampers its portability and translational poten-
tial12. Last but not least, gene expression profiling is easily
affected by factors such as technical platform variation
and experimental protocols, leading to nonbiological
batch effects13. Mathematical and statistical methods
might be able to correct for such bias so that data from
various sources are comparable. However, such correction
methods are not always suitable, especially in situations
when the sources of bias are unclear. For instance, the
correction power of existing methods such as ComBat14

have been demonstrated to be limited to a balanced
experimental design15. Most critically for clinical imple-
mentation, the batch effects also prevent the development
of gene expression signature-based classifiers for single
sample prediction.
Recent advances in the machine learning community

have shown a great promise to apply deep learning for
cancer classification. For instance, deep convolutional
neural networks have been demonstrated to improve
accuracy and reproducibility of tumor classification based
on histopathological or radiographic images16–19. Deep
learning-based frameworks, such as D-GEX20, Deep-
Chrome21, and DeepSEA22 have also been developed for
predicting gene expression or effects of noncoding var-
iants based on high-dimensional genomic or epigenomic
profiles. Furthermore, several supervised and unsu-
pervised deep learning-based classification methods have
been proposed for cancer detection and diagnosis, and
they have been demonstrated superior performance over
classical methods such as support vector machine (SVM)
and random forests (RF)23–25. Meanwhile, pathway
activities transformed from gene expression profiles have
been shown to be more informative and robust for disease
classification26,27. Motivated by these pioneering works in
machine learning, we developed a novel framework Deep
Cancer subtype Classification (DeepCC), which leverages
both pathway activity transformation and deep learning to
address the abovementioned critical limitations in cancer
subtype classification.

Results
Overall design of DeepCC
DeepCC is a supervised, biological knowledge-based

framework for cancer classification, consisting of two
major steps (Fig. 1a):
1. Transformation of high-throughput gene expression

data to functional spectra. We first perform gene set
enrichment analysis (GSEA)28 for each tumor
sample’s gene expression profile on thousands of
gene sets obtained from public databases such as
MSigDB28. For each patient sample, the vector of
enrichment scores of all gene sets represents a
landscape of molecular patterns associating with
biological functions, and therefore it is referred to as
a functional spectrum.

2. Classification based on deep learning. Taking the
obtained functional spectra as input, we next train
a classifier using deep learning. By using a
trainable multilayer artificial neural network
(ANN) to replace hand-engineered features, deep
learning takes the advantage of functional spectra,
which are more robust and informative. In
contrast, feature selection for high-dimensional
data is a challenging task for conventional
machine learning algorithms, which could lead to
bias especially for high-throughput gene
expression profiles29. To train a DeepCC classifier,
we highly recommend employing a widely adopted
molecular subtyping system, so that the deep
features trained by the ANN can capture most
relevant biological properties associated with each
molecular subtype. In our case studies, we used
the consensus molecular subtyping (CMS)
system30 for CRC and intrinsic subtyping system
for breast cancer (implemented by PAM5031),
which are both widely adopted in respective fields.
The trained DeepCC model can be subsequently
used for classification of new samples.

In short, our DeepCC framework has four major
advantages over previous cancer subtyping methods:
1. Better interpretability. DeepCC transforms gene

expression profiles to functional spectra, which are
transcriptomic patterns that have been previously
demonstrated to directly associate with biological
function. Deep learning is also well known for its
capability to learn high-level representations of data
through multiple hidden layers32. In both case
studies, we demonstrated that deep features learned
by DeepCC represent characteristic biological
processes of different cancer subtypes, which better
dissects molecular heterogeneity than gene
expression signature-based methods.

2. Platform independency. Different types of high-
throughput gene expression data are transformed to
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the same form of functional spectra, and therefore
are directly comparable.

3. More robustness. Since GSEA is performed on the
ranks of input data and corrected by its raw value,
DeepCC is much less influenced by nonbiological
factors such as batch effect and normalization
methods.

4. Single sample prediction. DeepCC can deal with
single sample gene expression data regardless of the
platform by adaptive rescaling to a predefined or
user-defined reference (details in “Methods”
section). DeepCC single sample predictor (SSP)
addresses one critical limitation of previous cancer
classification methods, which hampers the
translation of cancer molecular subtyping into the
clinic.

Case study in colorectal cancer
To demonstrate the performance of DeepCC, we initi-

ally applied it to classify CRC. Recently, we participated in

an international CRC subtyping consortium (CRCSC) and
identified four consensus molecular subtypes (CMSs)30

based on gene expression data of 4151 primary tumor
samples from a total of 18 data sets. The four CMSs are
characterized by distinct molecular features: CMS1 (MSI
immune), CMS2 (canonical), CMS3 (metabolic), and
CMS4 (mesenchymal). Also, the CMSs display vastly
different clinical features including prognosis and
response to therapies. Moreover, together with the CMS
taxonomy we reported a 273-gene classifier based on the
RF algorithm to facilitate classification of additional data
sets30.
The translational potential of a signature gene-based

classifier is always hampered by missing data due to dis-
crepant gene annotations between different gene expres-
sion profiling platforms, leading to poor classification
performance33. In this case study, we collected 14 publicly
available CRC data sets (n= 3578) generated from six
different microarray/RNA-Seq platforms (Table S1).
Comparing Entrez gene annotations between three

Fig. 1 Overview of DeepCC. a A deep learning-based cancer classification framework. DeepCC takes as input high-throughput gene expression data
and transforms it to functional spectra using gene set enrichment analysis (GSEA). A feedforward artificial neural network is employed subsequently
to perform feature learning and build a classifier for cancer classification. b Intersection of gene annotations (Entrez IDs) between three technical
platforms: TCGA RNA-Seq data set, Affymetrix Human Genome U133 Plus 2.0 array, and Agilent Homo sapiens 37 K DiscoverPrint19742 microarray.
c DeepCC’s classification performance on subsets of top variable genes, ranging from 1000 to 20,531, selected for calculating functional spectra on
the TCGA CRC data set (n= 456). The classification performance was evaluated by overall accuracy, mean balanced accuracy, mean sensitivity, and
mean specificity
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representative platforms, RNA-Seq for the TCGA CRC
data set, Affymetrix Human Genome U133 Plus 2.0 array
and Agilent Homo sapiens 37 K DiscoverPrint19742
microarray, we found more than one third of all annotated
genes (8451 out of 23,557) are unique to certain platforms
(Fig. 1b).
To evaluate the robustness of DeepCC to cross-

platform missing genes, we trained a DeepCC classifier
for CMS subtypes using TCGA CRC data set (n= 456)
with CMS subtype information provided by CRCSC8, and
subsequently studied its performance on expression data
of only a subset of genes. More specifically, we iteratively
selected a random subset of genes that are most variable
across TCGA samples (measured by median absolute
deviations), and calculated functional spectra based on the
subset of genes selected for classification. Accuracy,
balanced accuracy, sensitivity, and specificity were calcu-
lated for evaluation of DeepCC’s performance. As
expected, we found that DeepCC accomplished a very
high accuracy (balanced accuracy > 90%) even when only
2000 genes were used for training the classifier (Fig. 1c),
demonstrating DeepCC’s strong robustness to
missing data.
To comprehensively benchmark the classification per-

formance, we trained a DeepCC classifier using the TCGA
RNA-Seq data set with CMS subtype labels, and then
applied it to classify 13 other independent data sets based
on Affymetrix or Agilent microarray platforms (Table S1),
followed by the calculation of sensitivity, specificity, and
accuracy based on their original CMS subtyping infor-
mation. Four widely used signature gene-based classifiers
were constructed based on RF, SVM, gradient boosting
machine (GBM) and multinomial logistic regression
algorithms, respectively. As an intrinsic limitation, we
previously reported that the signature gene-based classi-
fier trained on RNA-Seq and Affymetrix microarray
platform derived data, showed poor performance on
Agilent array derived data30. Compared with these sig-
nature gene-based classifiers, DeepCC demonstrated
higher sensitivity, specificity, and accuracy on the valida-
tion data sets (Fig. 2 and Table S2, P= 8.47 × 10−20,
1.61 × 10–10, 3.07 × 10–21, 4.56 × 10–68, respectively,
McNemar’s tests). Notably, DeepCC SSP also showed
promising performance as DeepCC (Fig. S1), with
remarkably even higher accuracy than the other classifiers
(Fig. 2 and Table S2, P= 3.08 × 10–16, 5.19 × 10–9, 6.56 ×
10–17, 8.2 × 10–60, respectively, McNemar’s tests).
For clinical implementation, it is essential that the

proportion of samples that cannot be accurately classified
is low. Previously we found that ~20% of CRC samples
could not be reliably classified in a single CMS30. The
question remained if this represented biological and
clinical reality, or was a limitation of the classification
strategy. Because we detected large variation in the

number of unclassifiable samples in the various data sets
(range 11–48%)30, we suspected that it is predominantly
the latter reason paired with data set dependent differ-
ences in data quality. Therefore, we hypothesized that
DeepCC would be able to reduce the number of unclas-
sifiable samples. To assess classification performance, we
used the same criterion that was previously employed for
the CMS classifier (posterior probability > 0.5). Across all
data sets previously analyzed by CRCSC, DeepCC only
failed to classify ~5% tumor samples, much lower than
previously reported methods using the same data series
(Fig. 3a). To further investigate whether this classification
has practical meaning, we performed survival analyses and
Fisher’s exact tests for associations with key molecular
features (MSI, CIMP, CIN, P53, BRAF, and KRAS) on a
public data set (CIT/GSE39582, n= 557). In the CIT data
set, DeepCC can classify 531 out of 557 samples, whereas
the CMS classifier based on RF failed to classify 117 out of
them. Interestingly, these unclassifiable samples were
mainly in the boundary regions of the CMS signature
gene space (Fig. S2 and Table S3), suggesting an effect of a
suboptimal classification strategy for CMS classifier.
Furthermore, the classification results of DeepCC have in
general higher associations with molecular markers and
clinical outcomes than those of other classifiers (Fig. S3
and Tables S2 and S4). These results demonstrated that
DeepCC-based classifications display generally stronger
associations with molecular and clinical features, while
greatly reduce the number of ‘unclassifiable’ samples.
An important advantage of deep learning is feature

learning34. The ANN employed by DeepCC learned fea-
tures through a hierarchy of hidden layers, showing gra-
dual increasing within-subtype compactness, as indicated
by the distributions of CRC samples and average silhou-
ette widths (ASWs) measured in the TCGA data set
(Fig. 3b). Deep features obtained at the last layer of ANN
in DeepCC show distinct patterns across different CRC
subgroups (Fig. S4). Especially, after clustering of absolute
correlation coefficients between features, three distinct
groups of deep features emerged (Fig. 3c). Interestingly,
these feature groups are highly correlated with MSI,
metabolic dysregulation, and higher epithelial-to-
mesenchymal transition (EMT), respectively (Table S5),
which summarize the major characteristics of CMS1,
CMS3, and CMS4 respectively. CMS2 is a canonical
subtype, which is here reinforced by a lack of distinctive
feature sets recognized. Moreover, we found that the deep
features extracted by DeepCC provide a better repre-
sentation of patients than the signature genes. In each
individual validation data set, we found patient samples
are more compactly distributed within assigned sub-
groups in the space of deep features than in the space of
signature genes (two representative examples in Fig. 3d,
and the others in Fig. S5). To quantitatively compare the

Gao et al. Oncogenesis            (2019) 8:44 Page 4 of 12

Oncogenesis



within-class coherence, we calculated ASW of patient
samples. We found that the ASWs calculated using deep
features are much higher than those based on expression
levels of signature genes in all data sets (Figs. 3d, S5, P <

0.01, one-sided Wilcoxon signed-rank test). This impli-
cates that DeepCC can find more fundamental functional
distinctions between cancer subtypes, which also explains
its superior classification performance.

Fig. 2 CRC classification performance. Bar plots of classification performance of DeepCC, compared to other signature gene-based approaches.
The performance was evaluated on 13 independent validation data sets and the merged data set (ALL), by a balanced accuracy (calculated by the
mean of balanced accuracy per class), b overall accuracy, c sensitivity (calculated by the mean of sensitivity per class), and d specificity (calculated by
the mean of specificity per class)
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Case study in breast cancer
To evaluate the general applicability of DeepCC to other

cancers, we studied breast cancer, another major malig-
nancy with well characterized molecular subtypes. As a

reference, we employed PAM5035 for intrinsic subtype
classification, which is a widely used transcriptome-based
classification system. In PAM50, five distinct (intrinsic)
molecular subtypes are defined: Basal-like, Her2, Luminal

Fig. 3 (See legend on next page.)
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A, Luminal B, and Normal-like. Using TCGA RNA-Seq
data set (n= 517) with subtyping result predicted by
PAM50, we trained a supervised DeepCC classifier to
evaluate the classification performance. Similar to the case
study in CRC, we first evaluated the robustness of
DeepCC classifier to cross-platform missing genes in
breast cancer. As expected, DeepCC accomplished a high
accuracy (balanced accuracy > 80%) even when only 1000
genes were used for training (Fig. S6). The classifier was
subsequently applied to classify four other independent
validation data sets (Table S6). DeepCC successfully
extracted deep features highly correlated with the
underlying biological characteristics of breast cancer
subtypes (Fig. 4a and Table S7). Similarly, patient samples
showed higher within-class coherence in the deep feature
space than in the signature gene space, as suggested by the
much higher ASWs (Fig. 4b, P < 0.01, one-sided Wilcoxon
signed-rank test). Furthermore, survival analyses on the
four validation sets (TANSBIG, UNT, UPP, and NKI)
separately and jointly demonstrated that DeepCC classi-
fication has higher associations with disease-free survival
than PAM50 (Figs. 4c, S7 and Table S8). The clinical
relevance is also supported by the significant associations
(all P < 10–12, Fisher’s exact tests) between the Luminal
and HER2 subtypes predicted by DeepCC with ER/PR and
HER2 receptor status, which are their corresponding
characteristic markers, respectively (Table S9).

Discussion
Major malignancies such as breast and CRCs have been

demonstrated to be molecularly heterogeneous, which
directly relates to diverse patient outcomes in the clinic.
The last decade has seen rich literature for dissecting
molecular heterogeneity of cancers, including our own
work on colon cancer30,36,37. The common drawback of
all these studies, however, lies in the limitations of the
employed gene expression signature-based classification
approach: platform dependency, poor robustness to batch
effects, and lack of capability for single sample classifica-
tion. In this study, to address these challenges we

developed a novel supervised framework DeepCC, which
leverages the power of deep learning based on an ANN for
cancer classification. DeepCC transforms gene expression
profiles to transcriptional patterns with functional rele-
vance using GSEA, followed by deep learning using a
trainable multilayer ANN.
We demonstrated the superior performance of DeepCC

to other popular classification methods using multiple
independent gene expression data sets involving over
4000 patient samples in a recent study by the CRCSC30.
We found that cancer patients are much more compactly
distributed in the deep feature space than in the signature
gene space, demonstrating the superior classification
performance of DeepCC compared with other conven-
tional methods. Of the utmost translational importance is
the ability of DeepCC to successfully classify single sam-
ples. Furthermore, to show the general applicability of this
new classification framework, we effectively applied
DeepCC to breast cancer, and demonstrated a better
performance over PAM50, which is a widely used classi-
fication system in breast cancer.
It should be noted that DeepCC is a supervised, biolo-

gical knowledge-based framework specifically developed
for addressing current challenges in classification but not
clustering of cancer patients. In the last decades, mole-
cular subtyping for major malignancies has been exten-
sively studied, and many subtyping systems have been
well established. However, implementing these subtyping
systems is challenged by the abovementioned limitations
of classical classification methods, which motivated us to
develop DeepCC. In practice, it is recommended to use a
widely adopted molecular subtyping systems, such as the
CMS30 for CRC and intrinsic subtyping for breast cancer
(implemented by PAM5031), to train a DeepCC classifier
for a particular cancer type. The trained DeepCC model
can be subsequently used for classification of new sam-
ples, facilitating real clinical implementation of cancer
subtyping considering its superior performance, cross-
platform robustness and capability for single sample
prediction, as demonstrated in our case studies.

(see figure on previous page)
Fig. 3 Applying DeepCC to CRC classification. a Bar plots of unclassified samples across multiple data sets demonstrating the superior
classification performance of DeepCC. The TCGA data set was used to train DeepCC, DeepCC SSP, random forests, SVM, GBM, and multinomial logistic
regression classifiers, which were applied to classify 13 independent data sets. In addition, the CMS classifier built by CRCSC was also included for a
comparison. b Features learned by the hierarchical network of DeepCC showed increasing within-subtype compactness as the hidden layer goes
deeper, as indicated by the distributions of CRC samples and average silhouette widths (ASWs) measured in the TCGA data set (n= 456). For
visualization, the same set of samples were shown in the space of the first two principal components of features learned at each hidden layer (from 1
to 5). c Deep feature groups implicate the distinct biological functions associated with CRC subtypes. Deep features were obtained from the last
hidden layer of the ANN trained with the TCGA data set (n= 456). Clustering of absolute Pearson correlation coefficients between the ten deep
features identified three deep feature groups, which are highly correlated with microsatellite instability, metabolic dysregulation, and higher
epithelial-to-mesenchymal transition, respectively. The order of deep features is in Fig. S4 and the detailed list of top correlated gene sets for each
deep feature is in Table S5. d Visualization of patients from two independent validation cohorts in the space of the first two principal components
(PCs) of expression data of the 273 CMS signature genes and the ten deep features, respectively. In both data sets, samples are much more tightly
distributed within assigned subtypes in the deep feature space than the signature gene space, as quantified by average silhouette width (AWS)52
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Fig. 4 (See legend on next page.)
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There are various molecular testing assays such as
Mammaprint31, BluePrint38, and Oncotype DX39, which
have been well established and already applied in clinical
practice. However, MammaPrint, and Oncotype DX are
prognostic tools for prediction of high-, (intermediate-),
and low-risk of recurrence and/or metastasis, which are
not strictly ‘biological’ subtypes. BluePrint can only pre-
dict Luminal, HER2, and Basal subtypes, but cannot
distinguish between Luminal A and Luminal B subtypes.
Instead, PAM50 classification system encompasses all the
five intrinsic molecular subtypes of breast cancer, and
therefore is an ideal subtyping system for training
DeepCC. Similarly, a number of risk scoring assays for
CRC recurrence prediction have been developed,
including Oncotype DX for Colon Cancer39, ColonPRS40,
ColoPrint41, GeneFx Colon42, OncoDefender-CRC43,
ColoGuideEx44, ColoGuidePro45, and miRNA recurrence
classifier46. All these assays have demonstrated prog-
nostic values in independent patient series, but are not
defining or predicting molecular subtypes of CRC.
Therefore, in our CRC case study we selected the widely
adopted CMS system developed by CRCSC to train
DeepCC.
Since DeepCC employs GSEA to transform gene

expression data to functional spectra, the prior knowledge
of gene sets needs to be comprehensive to avoid potential
bias. Of special importance are the major characteristic
signaling pathways or biological processes for each cancer
subtype, which should be included in the gene set data-
base. In practice, it is highly recommended to use a
database with a large scale of curated gene sets that are of
high quality such as MSigDB v6.0 database employed in
our case studies, which includes 17,779 gene sets
encompassing all cancer hallmark signaling pathways.
In conclusion, our deep learning-based framework

DeepCC integrates biological knowledge, overcomes
limitations of signature gene-based approach and leads to
more robust performance. Through case studies on CRC
and breast cancer, we also demonstrated its superior
classification performance and clinical relevance. The
capability of DeepCC to reliably classify single samples,
using transcriptome data obtained by any platform will
greatly facilitate the translation of molecular subtyping
into clinical practice.

Materials and methods
Data processing
Colon cancer data sets
In this study, we analyzed 14 independent CRC data

sets, involving in total 3578 primary tumor samples (Table
S1). TCGA CRC set was employed as our training cohort,
and the corresponding gene expression data (level 3 RNA-
Seq data) were downloaded from Firehose Broad GDAC
portal (http://gdac.broadinstitute.org/). For patient sam-
ples with both gene expression data based on Illumina GA
and Hi-Seq platforms, we only kept the Hi-Seq version.
Scaled estimates in the gene-level RSEM files were first
converted to TPM (transcripts per million) by multiplying
with 106 and then log2-transformed.
For validation, 11 out of 13 data sets were curated by

CRCSC (n= 2 674)8, including GSE13067 (n= 73),
GSE13294 (n= 155), GSE14333 (n= 157), GSE17536
(n= 174), GSE20916 (n= 90), GSE2109 (n= 287),
GSE35896 (n= 62), GSE37892 (n= 127), GSE39582 (n=
557), KFSYSCC (n= 305), and PETACC3 (n= 687).
These curated gene expression data were downloaded
from the official repository of CRCSC on Synapse (https://
www.synapse.org/#!Synapse:syn2623706/wiki/). More
details about the curation procedures can be found in
Guinney et al.30, which resulted in expression levels of
5973 genes for each data set. The other two validation
data sets, GSE42284 (n= 188), GSE33113 (n= 90), were
downloaded from GEO directly in its processed form,
using Bioconductor package ‘GEOquery’. The GSE42284
data set is based on Agilent Homo sapiens 37 K Dis-
coverPrint_19742 microarray platform, including 188
CRC patient samples, processed by Agilent Feature
Extraction software based on MedianSignal output and
normalized by Lowess normalization47. Probeset IDs were
converted to gene symbols based on the corresponding
gene annotations (GPL16280), and then further converted
to Entrez IDs using Bioconductor package ‘org.Hs.eg.db’.
The GES33113 data set is based on Affymetrix Human
Genome U133 Plus 2.0 array. The GSE33113 data set
includes 90 CRC patient samples and 6 normal samples,
and was processed by MAS5.0 normalization and GCOS
software36. We only kept colorectal samples, and then
converted all probeset IDs to Entrez IDs based on the
corresponding gene annotations (GPL570).

(see figure on previous page)
Fig. 4 Applying DeepCC to breast cancer data sets. a Deep features of breast cancer learned from the TCGA data set (n= 517). In the left
heatmap, rows represent patient samples, and are ordered by the four CMS subtypes. In the right heatmap, deep features were clustered by the
absolute Pearson correlation coefficients between each other. b Visualization of patients in five independent breast cancer data sets. The top and
bottom rows of figures visualize patients in the spaces of the first two principal components (PCs) of expression data of PAM50 signature genes and
the ten deep features, respectively. In each independent data set (TANSBIG, UNT, UPP, NKI, and TCGA), samples are much more tightly distributed
within assigned subtypes in the deep feature space than the signature gene space, as quantified by average silhouette width (AWS). c Kaplan–Meier
survival curves of patients in all of four breast cancer data sets (TANSBIG, UNT, UPP, and NK). KM plots on the left and right were generated based on
classification using DeepCC and the PAM50 classifier, respectively

Gao et al. Oncogenesis            (2019) 8:44 Page 9 of 12

Oncogenesis

http://gdac.broadinstitute.org/
https://www.synapse.org/#!Synapse:syn2623706/wiki/
https://www.synapse.org/#!Synapse:syn2623706/wiki/


In addition, CMS classification labels associated with all
samples were also obtained from CRCSC Synapse repo-
sitory (https://www.synapse.org/#!Synapse:syn2623706/
wiki/).
More details about the CRC data sets can be found in

Table S1.

Breast cancer data sets
Four breast cancer data sets (TANSBIG, UNT, UPP, and

NKI) were downloaded from Bioconductor (http://www.
bioconductor.org/) in their processed form.
For MACQ II BR cohort, the raw data were downloaded

from GEO database with the accession number GSE20194
in R using ‘GEOquery’ package. The GSE20194 data set is
based on Affymetrix Human Genome U133A Array,
including 230 breast cancer patient samples, normalized
using MAS5.0 method. Probeset IDs were converted to
gene symbols based on corresponding gene annotations
(GPL96), and then converted to Entrez IDs using Bio-
conductor package ‘org.Hs.eg.db’.
In the breast cancer case study, PAM50 labels for the

TCGA BRCA cohort obtained from TCGA48 were used
for training and validation.
More details about the breast cancer data sets can be

found in Table S6.

Functional spectra
A functional spectrum is a list of Enrichment Scores

calculated by GSEA28. The following steps are used to
calculate the enrichment score ES:
1. Filter duplicate probes of gene expression to prevent

overestimation.
2. Calculate log2 fold changes D of N genes by

subtracting the background signal.
3. Rank order D to form the gene list L= {g1,…,gN},

which is in a descending order.
4. Form a list S= {s1,…,sN} containing the

contribution of each gene for the enrichment score.
For a gene ghit in the gene set C, we score it by

ghitj jP
gi2C

gij j; for a gene not in the gene set C, we score it

by � 1
N�

P
gi2C

1
.

5. Calculate the accumulation sum from s1 in S to
obtain the deviation, and the value deviated the most
from zero is the enrichment score ES.

In this study, we used all 17,779 gene sets in MSigDB28

v6.0 (downloaded on 1 Jun 2017).

Deep learning implementation
The deep learning framework in DeepCC was imple-

mented based on MXNet (https://arxiv.org/abs/
1512.01274) incorporating the latest optimization meth-
ods developed by deep learning community, which can

run on both CPU and GPU. By default, DeepCC builds a
fully connected multilayer perceptron (feedforward neural
network)49 using the architecture of hidden layers: 2000,
500, 120, 30, 10 with Tanh activation function. The last
layer for output is SoftMax. The whole network is initi-
alized using Xavier50. The optimizer can be chosen from
SDG51 (learning rate= 0.01, momentum= 0.9) or Ada-
Delta (https://arxiv.org/abs/1212.5701).

DeepCC classifier and single sample predictor (SSP)
To predict an individual sample, DeepCC SSP calculates

the functional spectrum using a user-customized or a
predefined reference, which is averaged gene expression
profile over all samples for a specific cancer type in
TCGA. First, we keep overlapped genes and rescale the
input gene expression profile to the reference by fitting a
linear model using the ‘lm’ function of R package ‘stats’. A
functional spectrum is subsequently calculated using the
residuals obtained from the linear regression, which is
used as the input into the trained DeepCC classifier for
classification.

Other classification approaches and evaluation metrics
To compare DeepCC with signature gene-based approa-

ches, we employed center-normalized expression data for
the 273 CMS signature genes to build classifiers using dif-
ferent classification algorithms, including RF, SVM, GBM
and the multinomial logistic regression model.
Four statistical measures were used to evaluate the

classification performance. For each CMS subtype, we
first calculate true positive (TP), false negative (FN), false
positive (FP), and true negative (TN), and then calculate
the following measures:
1. Mean of sensitivity (per class). For each class, the

sensitivity was calculated using TP/(TP+ FN).
2. Mean of specificity (per class). For each class, the

specificity was calculated using TN/(TN+ FP).
3. Mean of balanced accuracy (per class). For each

class, the balanced accuracy was calculated using
(sensitivity+ specificity)/2.

4. Accuracy. The overall accuracy is the total number
of correct predictions divided by the total number of
patient samples.

Functional analysis and visualization
To identify highly correlated biological functions of

each subtype, we first calculated Pearson correlation
coefficients between deep features extracted by DeepCC
and enrichment scores of gene sets in the training data
set. We obtained a correlation matrix indicating the
relationships between deep features and functional gene
sets. Highly correlated gene sets, either positively or
negatively, indicate biological functions highly associated
with deep features (Tables S4 and S7).
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To visualize classification results by DeepCC and sig-
nature gene-based approaches, we projected all patients
into the deep feature space and the signature gene space,
respectively. For DeepCC, the first two principal compo-
nents of the ten deep features were visualize in a two-
dimensional space, For the other classification approa-
ches, the first two principal components of the expression
levels of signature genes were visualized in a two-
dimensional space.

Code availability
R package
DeepCC was implemented as an R package, and the
source code and instructions for running DeepCC
locally are available at GitHub.
Project name: DeepCC
Project home page: https://cityuhk-compbio.github.io/
DeepCC/
Operating system(s): Platform independent
Programming language: R and C
Other requirements: R version 3.3 or higher; MXNet
version 0.10, or higher
License: MIT

Online platform
An online platform of DeepCC (https://cityuhk-

compbio.github.io/deepcc_online/) is also provided for
transformation of gene expression profiles of tumor
samples to functional spectra and prediction of cancer
subtypes based on pretrained models.

Statistics
All statistical analyses were performed using R (version

3.3.3; http://www.r-project.org) and P < 0.05 was con-
sidered as significant in all cases. RF, SVM, GBM, and the
multinomial logistic regression model were implemented
by ‘randomForest’, ‘kernlab’, ‘gbm’, and ‘glmnet’ package
respectively in R. Radial kernel and probability model was
used for SVM. All other parameters were kept as default
in each respective package. The linear model used in
DeepCC SSP was implemented by the ‘lm’ function of R
package ‘stats’. The comparison of classification results
was based on McNemar’s chi-squared test in R, imple-
mented by the ‘mcnemar.test’ function in ‘stats’ package.
Analyses of disease-free survival data were performed
using R package ‘survival’ and p-values were derived from
log-rank tests. AWSs were used as the quantification of
the relevance between features and CMS subtypes, cal-
culated by the function ‘silhouette’ in R package ‘cluster’.
Fisher’s exact tests, t-tests, Wilcoxon signed-rank tests,
Pearson correlation coefficients were calculated using R
package ‘stats’.
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