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Abstract

Both cortical and subcortical regions can be functionally organized into networks. Regions 

of the basal ganglia are extensively interconnected with the cortex via reciprocal connections 

that relay and modulate cortical function. Here we employ an edge-centric approach, which 

computes co-fluctuations among region pairs in a network to investigate the role and interaction 

of subcortical regions with cortical systems. By clustering edges into communities, we show that 

cortical systems and subcortical regions couple via multiple edge communities, with hippocampus 

and amygdala having a distinct pattern from striatum and thalamus. We show that the edge 

community structure of cortical networks is highly similar to one obtained from cortical nodes 

when the subcortex is present in the network. Additionally, we show that the edge community 

profile of both cortical and subcortical nodes can be estimates solely from cortico-subcortical 

interactions. Finally, we used a motif analysis focusing on edge community triads where a 

subcortical region coupled to two cortical regions and found that two community triads where 
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one community couples the subcortex to the cortex were overrepresented. In summary, our 

results show organized coupling of the subcortex to the cortex that may play a role in cortical 

organization of primary sensorimotor/attention and heteromodal systems and puts forth the motif 

analysis of edge community triads as a promising method for investigation of communication 

patterns in networks.
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1. Introduction

Characterizing the structural organization of the human brain has been a goal of network 

neuroscience since the inception of the connectome (Hagmann et al., 2008; Sporns et al., 

2005). The anatomical organization of connected neural elements is highly complex, which 

gives rise to a large repertoire of functional interactions. By aggregating blood oxygen 

level dependent (BOLD) signal from functional magnetic resonance imaging (fMRI) into 

regional measurements, functional connectivity (FC) among these regions (network nodes) 

can be estimated via measures of statistical dependence (network edges/weights; commonly 

Pearson correlation) between BOLD time courses. Resting state and task fMRI paradigms 

have revealed an intrinsic organization into functional systems (Fox et al., 2006; Yeo et al., 

2011), which, as network science approaches have revealed, are arranged into a multi-scale 

modular architecture (Betzel and Bassett, 2017; Mucha et al., 2010; Sporns and Betzel, 

2016). Additionally, within clinical network neuroscience alterations in FC have been 

reported in various disease states such as schizophrenia (Fornito et al., 2012), Alzheimer’s 

disease (Contreras et al., 2019), and other brain disorders (Fornito et al., 2015).

The modular structure of fMRI-derived FC is a topic of great interest in network 

neuroscience. It refers to the decomposability of FC into clusters or communities of neural 

elements that possess greater connectivity within the same community compared to between 

different communities (Power et al., 2011). The brain’s community structure has been 

studied in relation to networks estimated from task fMRI reported activations (Stanley et al., 

2014) and from intrinsic functional systems identified at rest (Betzel et al., 2016; Di and 

Biswal, 2015). It is now hypothesized that modular structure is important for specialized 

brain function (Bertolero et al., 2015). This hypothesis is supported by studies that have 

shown correspondence between intrinsic networks at rest and activations in task-based 

paradigms (Crossley et al., 2013; Di et al., 2013), as well as reconfiguration of modular 

networks between rest and task (Cohen and Esposito, 2016; Hearne et al., 2017; Smith et al., 

2009). However, the focus has remained primarily on cortical community structure, with less 

work focused on contributions from major subcortical regions (Bell and Shine, 2016).

The basal ganglia and related structures within the subcortex are involved in a diverse set 

of functions though intra-subcortical communication as well as with cortical regions. Core 

regions of the subcortex, the striatum and globus pallidus are predominantly associated 

with motor functions and reward (Haber and Knutson, 2010; Lanciego et al., 2012), while 
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other subcortical structures (thalamus, amygdala, hippocampus) have roles in emotional, 

memory, and sensorimotor functions through various subcortical and cortico-subcortical 

circuits (Child and Benarroch, 2013; Choi et al., 2017; Janak and Tye, 2015; Nakajima 

and Halassa, 2017; Sherman, 2017). Early understanding of subcortical function comes 

from studies that employed electrical stimulation and tract tracing in nonhuman models 

(Haber et al., 1990; Olds and Milner, 1954), as well as lesion studies of human patients 

(Ward et al., 2013). As fMRI has become increasingly used to map subcortical organization 

and function noninvasively in vivo, studies that focused on subcortical FC have shown 

connectivity between the amygdala nuclei and hippocampus, caudate, and several cortical 

regions (prefrontal cortex, insula, and cingulate) (Janak and Tye, 2015; Tillman et al., 

2018; Weis et al., 2019). Differential FC profiles of thalamic nuclei connectivity to cortical 

and subcortical regions have also been observed (Child and Benarroch, 2013; Nakajima 

and Halassa, 2017; Sherman, 2017). In recent years, methods have emerged that focus on 

network connections/edges more so than on network nodes (for review see (Faskowitz et 

al., 2021)). Among those, Faskowitz et al. (2020) developed a framework that represents 

the network as functional interactions of edges, which can be clustered to reveal an edge 

community structure, where each edge is assigned a community label (Faskowitz et al., 

2020; Jo et al., 2021). This edge community structure approach offers a novel avenue for 

investigating subcortico-cortical interactions and communication.

The edge FC model uses nodal BOLD time series to estimate co-fluctuations among pairs 

of nodes, which can be interpreted as time-dependent pattens of communication. Therefore, 

community structure obtained from these co-fluctuation edge time series identifies groups 

of edges that may support similar communication strategies among connecting nodes 

and, when mapped back onto a node-by-node matrix, reveals an overlapping community 

structure. Prior work (Faskowitz et al., 2020; Jo et al., 2021; Zamani Esfahlani et al., 2020) 

has focused on mapping cortical communities, revealing a distinction between primary 

systems (visual, somatomotor, dorsal and ventral attention, and temporal parietal) and 

heteromodal systems (control, default mode, and limbic), without considering the roles 

and contributions of subcortical nodes. To address this, we investigated how subcortical 

regions contribute to, affect, or are affected by cortical modular organization. Our hypothesis 

is that the subcortex, via edge community structure, will differentially interact with 

different cortical systems. We also introduce a novel motif analysis based on edges’ 

community assignments, which we refer to as “edge community triads”, and we leverage 

this approach to further probe subcortico-cortical communication patterns. Edge community 

triads are three node subgraphs consisting of four types, based on the organization of edge 

communities. Given to the role of the subcortex in information integration, we hypothesized 

that triads which connect a subcortical node to two cortical nodes via the same edge 

community will be over-represented relative to other triad types. This would demonstrate 

that subcortico-cortical communication patterns as estimated by edge community structure 

from resting state fMRI (rs-fMRI) capture biologically meaningful information about 

subcortico-cortical organization.
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2. Materials and methods

2.1. Dataset

In this study we analyzed data from the Human Connectome Project (HCP) ICA-FIX 

(Griffanti et al., 2014; Van Essen et al., 2013) preprocessed dataset. Informed consent was 

obtained from all participants and all study protocols and procedures were approved by 

the Washington University Institutional Review Board. Data were collected on a Siemens 

3T Connectom Skyra with a 32-channel head coil. A detailed description of acquisition 

protocols can be found elsewhere (Glasser et al., 2013; Van Essen et al., 2013). Briefly, 

rs-fMRI data were acquired in 4 sessions over 2 days, (scan duration 14:33 min) with a 

gradient-echo-planar imaging sequence, with TR = 720 ms, TE = 33.1 ms, flip angle of 52°, 

2 mm isotropic voxel resolution and a multiband factor of 8. Participants were instructed 

to keep eyes open and fixated on a cross. A subset of 92 unrelated participants, part of 

the HCP 100 unrelated subjects release, for which complete processed data was available 

for all four scans, were utilized in primary analyses. Scans were excluded from analysis 

based on a set of summary motion measurements (Parkes et al., 2018) derived from motion 

correction preprocessing and provided in the HCP database. Motion spikes were defined as 

a relative root-mean-square (RMS) movement of 0.25 mm or above. Scans were excluded 

from analysis if at least one of the following conditions were met: greater than 15% of time 

points were marked as a motion spikes; the average relative RMS motion greater than 0.2 

mm; a spike larger than 5 mm was present. These criteria resulted in eight subjects with an 

incomplete set of fMRI scans, and therefore excluded from the present study.

2.2. Image pre-processing

Functional preprocessing.—HCP rs-fMRI data were minimally preprocessed as 

described in Glasser et al. (2013) including distortion, susceptibility, and motion correction, 

registration to subjects’ respective T1-weighted data, bias and intensity normalized (mean 

10,000), projected onto the 32k_fs_LR mesh, and aligned to common space with a multi-

modal surface registration (Robinson et al., 2014). In addition to the ICA-FIX artifact 

removal process, global signal, its derivative, and their squared terms were regressed out, 

and data were detrended and bandpass filtered (0.008 – 0.08 Hz) (Parkes et al., 2018) with 

Nilearn signal.clean, which removes confounds orthogonal to the temporal filters (Lindquist 

et al., 2019).

Parcellation pre-processing.—A functional parcellation of the cortex, designed to 

optimize both local gradient and global similarity measures of fMRI signal was used to 

define nodes at 4 scales (Schaefer100–400 nodes in steps of 100) (Schaefer et al., 2018). 

This parcellation is mapped to and grouped by canonical 17 resting state networks from Yeo 

et al. (2011). Parcellations were downloaded as cifti files in the fsLR_32k space; the same 

space as the preprocessed rs-fMRI data. Additionally, a novel gradient-based subcortical 

parcellation was used to delineate nodes within the amygdala, hippocampus, thalamus, and 

striatum consistent of 16 regions per hemisphere (Scale II parcellation from Tian et al. 

(2020)).
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2.3. Edge graph construction

Mean nodal time courses were extracted from preprocessed data for each scan and each 

cortical and subcortical parcellation. For each subject, time courses were cropped to exclude 

the first and last 50 time-points (~36 s) to account for the edge effects of the bandpass filter 

and concatenated into day 1 and day 2 (2 scans each). Subsequently, sample time courses 

were constructed for each day by concatenating all subject time courses from that day.

Edge time series (ETS) were computed as described previously (Faskowitz et al., 2020; 

Jo et al., 2021), in the following steps: (1) for all nodes (N), time courses were z-scored, 

(2) for all possible node pairs i and j (where i ≠ j), the element-wise product (over time) 

was computed. The resultant M = N(N − 1)
2  ETS are vectors of same length as the nodal 

time courses that encode moment-by-moment co-fluctuations of the edge between nodes 

i and j ETS can be interpreted as the decomposition of FC (Pearson correlation) into its 

time-varying contributions.

2.4. Edge community detection

Computing a matrix from ETS would result in large (M × M) matrices that would require 

a great amount of memory and computation time to cluster. To circumvent this issue and 

reduce computational burden, we clustered the M × T ETS matrix directly using the k-means 

algorithm, implemented in MATLAB version 2021A, with normalized Eu-clidean distance 

(Jo et al., 2021). We varied the number of clusters, k, from 2 to 20 clusters in increments of 

1, repeating the algorithm 250 times with random initial conditions. Due to the large number 

of time points, for sample representative communities each run was initiated with 10% of 

the concatenated time series randomly sampled and clustered to produce an initial estimate 

of cluster centroids. These centroids were then used as initial estimates to cluster the full 

sample time series. At each k value a single consensus partition was obtained from the 

250 runs. For subject-specific partitions, the clustering algorithm was run (1 run) with the 

sample consensus partition provided as the initial seed partition. Note that no additional runs 

were necessary, as the k-means algorithm is deterministic; from a fixed initial assignment of 

nodes to clusters it always converges to the same solution.

2.5. Community overlap metrics

Normalized Entropy.—Interpreted as a continuous measure of edge community overlap 

at any node i, normalized entropy was calculated by first computing node i’ s participation in 

cluster c:

pic = 1
N − 1 ∑

j ≠ i
δ gij, c

where gij ∈ (1, …, k) was the cluster assignment of the edge between nodes i and j and 

δ(gij , c) is the Kronecker delta, whose value is 1 if x = = y and zero otherwise. The entropy 

of the probability distribution pi = [pi 1, … , pik] of node i′ s edge community assignment 

was then computed as:
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ℎi = − ∑
c

piclog2pic

This value was then normalized by dividing by log2 k, which bounded the range to [0,1]. 

For sample time series derived clusters, entropy is reported as the mean across the 250 

repetitions of the clustering algorithms.

Edge community similarity.—The resultant partition from the clustered ETS is a vector 

where each edge is assigned a community label. This vector can be rearranged into the upper 

triangular of a N * N matrix X, where row/column for any node i encodes the community 

affiliations for edges connecting that node. Similarity of edge communities can then be 

computed from this matrix for nodes i and j as the fraction of edges that have the same 

community labels for both nodes (Jo et al., 2021):

sij = 1
N − 2 ∑

u ≠ i, j
δ xiu, xju

where δ(xiu , xju) is the Kronecker delta that is 1 if x and y have the same value and 0 

otherwise. Repeating the process over all node pairs sij generates the similarity matrix S.

Edge community triads.—A triad of nodes can be analyzed as a three-node motif, a 

mesoscale building block of the wider brain network (Milo et al., 2002). Motifs allow for 

a complete decomposition of a larger network into subgraphs, which can reveal statistical 

features in the local organization of structural and functional brain networks (Battiston et 

al., 2017; Sporns and Kötter, 2004). Here, we adapt graph-based motif analysis to include 

edge labels based on their edge community assignment, which allows for investigation of 

relationships among nodes using triad motifs in a fully connected network. Focusing on a 

reference node (indexed l in Fig. 1) and examining all or subset of triads it takes part in 

allows us to ask questions about communication/coupling properties of a that node to other 

nodes of the network, based on edge communities that make up the triads. Here the focus 

is on cortico-subcortical connectivity, thus we focus our analysis on triads with a single 

subcortical node in the reference position and examine the coupling of these reference nodes 

to all possible pairs of cortical nodes.

Fig. 1 shows a diagrammatic workflow from nodal time series to edge community triads. 

There are four possible edge community triads, in any network where the number of 

communities is greater than two: (1) closed loop – the three edges among the three nodes 

are all in the same community, (2) forked – the two edges connecting to/from the reference 

(subcortical) node have the same community label, while the third edge (between the two 

cortical nodes) is in a different community, (3) L-triad – the two edges connecting to/from 

the reference node have different community labels, while the third edge (that does not 

connect the reference node) shares a label with one of the two reference connecting edges, 

and (4) diverse – all three edges in the triad have different community labels. A diagram 

of the possible triads is shown in Fig. 1 D. To assess whether the distributions of triad 

types in a network are different from those expected by chance, a set of 1000 null networks 
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was generated from the node-by-node edge community assignment matrix, permuting the 

node labels in such a way that the indices of the subcortex were permuted into the cortex 

portion of the matrix. This null was chosen over a blind label permutation to ensure that 

anything that could make the subcortex distinct from the cortex in terms of its triad pattern 

was restructured under the null. This null distribution was used to compute a permutation 

p-value.

3. Results

3.1. Consensus edge community structure

Here we investigated the community structure of sample concatenated time series, using a 

parcellation of 200 cortical and 32 subcortical nodes, by performing edge-centric clustering 

of concatenated time series of 92 participants from the HCP cohort. Clustering of the edge 

time series leads to community partitions where each edge is assigned a label and these 

partitions can be projected onto a node-by-node matrix to visualize overlapping community 

structure (Fig. 2 A). This approach has been previously applied to cortical brain networks 

(Faskowitz et al., 2020; Jo et al., 2021; Zamani Esfahlani et al., 2020) and we extend this 

work by assessing the role/influence of subcortical regions in the brain.

When ordered by canonical RSNs, estimated partitions showed overlapping organization 

that qualitatively resembled canonical RSN grouping, with a distinct subcortical component 

(Fig. 2 A). The distribution of edge communities for all nodes was computed as normalized 

entropy and visualized by system for cortical RSNs and subcortical nodes, which were 

grouped by anatomical label (Fig. 2 B), showing a potential dichotomy of primary sensory 

and attentional systems (visual, somatomotor, dorsal and ventral attention, and temporal 

parietal) in one group and higher order systems (control, default mode, and limbic) in 

another, as previously reported (Jo et al., 2021). A comparison of mean network entropies 

among the two system types showed significantly higher entropy values were observed in 

primary sensorimotor and attentional systems (mean ± standard deviation: 0.7673 ± 0.0877), 

indicating that edges incident upon nodes of those networks are distributed over a greater 

number of communities, compared to higher order systems (0.5490 ± 0.0630) (permutation 

t-test, p = 0.00011, 100,000 label permutations). Similar outcomes were observed at other 

cluster solutions (number of clusters = 4, 10, and 17; Supplementary Fig. 1), with a range of 

cortical parcellation scales (Schaefer 100, 300, and 400 nodes; Supplementary Fig. 2), and in 

a second dataset consisting of Day 2 HCP scans from the same participants (Supplementary 

Fig. 3).

Contributions of edge communities to RSN systems as well as the contribution of 

subcortical nodes is shown in Fig. 2 C. For the 7-cluster solution, three communities 

were predominantly cortical (communities 2,6,7) and coupled visual-somatomotor-attention, 

attention-control, and control-default mode systems, respectively. Four edge communities 

coupled subcortical nodes to cortical systems, which qualitatively showed two subcortical 

groupings (Fig. 2 C, communities 1 and 4: striatum, pallidum, and thalamus; 

communities 3 and 5: predominantly hippocampus and amygdala) coupled to either the 

primary sensorimotor/attention or heteromodal systems. Anatomical visualizations of edge 

distributions for each of the seven communities at each node are shown in Fig. 3 as well 
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as in Supplementary Fig. 4 for the Day 2 HCP dataset, where spatially similar communities 

were observed.

3.2. Role/Influence of subcortical nodes on cortical edge community structure

Given previous reports of edge community organization within cortical systems (Jo et al., 

2021; Zamani Esfahlani et al., 2020), how does the presence of subcortical nodes impact 

edge community structure? We assessed this by comparing cortical edge communities for 

the 7-cluster solutions for the full network (cortical + subcortical) vs. cortex only (Fig. 

4). Edge communities for cortical nodes were highly similar between the two networks 

(normalized mutual information 0.7153; Fig. 4 A) and comparison across a range of 

community solutions showed high similarity for communities with similar number of 

clusters (Fig. 4 B). Similar separation of primary and heteromodal systems via edge 

communities (Fig. 4 C) and similar system entropies (Fig. 4 D; primary 0.7293 ± 0.1009 

and heteromodal 0.5175 ± 0.0784 systems, permutation t-test, p = 0.0004, 100,000 label 

permutations) were also observed. To further examine how edge communities are related 

to nodal RSN groupings, the influence of subcortical nodes, and the distinction between 

primary and heteromodal RSNs, edge community profile similarity matrices, which quantify 

the degree to which two nodes couple to other nodes in the network via the same 

edge communities, were generated. Comparing the edge community similarity of cortical 

nodes showed that addition of subcortical nodes to the network had minimal influence 

on similarity (Fig. 4 E–F, Pearson correlation r = 0.94 across cortical nodes between two 

network types) This relationship was also observed at varying numbers of clusters and at 

other cortical parcellation scales (Supplementary Fig. 5) as well as in the day 2 dataset 

(Supplementary Fig. 6).

Focusing on the edge communities within the cortico-subcortical interaction block (Fig. 5 

A), the distribution of the interaction edges of communities with subcortical components 

among the RSNs shows a distinction between hippocampus/amygdala and striatum/thalamus 

edge community profiles. Nodal entropies computed only from the interactions between the 

cortex and subcortex (i.e., row entropy for subcortical nodes and column entropy for cortical 

nodes) recapitulate the pattern of segregation of primary (0.4557 ± 0.0729) and heteromodal 

(0.2105 ± 0.0956) systems (permutation t-test, p = 0.0002, 100,000 label permutations). 

Just as with entropy, edge community profile similarity can be computed only from the 

cortico-subcortical interaction elements. For subcortical nodes, profiles were nearly identical 

for the full network versus the interaction block (Fig. 5 C). Cortical edge community profiles 

from the interaction block were also highly similar to profiles from the full network albeit 

more variable (Fig. 5 D). The finding that edge community profiles from cortico-subcortical 

interactions reflect cortical and subcortical profiles obtained from the full network are 

consistent at various cluster solutions (Supplementary Fig. 7), a range of cortical parcellation 

scales (Supplementary Fig. 8), and in the Day 2 data from these participants (Supplementary 

Fig. 9).

3.3. Individual variability in edge community structure

While it is computationally infeasible to perform iterative clustering on edge time series 

from the 92 HCP participants individually, the consensus partition described in previous 
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sections can be used as a seed/initial partition and clustering is then run once per participant 

to obtain an individual partition. Using this method, do the individual partitions recapitulate 

what was observed in consensus and what insight do they provide into cortico-subcortical 

coupling? Individual edge community partitions showed greater similarity to the consensus 

partition (median mutual information = 0.2984) than amongst each other (0.1765) (Fig. 6 A), 

as expected. Entropies per RSN, computed per participant as the mean of the nodes in that 

system are shown in Fig. 6 B. The median entropy for each participant across either primary, 

heteromodal, or subcortical systems is shown in Fig. 6 C, where entropies were significantly 

different among the three system types (means ± standard deviations: primary 0.7894 

± 0.0477, heteromodal 0.6605 ± 0.0553, and subcortical 0.4839 ± 0.1069, permutation 

ANOVA, p < 0.00001, 100,000 label permutations; all post-hoc t-tests comparisons p < 

0.001, Bonferroni adjusted), consistent with results obtained from consensus data. For edge 

community profile similarity, median values were extracted per participant for edges within 

primary, heteromodal, and subcortical nodes (Fig. 6 D), as well as for edges between them 

(Fig. 6 E). Profile similarities were significantly lower in heteromodal (0.3391 ± 0.0548) 

compared to primary (0.4444 ± 0.0738) or subcortical (0.4458 ± 0.1067) system types 

(Fig. 6 D, permutation ANOVA p < 0.00001, 100,000 label permutations; post-hoc t-tests 

p < 0.001 Bonferroni adjusted, for heteromodal versus primary and subcortical system 

types). Finally, to probe whether the subcortical regions differed in their coupling to cortical 

systems, similarity values from edges coupling primary-heteromodal (0.1494 ± 0.0549), 

primary-subcortical (0.2006 ± 0.0549), and heteromodal-subcortical (0.2781 ± 0.0615) were 

compared. A permutation ANOVA with 100,000 label permutations showed a significant 

main effect of group (p < 0.00001), with the three groups significantly different from 

each other (Fig. 6 E, all post-hoc t-tests p < 0.001, Bonferroni adjusted). This pattern was 

consistent using different numbers of edge communities (Supplementary Fig. 10), at varying 

cortical parcellation scale (Supplementary Fig. 11), and in the Day 2 data (Supplementary 

Fig. 12).

3.4. Subcortico-cortical communication via edge community triads

The above results show a dichotomy of canonical RSN systems into a primary sensorimotor 

and attention group and a higher order heteromodal group, which may be shaped by 

or influencing subcortical edge community organization. To further investigate subcortico-

cortical coupling, we adapted the concept of motifs, which has been primarily used to 

quantify subgraphs in structural/sparse networks (Olaf Sporns and Kötter, 2004), focusing 

on triads (triangles of 3 nodes) that are comprised of one subcortical (reference node; Fig. 1 

D) and two cortical nodes. With each edge assigned a community label, four possible classes 

of triads can be identified: a closed loop, a forked triad, L-shape triad, or a diverse triad 

(Figs. 1 D and 7 A show a diagram of triad types). In this framework, how are the triad types 

distributed in instances of subcortico-cortical communication and what can this tell us about 

potential communication strategies between the cortex and subcortex?

To answer this question, triad type distributions were generated for each subcortical node, 

connecting to two cortical nodes, from the original node-by-node edge community matrix 

as well as for 1000 null matrices where node labels were permuted, with the condition that 

subcortical nodes did not remain in subcortex assigned indices after permutation. When 
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compared to the null distribution, forked triads were present in a significantly higher 

fraction for the striatum, pallidum, and five of the six nodes of the thalamus (Fig. 7 

B; permutation p < 0.05, two-sided). Additionally, L-shape triads were present in lower 

frequency than expected for nodes of the thalamus, nucleus accumbens, and pallidum. In 

terms of communication strategies, forked triads imply that the reference (subcortical) node 

employs similar patterns of communication with each of the two cortical nodes, while these 

cortical nodes maintain a different pattern. This may point to a role of the subcortex in 

information integration and cortical modulation. L-triads, in turn, could be representative 

of a different (and statistically underrepresented) strategy of relay communication from 

subcortex to cortex or vice versa. Breaking down the forked triads by their edge community 

affiliation (the community that has two edges in the triad between subcortex and cortex), 

three communities (1, 4, and 5 in Fig. 7 C) showed significantly higher fractions that 

expected by the null distribution (permutation p < 0.05). This finding is in line with the 

observation that large portions of these edge communities are in the subcortico-cortical 

interaction block (Fig. 5 A). Visualization of the cortical nodes for these subcortico-cortical 

forked triads (Fig. 7 D), qualitatively shows a distinction between edge community 1, which 

has distributed edges from the striatal/thalamic nodes to heteromodal systems and Salience/

Ventral attention, and edge communities 4 and 5, which connect primary/attentional systems 

to striatum/thalamus and hippocampus/amygdala, respectively. Detailed matrices of cortical 

forked triad endpoints for each subcortical node are shown in Supplementary Figure 13. 

At other investigated number of communities (Supplementary Fig. 14) as well as varying 

cortical parcellations (Supplementary Fig. 15) similar outcomes were observed.

To better understand the cortical endpoints of forked triads, each triad was labeled as 

ipsilateral (same hemisphere relative to the subcortical reference node), bilateral (cortical 

endpoints in different hemispheres), or contralateral, with the counts for each subcortical 

node plotted in Fig. 7 E. Overall the distributions were highly similar, with the anterior 

hippocampal nodes being the only notable standout (Fig. 7 E blue lines), however, the 

triad counts for those nodes were orders of magnitude lower (tens vs hundreds/thousands). 

Therefore, the asymmetry observed in the anterior hippocampus is likely due to low 

counts. Next, to further understand the spatial distributions of forked triads over the 

cortex, the Euclidian distance between cortical nodes (in standard space) was computed 

and summarized as a distribution (for each edge community) of average distance between 

cortical nodes (for forked triads at each subcortical reference node). For the first edge 

community, where forked triads were overrepresented for thalamus and striatum, the 

distance between cortical nodes was ~100 mm, which given the mostly equal distribution 

of ipsi-, bi-, and contralateral localization suggests they are coupling some combination of 

frontal and parietal nodes, either within or between hemispheres. This is consistent with 

Supplementary Fig. 13, which shows that the cortical endpoints fall in control, default, 

and ventral attention systems as they are primarily localized in frontal and parietal lobes. 

Edge community 4, which also involves the stratum and thalamus, showed similar length 

distributions, however, cortical endpoints of forked triads within this community fell in 

visual, somatomotor, and dorsal attention regions. Finally, edge community 5 is distinct in 

that its forked triads couple hippocampus and amygdala to visual occipital and sensorimotor 

parietal areas, as well as the dorsal attention network. Distances between cortical endpoints 
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are widely distributed, indicating that forked triads couple spatially proximal regions within 

hemisphere and more distal cross hemisphere regions.

4. Discussion

Several studies have investigated the node-centric functional organization of cortical systems 

in isolation (Gordon et al., 2016; Power et al., 2011; Yeo et al., 2011) or in combination with 

subcortical structures such as the basal ganglia, cerebellum, and brain stem (Ji et al., 2019). 

The latter are especially important, since the cortex does not act in isolation, but engages 

in constant back-and-forth communication with subcortical regions such as the striatum, 

thalamus, hippocampus, and amygdala. For example, thalamic nuclei serve as information 

relays for sensorimotor and other information to the cortex, while also involved in cognitive 

function (Halassa and Kastner, 2017; Hwang et al., 2017; Mitchell, 2015; Sherman, 2007). 

Additionally, the striatum plays a role in various functions, via parallel integration of 

information from distributed areas of cortex (Bartoň et al., 2020; Di Martino et al., 2008; 

Reig and Silberberg, 2014). Finally, the amygdala is important for attribution of emotional 

valence (Ball et al., 2009; Jin et al., 2015) and is coupled with the hippocampus among other 

regions to facilitate memory encoding (Phelps, 2004; Richardson et al., 2004; Smith et al., 

2006). In our recent work we have shown that edge community structure shares similarities 

with canonical RSNs, such that edge communities of nodes within RSNs were more 

similar compared to nodes between RSNs. Additionally, these edge communities coupled 

cortical resting state networks (RSNs) to one another, whereby multiple edge communities 

were identified within each canonical RSN (Faskowitz et al., 2020). Furthermore, when 

examining the diversity of edge community structure, heteromodal association systems 

(limbic, control, and default mode) showed greater diversity of edge communities compared 

to primary systems (visual, somatomotor, and attention) (Jo et al., 2021). Here, our aim 

was to understand the role of key subcortical structures (striatum, thalamus, hippocampus, 

and amygdala) in the edge community organization among cortical systems. Because edge 

communities are groups of edges with similar co-fluctuation patterns, we hypothesized that 

probing community organization via motif analysis can offer insight into communication 

patterns among node groups in a network. Therefore, we investigated the organization of 

edge community triads in the network that are comprised of one subcortical node and two 

cortical nodes, in order to identify subcortico-cortical communication patterns in the brain.

4.1. Functional roles of subcortical nodes defined through edge communities

Consensus clustering of data from 92 participants from the HCP100 unrelated subjects’ 

cohort revealed edge community structure that was related to canonical RSN organization 

and, within cortex, was highly similar to previously reported results (Faskowitz et al., 2020; 

Jo et al., 2021; Zamani Esfahlani et al., 2020) for edge communities among cortical nodes. 

This finding suggests that the addition of subcortical nodes to the analysis leaves cortical 

edge communities, which we may interpret as a proxy for intra-cortical communication, 

largely unchanged. The subcortex was generally partitioned into segregated communities, 

with its edges predominantly belonging to 3 edge communities in the 7-cluster data. The 

primary v. heteromodal cortical system dichotomy found in cortex-only investigation by Jo 

et al., 2021 and Zamani Esfahlani et al. (2020), is reinforced after the addition of subcortical 
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nodes, where striatum, pallidum, and thalamus, and through separate communities, the 

hippocampus and amygdala, differentially couple to control and default mode vs. visual and 

somatomotor systems (Fig. 2). This is further supported by nodal entropies of cortical nodes, 

which were significantly different between primary and heteromodal system nodes.

There is extensive evidence for the role of core basal ganglia and thalamic regions 

as integrative regions that possess diverse inputs and outputs throughout the cortex 

(Greene et al., 2020). The edge community organization observed here, whereupon 

distinct communities couple the subcortex to groups of cortical systems, supports these 

hypotheses. These communities can be interpreted as groups of edges where the pattens of 

communication among connected nodes are similar to each other. With that in mind, the 

overlapping community structure revealed by the node-by-node matrix tells us that a node 

connected to some other nodes other via the same edge community has more in common 

with their BOLD time-courses (estimated via the co-fluctuation edge time series) compared 

to other nodes which connect to it by different edge communities. In that context it is 

plausible that these communities reveal some underlying differential coupling among nodes 

in a network. For instance, in our analyses the majority of subcortical nodes coupled to the 

cortex via 2+ edge communities, with the exception of nodes within the globus pallidus 

that coupled to nearly all other nodes via one community (thus resulting in entropies near 

zero). Additionally, while subcortical entropies tended to increase with increasing number 

of communities, this was not true for the globus pallidus. Assessing whether this holds 

true in neurological conditions, such as Parkinson’s disease, where altered globus pallidus 

connectivity has been reported (Miranda-Domínguez et al., 2020), may offer novel avenues 

for investigations into the underlying neurobiology of disease.

It is worth nothing the distinction in interpretation between edge time-series and the 

communities estimated from them and BOLD-dependent node-based connectivity. In the 

case of BOLD, regions that are said to be significantly connected will have similar nodal 

time-series and based on that similarity (commonly Pearson correlation) these regions 

are likely to end up assigned to the same community when clustering is performed. 

Alternatively, edge time-series capture co-fluctuation among region pairs, and clustering 

of edge time-series tells us which node pairs are behaving in a similar fashion (i.e., similar 

co-fluctuation), which can be interpreted as an indicator of similar communication patterns 

among brain regions. Therefore, when referring to edge communities linking the globus 

pallidus to other nodes in the network, grouping of its edges into a single community 

suggests a similar degree of co-fluctuation to other nodes, not that it is equally connected to 

them.

4.2. Distinction between primary and heteromodal systems and the role of the subcortex

Connectivity studies that utilize fMRI have tended to focus on cortical regions only for 

investigations of RSN structure (Power et al., 2011; Schaefer et al., 2018; Yeo et al., 2011). 

However, the contribution of the subcortex, cerebellum, and brainstem has gained attention 

in recent years (Shine et al., 2019; Tian et al., 2020), showing that subcortical network 

nodes also possess hub properties and contribute to rich-club organization (van den Heuvel 

and Sporns, 2013). This is in part due to technological, software, and methodological 
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advancements that have allowed for better imaging and signal estimates from smaller 

volumes and deeper brain structures. To better understand the contributions of major 

subcortical structures to cortical network organization, we independently clustered edge 

time-series from only cortical nodes (as in Jo et al., 2021) and from networks that included 

the subcortex. Our results showed a highly similar edge community structure, entropy, and 

similarity between the two network types. Notably, the primary and heteromodal system 

dichotomy reported previously (Jo et al., 2021) is still evident when the subcortex is 

accounted for, with subcortico-cortical interaction edges also showing this split, by coupling 

to the two system types via different edge communities and showing higher edge community 

profile similarity to primary over heteromodal systems.

These results are intuitively expected as the brain functions as a whole, regardless of 

whether we obtain observations from a portion of cortex, full cortex, or cortex and 

subcortex. That is, cortical regions receive ‘information’ via subcortical projections to 

cortex, irrespective of whether or not we actually analyze those subcortical nodes in our 

networks or not. While technological limitations may prevent accurate fMRI measurements 

of small nuclei located in the subcortex, we can continue to improve our understanding 

of the role of subcortical regions that we can measure. An important consideration is the 

relative scale at which the cortex and subcortex are measured. Here, we used a 32 node 

parcellation of the subcortex (Tian scale II) and a range of cortical scales from 100 to 

400 nodes (Schaefer et al., 2018), so the relative ratio of cortical to subcortical nodes did 

not exceed ~30%. These outcomes could vary if the number of subcortical nodes added to 

the network was closer to equal or exceeded the number of cortical nodes. An additional 

consideration is the spatial resolution of human fMRI data. Subcortical regions are typically 

comprised of several small nuclei, which cannot be measured separately with human 

fMRI due to spatial resolution constraints. Insight into cortico-subcortical interaction of 

subcortical functional nuclei can be obtained from primate and rodent imaging data, which 

have shown to possess RSN structure (Belcher et al., 2013; Hori et al., 2020). Connectivity 

of subcortical regions is conserved, to a degree, among human, primate, and rodent 

species, offering an avenue for applications of edge-centric methodology in evolutionary 

neuroscience. Future investigations will need to be cognizant of these considerations, when 

assessing a more ‘complete brain network’ that could, in addition to subcortical nodes, 

include cerebellum and brain stem as well.

Given that the cortical edge community organization is not significantly altered when the 

subcortex is included, what can subcortico-cortical coupling tell us about organization of 

cortical brain regions? To answer this question within the framework of edge community 

structure, we computed entropies and edge community profile similarities for cortical and 

subcortical nodes, only from the edges that connect between them. Across all RSNs and 

subcortical regions, entropies were lower when computed from the interactions, compared 

to those from the full networks. The patterns of lower values for heteromodal vs. primary 

systems and for striatal/thalamic vs. hippocampus and amygdala were also still evident. 

Additionally, edge community profile similarities were nearly identical for subcortical and 

for cortical regions. This tells us that from the perspective of the cortex, the edge community 

coupling of cortical nodes within system type is similar to their coupling to the subcortex. 

Alternatively, from a subcortex-centric perspective two possible explanations exist: 1) 
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subcortical nodes couple to an existing cortical organization that arises from connectivity 

among cortical regions, or 2) the subcortex, though its connectivity to the cortex, shapes 

cortical organization to some degree. Existing literature has shown that in the thalamus, 

different nuclei differentially couple to primary vs. heteromodal systems, with some degree 

of overlap to serve as an integrative hub between the two system types (Hwang et al., 2017). 

Clinically, disruptions in connectivity to one system type or the other, may underlie some 

neurological conditions, such as reported hyperconnectivity between striatum and primary 

systems in autism spectrum disorder (Cerliani et al., 2015).

4.3. Subcortico-cortical coupling via edge community triads

Recurring patterns of connectivity within networks referred to as motifs, have been 

employed to study organizational properties of structural and functional networks (Battiston 

et al., 2017; Sporns and Kötter, 2004), with an emphasis on small motifs, such as 3-

node triads. While it is straightforward to quantify presence of triads in structural/sparse 

networks, in functional networks based on cross-correlations, which are fully connected, 

topologically distinct patterns need to be derived either through thresholding or by imposing 

a structural backbone (Battiston et al., 2017; Morgan et al., 2018). This poses a challenge 

as multiple thresholds must be examined to identify robust topological features. Within 

the edge community framework, because each edge is assigned a label, we can assess 

triad motif structure of a fully connected network, by examining which communities the 

edges of a triad belong to. This is beneficial because thresholding is no longer necessary, 

however, the interpretations are not the same. Assessing functional motifs on thresholded 

networks provides information on strength of direct connections, while edge community 

motif analysis examines higher order relationships (i.e., temporal co-fluctuation pattens 

grouped into communities). Because the purpose of this work is to probe subcortico-cortical 

organization, we focused on a subset of possible triads that contain one subcortical node 

(which we refer to as the reference node of a triad) and two cortical nodes. We found 

that among the four possible triad types, forked triads, where the cortical nodes connect 

to the subcortical node to one community while connecting to each other via a different 

community, were present in higher fraction than expected. In the seven-community solution, 

three communities had subcortical nodes with significant fraction of forked triads, grouping 

striatum/thalamus and hippocampus/amygdala into separate groups, with cortical triad 

points within either primary sensorimotor (community 1) or higher order control/default 

mode systems (communities 4 and 5), while attentional network connecting edge were 

present in all three communities that contained subcortical components.

What are the plausible interpretations for the observed triad types and the possible 

communication strategies underlying them? Among the four types, closed-loop and diverse 

triads were not significantly expressed, while L-triads were underrepresented and forked 

triads over-represented. Given that we only investigated triads around subcortical nodes 

and only connecting to cortical nodes, this finding is consistent with our understanding of 

the underlying connectivity. Subcortical regions have diverse anatomical inputs and outputs 

throughout the cortex, which could manifest functional communication patterns of forked 

triads, highlighting their role in information integration and modulation of cortical activity. 

One must be careful not to infer directionality from these results, as such information is not 
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available in fMRI data. It is possible that the forked triads are manifesting as a result of 

anatomical feedback loops between cortex and subcortex (Haber, 2016), resulting in similar 

communication patters of subcortico-cortical edges that are distinct from cortico-cortical 

communication (forked triad), and supporting synchronous zero-lag communication through 

mutually coupled subcortico-cortical node pairs (Gollo et al., 2014). The overrepresentation 

of forked motifs in nodes of both the striatum and thalamus is likely related, due to 

polysynaptic projections from the striatum to the cortex via the thalamus and direct cortical 

feedback back into the striatum, however, because we examine higher-order temporal 

relationships of fMRI data, we cannot discern whether direct or indirect connections drive 

the observed results. Nonhuman imaging in primates and rodents has shown functional 

activation that aligns with topographically organized structural loops between the cortex 

and subcortex (Haber et al., 2006; Han et al., 2021). Therefore, future investigations of 

edge community triad organization in such datasets are necessary to assess whether there 

is a relationship between functional network-derived edge community triads and structural 

subcortico-cortical loops.

Here we examined the interaction between nodes within the subcortex (striatum, thalamus, 

hippocampus, amygdala) and cortical RSNs as defined by Yeo et al. (2011). Choi et al. 

(2012) extended the cortical RSN parcellation into the subcortex by examining fMRI 

data and assigning subcortical regions to cortical RSNs. They showed that the striatum 

is connected to multiple functional systems with striatal zones connecting to district 

cortical RSNs and we acknowledge that there is likely integration of multiple systems 

in single striatal zones that was not captured with their ‘winner-take-all’ strategy. Our 

approach highlights that at the macros scale of anatomical regions, single subcortical 

nodes are coupled to multiple RSNs. That is, examining higher order relationships through 

clustering co-fluctuation edge time series, hippocampus and amygdala showed distinct 

cortical coupling from the striatum and thalamus, and that all subcortical regions distinctly 

couple to primary vs. heteromodal systems.

4.4. Limitations

Limitations regarding fMRI acquisition and preprocessing must be considered when 

interpreting these findings. We focus on cortico-subcortical community structure and 

communication; however, we cannot make inferences regarding the direction of 

communication flow. Additionally, the edge time-series framework captures higher 

order relationships which may complicate the interpretability of the presented findings. 

Furthermore, an ongoing challenge for edge-centric analyses is to establish which higher 

order features might be uniquely resolvable at this scale of analysis, versus which features 

are accessible using static FC alone (Novelli and Razi, 2021). Such a challenge necessitates 

a further explorations of communication pattern dynamics, and how the topology of the 

structural network supports the unfolding of such patterns (Pope et al., 2021). There 

are well understood limitations in network neuroscience regarding parcellation selection 

and selection/implementation of community structure algorithms. To address those were 

employed a multiscale cortical parcellation and performed several clustering iterations of the 

data with consensus clustering to ensure robustness of the present findings. Additionally, 

we present our findings in two datasets, consistent of separate days of HCP acquisitions 
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in the same participants. Finally, the analyses described here focused on interactions of 

basal ganglia and related subcortical structures with the cortex. For a more complete brain 

network, future investigations can apply these methods to cortico-cerebellar and subcortico-

cerebellar functional interactions. These were beyond the scope of this investigation. The 

cerebellum is connected to the cortex and the subcortex by multisynaptic connections via 

thalamus and there is evidence for thalamic integration of information coming from the 

striatum and cerebellum (Bostan and Strick, 2010, 2018; Hoshi et al., 2005). To adequately 

assess functional roles of these connections, separate investigations, perhaps in higher spatial 

resolution nonhuman data, are necessary.

5. Conclusions

In summary, we have shown that the edge-community coupling of subcortical regions is 

distributed over several cortical RSN systems. As indexed by edge communities, subcortical 

regions differentially communicate with primary and heteromodal systems, showing greater 

similarity with primary systems. In a novel implementation of a triad motif analysis, 

prevalence of forked triads between subcortical and cortical nodes reinforces the role of the 

subcortex as an integrative center for information from the cortex. Future work is necessary 

to continue elucidating subcortical contributions in the edge time-series framework though 

addition of cerebellum and brainstem into functional brain networks as well as assessing 

whether disruptions in edge community structure offer clinically meaningful insight.
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BOLD blood oxygen level dependent

fMRI functional magnetic resonance imaging
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FC functional connectivity

rs-fMRI resting state fMRI

HCP Human Connectome Project

ETS edge time series
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Fig. 1. 
Edge time series clustering overview. Nodal time series (A) for all regions pairs are used to 

compute the edge time series (B), which are subsequently clustered to assign each edge in 

the network to an edge community, as visualized in the node-by-node matrix (C). From this 

matrix motif triads are estimated, with four possible triad types (D): a closed loop comprised 

of a single community, a forked triad (relative to a reference node l) comprised of two 

communities with the same community for both edges connected to l, L-shape triad also 

comprised of two communities, however, edges connecting l are in different communities, 

and a diverse triad comprised of three different communities.
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Fig. 2. 
(A) Edge community affiliations for the 7-cluster solution represented in a node-by-node 

matrix for the 232 node parcellation (200 cortical Schaefer et al. (2018) nodes and 32 

subcortical Tian et al. (2020) nodes). Black dotted lines denote boundaries of 17 resting 

state networks from Yeo et al. (2011) plus subcortical. Networks are ordered top-bottom 

and left-right as labeled on x-axis in B and C. (B) Nodal entropies of edge communities 

grouped into 17 networks plus subcortical nodes, which are grouped by anatomy. Individual 

data points denote node groupings into the 17 canonical RSNs in Yeo et al. (2011), colored 

by 7 network labels, with added subcortical regions. (C) (Left) A surface template of the 

Schaefer et al., 2018 node assignment to the Yeo et al., 2011 17-networks. (Right) Edge 

communities (y-axis) across resting state networks and subcortex (x-axis). Color saturation 

corresponds to proportion of total edges in an edge community that connect to a node of a 

particular network. Variants of these plots for different cluster solutions, cortical parcellation 

scales, and for the Day 2 dataset are in Supplementary Figs. 1–3. Cont – Control, DorsAttn 

– Dorsal Attention, SalVentAttn – Salience/Ventral Attention, SomMot – Somatomotor, 

TempPar – Temporal Parietal, VisCent – Visual Central, VisPeri – Visual Peripheral, Hipp – 

Hippocampus, Amyg – Amygdala, Thal – Thalamus, NAcc – Nucleus Accumbens, GlobPall 

– Globus Pallidus.
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Fig. 3. 
Spatial representation of edge communities for cortical (Left; 200 nodes from Schaefer et 

al. (2018)) and subcortical (Right; 32 nodes from Tian et al. (2020)) nodes. Color saturation 

corresponds to proportion of total edges in an edge community that connect to a particular 

node. Cortical nodes are visualized on a fs_LR_32k surface, while subcortical nodes are 

sagittal slices and an axial slice in Montreal Neurological Institute (MNI) standard space at 

the indicated coordinates. Anatomical underlay is the MNI152_1 mm brain template. Slices 

left of the axial slice are in the left hemisphere while slices to the right are in the right 

hemisphere.
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Fig. 4. 
Cortico-cortical edge community structure is preserved with addition of subcortex. (A) 
Edge community clusters of the full (cortex + subcortex, as seen in Fig. 2) network (Left) 

compared to when only cortical edges were clustered (Right). Black dotted lines denote 

boundaries of the Yeo et al. (2011) 17 resting state networks. (B) Similarity of edge 

community partitions of varying sized (from 2 through 20) for cortical nodes from the 

cortex only network compared to cortical nodes from the cortex + subcortex network. (C) 
Overlapping edge communities (y-axis) across resting state networks (x-axis) of the cortical 

nodes only network. Color saturation corresponds to proportion of total edges in an edge 

community that connect to a node of a particular network. (D) Nodal entropies of edge 

communities grouped by 17 networks in the cortex only matrix, with individual data point 

colors denoting groupings into the 7 canonical RSNs in Yeo et al. (2011). (E) Comparison 

of edge community profiles (similarity) of cortical nodes from the full network (left) versus 

the cortex only network (right). (F) Density plot of the edges from the two network types 

in D with Pearson correlation reported. Cont – Control, DorsAttn – Dorsal Attention, 

SalVentAttn – Salience/Ventral Attention, SomMot – Somatomotor, TempPar – Temporal 

Patietal, VisCent – Visual Central, VisPeri – Visual Peripheral, r – Pearson Correlation.
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Fig. 5. 
(A) Zoomed in view of edge community structure of cortico-subcortical interactions. Black 

dashed lines denote boundaries for either the subcortex, grouped by anatomy (y-axis), 

or the Yeo et al. (2011) 17 resting state networks (x-axis). (B) Cortical and subcortical 

node entropies computed only from interaction edges connecting to/from the subcortex 

and cortex, respectively. (C) Similarities computed from all edges (left; full network) 

and from edges within subcortex only (right; interaction block). Scatterplot shows edge 

to edge correlation between the similarities from the two network types. (D) Similarity 

among cortical nodes estimated from the full network (cortex + subcortex; left) and from 

only the subcortex interaction edges (right), with a 2D heatmap showing edge-to-edge 

correspondence of similarities from the two network types. Cont – Control, DorsAttn 

– Dorsal Attention, SalVentAttn – Salience/Ventral Attention, SomMot – Somatomotor, 

TempPar – Temporal Patietal, VisCent – Visual Central, VisPeri – Visual Peripheral, Hipp – 

Hippocampus, Amyg – Amygdala, Thal – Thalamus, NAcc – Nucleus Accumbens, GlobPall 

– Globus Pallidus, r – Pearson correlation.
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Fig. 6. 
Assessment of variability and comparison to sample-wide data of individual subject-derived 

edge communities, with group consensus solution as initial condition. (A) Individual 

partition comparisons among all subject pairs (left) and of each subjects’ partition to the 

consensus partition from the sample concatenated time courses. (B) Nodal entropies of 

edge communities for individual subjects (each dot is a value for a node of a subject for 

a particular network) grouped by the 17 resting state systems and subcortical anatomical 

regions. Individual data point colors of cortical networks denote groupings into the 7 

canonical RSNs in Yeo et al. (2011). (C) Median entropies computed across nodes 

in primary, heteromodal, and subcortical systems for each subject. (D-E) Median edge 

community profile similarities for subjects grouped as either (D) within system type or (E) 
between system types. Statistical significance denotes post-hoc Bonferroni adjusted p-value 

from an ANOVA. Cont – Control, DorsAttn – Dorsal Attention, SalVentAttn – Salience/

Ventral Attention, SomMot – Somatomotor, TempPar – Temporal Patietal, VisCent – Visual 

Central, VisPeri – Visual Peripheral, Hipp – Hippocampus, Amyg – Amygdala, Thal – 

Thalamus, NAcc – Nucleus Accumbens, GlobPall – Globus Pallidus.
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Fig. 7. 
Edge community triads and their distribution around subcortical nodes. (A) Distribution of 

triads around subcortical nodes (x-axis) that connect it to any two cortical nodes. Rows 

correspond to triad types, from top to bottom the triads are closed-loop, forked, L-shape, 

and diverse. Columns sum to 1 (i.e., all triads that connect that subcortical node to cortical 

nodes). Compared to a null distribution of 1000 networks, asterisks denote proportions that 

significantly exceed the null, while open circles indicate lower than null (permutation p < 

0.05 two-tailed). (B) A breakdown of forked triads by edge community. Edge community 

assignments correspond to the community that connected to/from the subcortical reference 

node. Color saturation indicates proportions of all triads around the node. Asterisks denote 

a significantly greater fraction compared to 1000 null networks (permutation p < 0.05, 

two-tailed). (C) For subcortical anatomical regions where more than half its nodes had 

significance in A, the cortical surface overlays show the average (across nodes within a 

subcortical region) fraction that a cortical node was part of the triad to that subcortical node. 
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(E) Locations of cortical nodes relative to subcortical reference regions across triads. Colors 

denote subcortical anatomical labels, while dashed and dotted line denote right and left 

hemispheres, respectively. (F) Average distances (in mm) between cortical nodes for triads 

in each community, for all subcortical reference regions.
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