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Abstract
Background: Age-related maculopathy (ARM) is a leading cause of vision loss in people aged 65
or older. ARM is distinctive in that it is a disease which can transition through incidence,
progression, regression and disappearance. The purpose of this study is to develop methodologies
for studying the relationship of risk factors with different transition probabilities.

Methods: Our framework for studying this relationship includes two different analytical
approaches. In the first approach, one can define, model and estimate the relationship between
each transition probability and risk factors separately. This approach is similar to constraining a
population to a certain disease status at the baseline, and then analyzing the probability of the
constrained population to develop a different status. While this approach is intuitive, one risks
losing available information while at the same time running into the problem of insufficient sample
size. The second approach specifies a transition model for analyzing such a disease. This model
provides the conditional probability of a current disease status based upon a previous status, and
can therefore jointly analyze all transition probabilities. Throughout the paper, an analysis to
determine the birth cohort effect on ARM is used as an illustration.

Results and conclusion: This study has found parallel separate and joint analyses to be more
enlightening than any analysis in isolation. By implementing both approaches, one can obtain more
reliable and more efficient results.

Background
The present paper was motivated by an earlier population-
based longitudinal study of age-related ocular disorders.
Here, we focus on age-related maculopathy (ARM), a lead-
ing cause of vision loss in the elderly. ARM is character-
ized by the distinctive "transition" property: once the
incident occurs, the disease can progress, regress, and dis-
appear. This transition characteristic is also exhibited by
several other diseases [1-3]. Traditional statistical meth-
ods provide information on the risk of "having a disease"
(prevalence). The analysis of the transition course of ARM
poses a challenge. The purpose of our study is to develop

a methodology for studying the relationship between risk
factors and an individual's disease transition, including
incidence, progression, regression and disappearance.

If we classify a change in the severity of the disease by
defining a three-level scale: disease-free, early and late
stage, then different transition courses can be defined as
the current disease level conditioning upon the level at the
immediately preceding examination. Incidence of the dis-
ease implies the appearance of the disease at the current
examination when it was absent at the preceding exami-
nation. Progression implies that an individual is initially
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diagnosed with an early stage of the disease with worsen-
ing at the current examination, while regression implies
the presence of the disease at the preceding examination
with an improvement at the current examination. Disap-
pearance implies the presence of the disease at the preced-
ing examination and its absence at the current
examination. Because of the nature of the definition, an
obvious way to analyze the data is to constrain the study
population to individuals with a specific disease level at
the initial examination. We can then analyze the probabil-
ity of the constrained population developing a different
level at follow-up. The choice of the disease level will then
depend on the type of transition we are interested in, and
each type of transition can be analyzed separately. For
example, when studying progression, we will include only
those individuals that are classified as being in the early
stage in the initial exam in our analysis. We then study the
probability of developing a late stage of the disease at fol-
low-up.

While this approach is intuitive, we risk losing some of
our available information. For example, let's look at a
study in which each participant is measured at the base-
line and at 5-year and 10-year follow-up examinations. A
disease must be present at the 5-year follow-up for pro-
gression to be possible at the 10-year follow-up, therefore,
the incidence of a disease at the 5-year examination and
its progression at the 10-year examination are correlated.
By separating incidence and progression, we waste the val-
uable correlation between two transitions. We may also
encounter the difficulty of an insufficient sample size. For
the "rare" disease where only a small number of cases are
observed, the study population for progression, regression
and disappearance probabilities will be small. A model
with many covariates of interest may not converge due to
an insufficient sample size.

An alternative approach is based on a transition model.
The model assumes that there is a correlation among
repeated measurements because the past values explicitly
influence the present observation. It formulates the condi-
tional distribution of each measurement as a function of
past observations and relevant risk factors. The transition
model provides the conditional probability of a current
disease level based upon its previous level. This is one way
we can define the incidence, progression, regression and
disappearance probabilities. By joint analysis, this
approach takes the correlations among various transition
probabilities into account and allows some confounding
variables to have an equal effect on various transition
probabilities, which in turn can ease the problem of insuf-
ficient sample size described above. However, these bene-
fits come at the price of stronger modelling assumptions.

The remainder of this paper is organized as follows. In the
methods section, we first briefly describe the research
project that motivated this study and define the distinct
transition probabilities of ARM. Next, we summarize the
approach for analyzing the transition probabilities sepa-
rately, and then we introduce a transition model to ana-
lyze them jointly. In addition we discuss parameter
interpretation and estimation. Finally, we show how sep-
arate and joint analyses can be used together to obtain
more reliable and efficient results. The results section
applies our methodology to analyze the birth cohort effect
on different transition probabilities of ARM, and we dis-
cuss the possible generalization of the proposed model.

Methods
The Beaver Dam Eye Study
The Beaver Dam Eye Study, a longitudinal cohort study of
residents of Beaver Dam, Wisconsin between the ages of
43 and 84 years in 1987–1988, has been described in
detail elsewhere [4-6]. This study aims to determine the
long-term course of common vision-threatening condi-
tions in adult Americans. The 4,926 individuals that par-
ticipated in the baseline examination in 1988–1990,
decreased to 3,684 at the 5-year follow-up in 1993–1995
due to death, relocation or refusal, then decreased to
2,764 at the 10-year follow-up in 1998–2000, and then
further decreased to 2,119 at the 15-year follow-up in
2003–2005. Drop-outs were older and less educated than
those who participated in the follow-up examinations.
There were no other statistically significant differences
while controlling for age [5,6].

ARM severity scale and transition probabilities
Procedures for obtaining and evaluating photographs of
participants' eyes have been described elsewhere [4]. At
each examination, 30 degree color stereoscopic fundus
photographs were taken of both eyes of each participant.
Two gradings (preliminary and detailed) were performed
for each eye at each examination. Next, a series of edits
and reviews was performed, and standardized edit rules
were used to adjudicate any disagreements. As a result of
this edit, only a few changes were made [6]. The grading
used the fundus photographs to determine the severity of
the ARM lesions, which were graded on a 6-level scale [7].
For this study, the scale was collapsed to three levels in
order of increasing severity: level 0 = disease free, level 1 =
early ARM, and level 2 = late ARM. The results presented
here use each individual's ARM level in the eye with the
worst condition. Proportions for different levels in the
worse eye at baseline, 5-year follow-up, 10-year follow-up
and 15-year follow-up are shown in Figure 1.

We define a transition course of ARM as the current ARM
level conditioning after the preceding level, as described
in the background section. Probabilities of different
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courses can be represented in the form of conditional
probability and are defined in Table 1. It should be noted
that we have treated the transition of level 2 to level 0 as a
regression rather than a disappearance. This was done to
make the results from separate and joint analyses compa-
rable. Due to some modeling limitations, the regression
and disappearance probabilities cannot be simultane-
ously estimated by the transition model when based on
the more desirable definition altering the 2-to-0 transition

to affiliate with disappearance. In the discussion section,
we have provided details on how this affects our result
and what possible modification can be made.

Analyzing transition probabilities separately
This paper presents two different ways for analyzing the
transition courses of ARM. We specifically want to draw
inferences of the relationship between risk factors and
patients' incidence, progression, regression and disap-

Proportions of different severity levelsFigure 1
Proportions of different severity levels. Proportions of different levels of ARM severity scale in the worst eye at baseline, 
5-year follow-up, 10-year and 15-year follow-up: Beaver Dam Eye Study (1988–2005). n = the number of participants whose 
ARM severity measurements are available at that time point.
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Table 1: Definitions of distinct ARM transition probabilities

probabilities/time baseline 5-year 10-year 15-year

prevalence Pr(ARM(0) = 1,2) Pr(ARM(5) = 1,2) Pr(ARM(10) = 1,2) Pr(ARM(15) = 1,2)
incidence N/A Pr(ARM(5) = 1,2|ARM(0) = 0) Pr(ARM(10) = 1,2|ARM(5) = 0) Pr(ARM(15) = 1,2|ARM(10) = 0)
progression N/A Pr(ARM(5) = 2|ARM(0) = 1) Pr(ARM(10) = 2|ARM(5) = 1) Pr(ARM(15) = 2|ARM(10) = 1)
regression N/A Pr(ARM(5) = 0,1|ARM(0) = 2) Pr(ARM(10) = 0,1|ARM(5) = 2) Pr(ARM(15) = 0,1|ARM(10) = 2)
disappearance N/A Pr(ARM(5) = 0|ARM(0) = 1) Pr(ARM(10) = 0|ARM(5) = 1) Pr(ARM(15) = 0|ARM(10) = 1)

ARM(0), ARM(5), ARM(10) and ARM(15) represent the 3-level ARM severity scale at baseline, 5-year, 10-year and 15-year follow-up, respectively. 
N/A = not applicable.
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pearance probabilities. The first approach is to define dif-
ferent probabilities based on the definitions provided in
the previous subsection and analyze each probability sep-
arately.

Formally, let Oij be the disease severity scale of the ith indi-
vidual at the jth examination (i = 1, � , N; j = 1, � ,J). In
our application, (Oi1, Oi2, Oi3, Oi4) represents the collec-
tion of the combined 3-level severity scales of ARM for the
ith individual at baseline, 5-year follow-up, 10-year fol-
low-up and 15-year follow-up.

The possible values of Oij are 0 = disease free, 1 = early
stage of the disease, and 2 = late stage of the disease. Sup-
pose Incij is the indicator of incidence for the ith individ-
ual at the jth examination with values

where j = 2, � ,J and NA represents a missing value. The
indicators of progression (Proij), regression (Regij) and
disappearance (Disij) for the ith individual at the jth
examination are defined as follows:

It should be noted that for each transition course, there
are J - 1 indicators from the same individual and, there-
fore, these indicators are correlated.

To model the relationship between, say, incidence and
risk factors xij1, � , xijP, we can use a regression analysis for
the longitudinal data. Here, we adopt a marginal model
[8,9] for this purpose:

cov(Incij, Incik) = f(μij, μik; α), j <k, (2)

where μij = Pr(Incij = 1) and f(·) is a known function. Each
transition probability is analyzed separately.

Parameter and standard error estimations can be obtained
by the generalized estimating equations (GEE) approach
[10,11]. It is worthwhile to point out that, by the defini-
tion of the indicator of each transition type, individuals
whose indicators are equal to 1 at time j will have missing
values at time j + 1. When estimating the correlation
between two adjacent time points, only those individuals
whose indicators are equal to 0 at time j are included in
the analysis and, therefore, we assume that the correlation
among individuals who have indicator values equaling to
1 at time j is similar to those who have value 0. Here, we

are most interested in inferences of β's in the marginal
mean. GEE approach can guarantee the consistency of

's even if the above equal-correlation-assumption is

incorrect [9].

Analyzing probabilities jointly: the transition model
Model
A transition model specifies a generalized linear model for
the conditional distribution of the current disease status,
given the past responses. To obtain the desired transition
probabilities, the transition model used in this study spec-
ifies the conditional distribution given on the immedi-
ately preceding response.

Then, the proposed transition model is

where j = 2, � , J; c = 0, 1; oi(j-1) is the realization of Oi(j-1);
and I(oi(j-1) = k) = 1 if oi(j-1) = k and 0 otherwise, for k = 1, 2.

Some key features of the proposed transition model are as
follows. First, because the disease severity scale Oij is an
ordinal scale, we model the cumulative probability (Oij >
c) similar to the proportional odds model [12], rather
than the category probability (Oij = c). Second, our model
allows the regression coefficients γ's and β's to be different
for different c. We also add the interactions between the
preceding response (I(oi(j-1) = 1), I(oi(j-1) = 2)) and the risk
factors of interest xij1, � ,xijP. These modelling approaches
allow the risk factor effects varying with c and the disease
level at examination j - 1. Because different transition
probabilities can be obtained by selecting a different c and
a different disease level at examination j - 1, model (3)
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enables us to investigate the risk factor effects for different
transition probabilities. Third, the proposed model has
the potential to grow quickly given the possible cutpoints
c and interactions. To efficiently apply the model, regres-
sion coefficients for covariates that are not of major inter-
est and serve as confounding effects may be assumed to be
independent of c or as having no interactions with the pre-
vious disease status.

Parameter interpretation
Through the transition model (3), we can derive the rela-
tionship of the incorporated risk factors with different
transition probabilities. When c = 0 and (I(oi(j-1) = 1), I(oi(j-

1) = 2)) = (0, 0), the conditional probability Pr(Oij > c|oi(j-

1)) = Pr(Oij = 1 or 2|oi(j-1) = 0), which represents the inci-
dence probability.

Therefore,

βp0 = log odds ratio of the disease incidence for every one 
unit increase in xijp. (4)

When c = 1 and (I(oi(j-1) = 1), I(oi(j-1) = 2)) = (1, 0), the con-
ditional probability becomes the progression probability,
thus,

(βp1 + τ1p) = log odds ratio of the disease progression for 
every one unit increase in xijp. (5)

When c = 1 and (I(oi(j-1) = 1), I(oi(j-1) = 2)) = (0, 1), we then
have the conditional probability equal to one minus the
regression probability, thus,

-(βp1 + τ2p) = log odds ratio of the disease regression for 
every one unit increase in xijp. (6)

When c = 0 and (I(oi(j-1) = 1), I(oi(j-1) = 2)) = (1, 0), the con-
ditional probability is equal to one minus the disappear-
ance probability, thus,

-(βp0 + τ1p) = log odds ratio of the disease disappearance 
for every one unit increase in xijp. (7)

Statistical inference
The likelihood for the ith individual can be written as

where Hij = {(Oi1, �, Oi(j-1))} is the history for individual
i at examination j. The transition model only specifies the
conditional distribution Pr(Oij|Hij), and the marginal dis-
tribution Pr(Oi1) is left unspecified. For the ordinal data,

the marginal distribution cannot be fully determined by
the conditional distributions, and the full likelihood is
unavailable. An alternative is to estimate the parameters
by maximizing the conditional likelihood [13]

If the first-order Markov assumption (i.e., Oij is assumed
to depend on the past responses only through the imme-
diately preceding response) is correct, the conditional dis-
tribution Pr(Oij|Hij) = Pr(Oij|Oi(j-1)).

Since the transition events {Oij|Oi(j-1); j = 2, � ,J} are
uncorrelated, standard algorithms for fitting the propor-
tional odds models can be used by adding (I(oi(j-1) = 1),
I(oi(j-1) = 2)) and their interactions with (xij1, � , xijP) as
additional covariates.

If the first-order Markov assumption is incorrect, the tran-
sition events {Oij|Oi(j-1); j = 2, � , J} are not independent.
However, we still want to model Pr(Oij|Oi(j-1)) because of
the well fitting interpretations for β's and τ's under model
(3). Hence, model (3) must be fit by using approaches
that can account for the dependency among (Oi2, � , OiJ)
given Oi1. We adopt the model for analyzing clustered
ordinal measurements as proposed by Heagerty and Zeger
[11]. In Heagerty and Zeger's model, two regression mod-
els are specified: one to describe the marginal means
between ordinal outcomes and risk factors, and the other
to describe the associations among repeated measure-
ments. When analyzing the transition events, (3) can be
viewed as the marginal mean model, and the association
model is set as

where j <k = 2, � , J and c1, c2 = 0, 1. The odds ratio
between two repeated measurements is assumed to
depend on the measurement at time 1. This assumption
may be checked and modified, if necessary. The associa-
tion model may be simplified as an intercept only model
or by imposing additional covariates to the model. If none
of α 0, α 1 and α 2 are significant, the first-order Markov
assumption is appropriate, and we thus recommend to
use the standard proportional odds model for inferences
to avoid unnecessary complication.

Analysts may choose from three different GEE estimating
methods to estimate the parameters in equations (3) and
(10) when implementing Heagerty and Zeger's model.
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First-order GEE (GEE1 – [10]) treats the parameters in the
association model (10) as nuisance and is focused prima-
rily on obtaining the parameters in the marginal mean
model (3). Second-order GEE (GEE2 – [14]) estimates the
parameters in both (3) and (10) jointly. Extended alter-
nating logistic regressions (ALR – [15]) replaces the esti-
mating equation in GEE1 for the parameters in (10) by an
unbiased nonlinear estimating equation and offers high
efficiency in the estimation of both sets of parameters. The
standard errors of all three methods are calculated using
robust "sandwich" variance estimators. GEE2 estimates
the association parameters in (10) most precisely; how-
ever, it has the disadvantages that the consistency of the
parameters in (3) depends on having specified the correct
model for the association model, and that its computa-
tional burden quickly grows to infeasibility as data clus-
ters become large. Thus in situations where inference
regarding the parameters in the marginal mean model (3)
is primary or when estimation using GEE2 is intractable,
GEE1 or ALR may be most appropriate.

It should be noted that the proportional odds model and
Heagerty and Zeger's model both make the proportional
odds assumption. That is to say, they assume the regres-
sion coefficients to be independent of cutpoints c. The
transition model (3) is more complicated, since the
model allows γ's and β's to be different for different c. To
relax the proportional odds assumption, one can first
expand the original input data set for the ordinal out-
comes Oij into a new data set for cumulative probability
variables (I(Oij > 0), I(Oij > 1)) plus cutpoint identifiers
(I(c = 0), I(c = 1)), and then add interactions between the
cutpoint identifiers and the covariates. Details for using
SAS to implement the "partial" proportional odds model
can be found in Chapter 15 of the book by Stokes et al.
[16]. For fitting Heagerty and Zeger's model with cut-
point-varied regression coefficients, readers can refer to
the article by Huang et al. [17].

Evaluating equal covariate effects across transition 
probabilities
The separate analysis allows different covariate effects on
different transition probabilities, however, it also risks
losing available information and encountering an insuffi-
cient sample size. The joint analysis "borrows strength" in
part by assuming equality with respect to some confound-
ing effects on transition probabilities, and in certain cases,
this may be inappropriate. This section presents an
approach for the empirical examination of the equal-con-
founding-effect assumption, utilizing separate analytical
results. Then, the joint transition model can be modified
accordingly in order to reduce the complexity of the
model.

Suppose that the covariate xijp is not of major interest and

serves as a confounding variable. To evaluate whether xijp

has equal effects on different transition probabilities in

the transition model (3), one can test hypotheses H01 : βp1

= βp0, H02 : τ1p = 0 and H03 : τ2p = 0. After fitting the separate

models, we obtain the estimated log odds ratios for every

one unit increase in xijp on incidence , progression

, regression  and disappearance .

Based on equations (4)-(7), it is reasonable to predict βp0,

βp1, τ1p and τ2p for the joint model as

Their variance estimators cannot be derived easily because
they involve estimations of the covariances between esti-
mators from different models. We propose to estimate the

distributions of  and  using the boot-

strap method [18]. It must be noted that in order to per-
form bootstrapping for repeated measures on each
individual, each subject is sampled with replacement
rather than individual observations.

Reject, for example, H01 : βp1 = βp0 at the significance level
of α if the bootstrap percentile confidence interval of (βp1
- βp0),

does not cover 0, where  is the lower

100(α/2)th percentile of the bootstrap replications of sta-

tistics .

In the case where there are many confounders to be tested
for the equal-effect assumption, we recommend that each
potential confounder is considered separately. In other
words, perform bootstrapping for the separate analysis
with major risk factors plus one confounder at a time to
determine the modelling of this confounder in the transi-
tion model.

Three null hypotheses H01, H02 and H03 should be checked
separately. If only part of the three null hypotheses are
rejected, this means that the covariate effects on various
transition probabilities are similar to some extent, and
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that only corresponding interactions are added. For exam-
ple, if only H02 : τ1p = 0 is rejected, the interaction I(oi(j-1) =
1)xijp is included.

The proposed procedure for checking the equal-con-
founding-effect assumption is "empirical", compared
with the backward elimination starting at the "full" tran-
sition model (i.e., all risk factor effects varying with c and
the disease level of the previous examination). However,
the full transition model is usually too complicated to
converge, making the backward elimination procedure
not feasible.

Results
The analysis we report here aims to examine whether a
birth cohort effect is observed for ARM. The birth cohort
effect is defined as the variation in developing ARM that
arises from the different exposures to each birth cohort.
Thus, if a birth cohort effect exists, individuals from differ-
ent birth cohorts would have different chances of develop-
ing ARM, even if they are of the same age. The birth cohort
effect on the prevalence of ARM has been investigated
elsewhere [19]. Here, we focus on the birth cohort effect
on different transition probabilities

Analytical methods
To graphically display the observed birth cohort patterns,
we first aggregated the data into a two-way table by birth
year and age group in 5-year intervals, and calculated dif-
ferent transition probabilities of ARM in each cell. Next,
we plotted the transition probability against age for each
birth cohort. For our application, 9 birth cohorts and 10
age groups were constructed (birth cohorts: ≤1907, 1908–
1912, 1913–1917, 1918–1922, 1923–1927, 1928–1932,
1933–1937, 1938–1942, ≥1943; age groups: ≤49, 50–54,
55–59, 60–64, 65–69, 70–74, 75–79, 80–84, 85–89,
≥90).

The approaches proposed in the previous sections were
used to analyze the transition probabilities separately and
jointly, in order to provide significance tests of birth
cohort effects. The model for the separate analysis of inci-
dence is as follows:

var(Incij) = μij(1 - μij) and corr(Incij, Incik) = α0,
(12)

where μij = Pr(Incij = 1), j <k = 2: 5-year follow-up; 3: 10-
year follow-up; 4: 15-year follow-up, (age in 1987)i is the
ith participant's age in 1987, ageij is the age of participant
i at examination j, and (confounders)ij represents charac-

teristics that could potentially influence the relationship
among ARM, birth cohort and age at the examination,
including gender, smoking status, history of heavy drink-
ing, multi-vitamin use, cholesterol level and hypertension
status [19] (the boldface type denotes multiple factors).
Treatment of ARM is not included as a confounding vari-
able because, at present, there are few medical interven-
tions that have been shown to prevent the incidence or
progression of ARM [20,21]. Although surgical interven-
tion in some cases prevents further loss of vision, it usu-
ally does not restore vision in the patient. In our Beaver
Dam Eye study, no significant relationships were found
between the most commonly used interventions and 5-
year and 10-year incidences of early or late ARM [20,21].
The concomitant low frequency of use of medication, sur-
gery, and of incidence of early and late ARM limits our
ability to detect any meaningful relationship.

The birth cohort effect exp(5β1) is the odds ratio of ARM
incidence for every 5-year decrease in birth year (5-year
older birth cohort) among people with the same age. The
age effect exp(5β2) is the odds ratio for every 5-year
increase in age, comparing people from the same birth
cohort. These two effects are adjusted for the identified
confounding effects. Here, we chose the "exchangeable"
working correlation because the focus was on the birth
cohort effect and a reasonable and simple association
model (12) was all we needed. The indicator Incij was
replaced by Proij, Regij or Disij when analyzing different
transition courses.

Before conducting the joint analysis, we evaluated the
equal-effect hypotheses H01, H02 and H03 on each of the
identified confounding variables in order to reduce the
complexity of the model. If the 80% bootstrap percentile
confidence interval (with 500 bootstrap replicates) cov-
ered 0, the corresponding hypothesis was accepted and
the modelling of the confounding variable in the transi-
tion model (3) was modified accordingly.

To perform the joint analysis, we fit the following transi-
tion model

where c = 0, 1, j = 2, 3, 4 and the function g(·) depends on
the significance of hypotheses H01, H02 and H03 for each of
the identified confounding variables. We added (10) as
the association model and fit a Heagerty and Zeger's
model with cutpoint-varied regression coefficients.
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Because our focus was not on the degree of association
among the transition events {Oij|Oi(j-1); j = 2, � , Ji}, we
used GEE1 as the estimating method, which is robust to
the misspecification of the association model (10). The
birth cohort effects of ARM incidence, progression, regres-
sion and disappearance are exp(5β10), exp{5(β11 + τ11)},
exp{-5(β11 + τ21)} and exp{-5(β10 + τ11)}, respectively.
The age effects are exp(5β20), exp{5(β21 + τ12)}, exp{-
5(β21 + τ22)} and exp{-5(β20 + τ12)} for ARM incidence,
progression, regression and disappearance, respectively.

Results
The incidence, progression, regression and disappearance
probabilities of ARM were: at the 5-year follow-up: 88, 41,
24 and 66 per 1,000 individuals; at the 10-year follow-up:
83, 48, 30 and 141 per 1,000 individuals; and at the 15-
year follow-up: 78, 79, 0 and 92 per 1,000 individuals,

respectively. Panels in the first row of Figure 2 show the
different observed ARM transition probabilities versus age
for different birth cohorts. For ARM incidence and pro-
gression, we observed that as people became older, the
chances of developing the corresponding transition events
increased. Those in the older birth cohorts tended to have
a higher probability of developing ARM incidence events
than those in younger cohorts, even if they had the same
age, suggesting a birth cohort effect on the ARM incidence.
A birth cohort effect was not as apparent for progression
as it was for incidence. The regression probabilities were
equal to zero in most of the birth cohorts, making it diffi-
cult to judge the birth cohort effect. When comparing peo-
ple from the same birth cohort, the disappearance
probabilities increased and then decreased when the age
increased. The younger birth cohort seems to have a posi-

Relation of age to ARM transition probabilities for different birth cohortsFigure 2
Relation of age to ARM transition probabilities for different birth cohorts. A includes plots for incidence probabili-
ties, B includes plots for progression probabilities, C includes plots for regression probabilities, and D includes plots for disap-
pearance probabilities. Within each transition probability, the top panel is the plot based on observed data (obs), the middle 
panel is the plot based on separate analysis (SEP model), and the bottom panel is the plot based on joint analysis (JA model). In 
each panel, different numbers represent different birth cohorts (birth years).
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tive effect on the ARM disappearance but the trend is not
clear.

Table 2 contains the 80% bootstrap percentile confidence
intervals for testing the equal-effect hypotheses H01, H02
and H03 on identified confounding variables. None of the
confounding variables reject the hypotheses, thus we can
assume that the regression coefficients for these con-
founders are independent of c and that there are no inter-
actions with the previous response in model (13). That is
to say:

g((confounders)ij) = β3 × (confounders)ij. (14)

It should be noted that the bootstrap confidence interval
for "current heavy drinker" is very wide, compared to
other variables. This is caused by the large standard error
of its regression coefficient estimate in modelling the dis-
appearance probabilities. Only 0.9% of current drinkers
had experienced the disappearance events. We performed
a separate analysis for disappearance with and without
"current heavy drinker" and obtained results that were
similar for other variables in the model. To be comparable
with our previous results, we decided to keep "current
heavy drinker" in the model.

The fitted lines of transition probabilities over age by birth
cohort based on the separate analysis (11, 12) are shown
in the panels of the second row of Figure 2. The fitted lines
were obtained by smoothing the estimated probabilities
of the transition event versus the age for each birth cohort.
The third row of Figure 2 represents the fitted transition
probabilities based on the transition model (13, 14).
Model (10) was first used as the association model, but
because both α1 and α2 were not significant, we simplified
the association model as

log{OR[I(Oij > c1), I(Oik > c2)|Oi1]} = α0, (15)

and obtained  (95% CI: -1.48, -0.46). For all

four transition probabilities, the results from the two
approaches were pretty close and they fit the data equally
well.

Figure 3 shows the birth cohort and age effects on various
ARM transition events. Controlling for age and other risk
factors, the participants from the older birth cohorts were
more likely to develop ARM incidence than those from
the five-year younger cohort. Within the same birth
cohort, aging increased the chance of developing ARM
progression. There were significant birth cohort effects on
ARM regression (the older the birth cohort, the more
likely the ARM). The separate analysis revealed that the
younger birth cohort and the older age had a positive
effect on ARM disappearance; however, the joint analysis
did not find these two effects significant. It should be
noted that the estimated effects on the regression proba-
bility from the transition model (13, 14, 15) had much
narrower CI's than those from the separate approach. This
might explain the power gained in the joint analysis.

To evaluate the impact of the first-order Markov assump-
tion on the joint analysis, we had fit a standard propor-
tional odds model to models (13, 14). Results can be
found from Additional files 1 and 2. In summary,
approaches with and without the first-order Markov
assumption provided consistent parameter estimates, but
this Markov assumption resulted in much wider CI's for
birth cohort and age effects. These reflected the robustness
of the regression coefficients in (3) for the misspecifica-
tion of the association model (10) and the power gained
from an appropriate association model.

Discussion
In this paper, we define regression and disappearance as
Regij and Disij in Table 1 and in the methods section. The
definitions for these two transition courses are not very
desirable. Therefore it may be more desirable to define the
regression as:

ˆ .α 0 0 97= −

Table 2: Bootstrap percentile confidence intervals

confounding variables/hypotheses H01 : βp1 = βp0 H02 : τ1p = 0 H03 : τ2p = 0

male gender (-0.61, 0.56) (-0.40, 0.44) (-0.61, 0.68)
pack years smoked (-0.013, 0.0087) (-0.0065, 0.0096) (-0.0096,0.014)
past heavy drinker (-0.87, 0.71) (-0.50, 0.57) (-0.70, 0.94)
current heavy drinker (-78.32, 1.54) (-1.17, 40.37) (-1.62, 78.67)
past vitamin user (-0.71, 0.71) (-0.56, 0.52) (-0.88, 0.75)
current vitamin user (-0.65, 0.71) (-0.45, 0.49) (-0.78, 0.68)
total cholesterol (-0.0059, 0.0053) (-0.0048, 0.0046) (-0.0063, 0.0065)
hypertensive (-0.51, 0.50) (-0.39, 0.39) (-0.54, 0.55)

The bootstrap percentile confidence intervals are for testing equal-effect assumptions. The confidence intervals shown in the table are the 80% 
bootstrap percentile confidence interval.
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and the disappearance as:

We select Regij and Disij for two reasons. First, they are the

direct result of the transition model (3). The proposed
transition model models (I(Oij > 0), I(Oij > 1)) (cumula-

tive probabilities of the current response) and (I(oi(j-1) =

1), I(oi(j-1) = 2)) (level indicators of the preceding

response). This modelling can result in the incidence and
progression that meet our desired definitions, but not
those of regression and disappearance. Since our motiva-
tional example was more interested in incidence and pro-
gression than in the other two courses, we thus adopted
the above modelling. Second, the selected regression and

disappearance are very close to the desired  and

 in our ARM application. Because late ARM was rare

(Figure 1), Disij was close to  Also, none of the peo-

ple with late ARM became disease free in the follow-up,

and Disij was equal to .
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To obtain the inference for , one can replace the level

indicators of the preceding response with cumulative
probabilities (I(oi(j-1) > 0), I(oi(j-1) > 1)) in model (3) and

set c = 0 and (I(oi(j-1) > 0), I(oi(j-1) > 1)) = (1, 1). If the regres-

sion  is of interest, then we can use the indicators of

the current response (I(Oij = 1), I(Oij = 2)) as dependent

variables and fit a linear generalized logit model [22], set-
ting c = 1 and (I(oi(j-1) = 1), I(oi(j-1) = 2)) = (0, 1). Analysts

can select modelling strategies for current and past
responses based on interested transition probabilities,
then modify the definitions of secondary transition prob-
abilities accordingly, the same as we did for the ARM birth
cohort study. Or, one could fit several different transition
models with different modelling selections and draw
inferences for interested transition probabilities from cor-
responding models.

This paper considered two different approaches for ana-
lyzing longitudinal disease staging data. In the separate
analysis, the incidence, progression, regression and disap-
pearance probabilities are marginally defined, modelled
and estimated. One can easily modify the definition of a
transition probability to accommodate various needs

(e.g., using  and  for analysis). The separate

analysis also allows different covariate effects on different
transition probabilities, which is best for carefully describ-
ing specific precursor effects on transition probabilities
and provides an excellent reference for checking the
assumptions on which the transition model relies. In con-
trast, a joint transition model can borrow strength from
all transition probabilities. For confounding variables that
do not show different effects on different transition prob-
abilities through the examination of separate analytical
results, the transition model can adopt the equal-effect
assumption to reduce the complexity of the model. One
limitation is its inflexibility in simultaneously obtaining
desirably defined transition probabilities as described in
the above discussion. As a general strategic recommenda-
tion: It is natural to first analyze each transition probabil-
ity separately for initial findings and empirical
examination of the equal-confounding-effect assumption.
Then, the transition model, taking separate analytical
results into account, is useful to refine and clarify those
outcomes that are indecisive in separate analysis.

The transition model (3) can potentially grow very large,
with increasing number of levels, covariates and follow-
ups. To ensure a large enough sample size for implement-

ing the model, one can examine the cross tabulations of
Oij versus Oi(j-1) for j = 2, � , J, stratifying by possible values
of major risk factors. It is recommended that no cell value
should be less than 5.

There are many possible generalizations of the proposed
framework. Generalization to allow a disease severity
scale with more than three levels can be easily done. How-
ever, with more than three disease-severity levels the defi-
nitions of distinct transition probabilities are not trivial,
thus researchers may need to first define the transition
probabilities according to the study aims and then work
on the modelling of current and past responses to meet
those aims. Also, the proposed approaches may be gener-
alized to allow subjects to be measured at different sets of
times (i.e., unequally-spaced follow-up). The transition
model (3) solely depends on the immediately preceding
response and, by treating the correlation as nuisance, the
association model (10) is taken to handle the inter-corre-
lation among the transition events {Oij|Oi(j-1); j = 2, � , Ji}.
Thus, the model does not result in different interpreta-
tions of regression coefficients in (3) for subjects with dif-
ferent numbers of examinations, as discussed in [8]. In the
case where additional subjects can be recruited at any time
points during the study (i.e., an open population), these
newly recruited samples will have missing disease severity
observations at time points before their recruitment. If
their missingness is completely at random [23], then the
situation can be handled by only including collected
examinations and their associated covariates.

Conclusion
This paper proposed and demonstrated a framework for
studying the relationship of disease incidence, progres-
sion, regression and regression with risk factors of interest.
Our proposed framework includes two different analytical
approaches. One approach can define, model and esti-
mate the relationship between each transition probability
and risk factors separately. The other approach specifies a
transition/conditional probability model to formulate the
probability of the current disease level based upon the
previous level. It studies the disease as a whole and uses
the whole population to estimate these probabilities
together. We recommend that one first analyzes each tran-
sition probability separately for data exploration and
assumption evaluation, and then utilize the transition
model to refine and clarify the results. The results of the
ARM data analysis show that the parallel application of
separate and joint analyses is superior over any in isola-
tion. In this regard, mutually cohesive findings generally
will comprise stronger scientific evidence than those sup-
ported by only one of the analytical approaches. The fit-
ting methods for the transition model are readily
implementable in available software.
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Joint analysis with the first-order Markov assumption: relation of age 
to ARM transition probabilities for different birth cohorts. Clockwise 
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years).
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Joint analysis with the first-order Markov assumption: confidence 
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age effects are represented by the odds ratio. Both effects are adjusted for 
gender, smoking status, history of heavy drinking, multi-vitamin use, cho-
lesterol level, and hypertension. In each panel, red lines are fitted from the 
models (11, 12) for separate analysis, green lines are from the joint anal-
ysis models (13, 14) under the first-order Markov assumption, and purple 
lines are from the joint analysis models (13, 14, 15) without the first-
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