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Abstract The serum and glucocorticoid inducible protein kinase (SGK) family members share similar
structure, substrate specificity and function with AKT and signal downstream of the phosphatidylinositol
3-kinase (PI3K) signalling pathway. They regulate a range of fundamental cellular processes such as cell
proliferation and survival, thereby playing an important role in cancer development. This perspective
intends to give an overview on the involvement of SGKs (particularly SGK3) in cancer progression, and
compares the actions of SGK3 and AKT in cell cycle regulation, oncogenic signalling, and the potential as
a therapeutic target for cancer.
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Figure 1 Domain organization of SGK3 and AKT. SGK3 and AKT
share a common domain organization consisting of an N-terminal
domain, a catalytic domain and a C-terminal domain. They also share
similar phosphorylation sites: a Thr residue in the activation loop of
the catalytic domain and a Ser residue in the hydrophobic motif of the
C-terminal domain.
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1. Introduction

The phosphatidylinositol 3-kinase (PI3K) signalling pathway
controls a range of fundamental cellular processes. The serum
and glucocorticoid inducible protein kinase (SGK) family signals
downstream of the PI3K pathway, and shares similar structure,
substrate specificity and function with AKT. Like AKT, SGK is
involved in the regulation of cell proliferation and survival. In
addition, SGK also plays an important role in cancer development
via an AKT-independent signalling pathway. In order to identify
novel compounds capable of inhibiting SGK activities, a high-
throughput screening campaign against one of the three SGK
isoforms, namely SGK3, was carried out and a dozen of hits with
IC50 values in the low micromolar to sub-micromolar range were
subsequently discovered and characterized1. Since SGK3 is less
well-known among the scientific community, this perspective
intends to give an overview on the role of SGK3 in cancer
progression downstream of PI3K, and compares the potential roles
of SGK3 and AKT in cellular regulation, oncogenic signalling,
and the potential as a therapeutic target for cancer.
2. Structure and activation of SGKs

Dysregulation and hyperactivation of the phosphatidylinositol
3-kinase (PI3K) signalling pathway occurs frequently in many human
cancers2,3. It is one of the major pathways activated following growth
factor stimulation: it activates a cascade of downstream signalling
proteins and responses to control cell proliferation, survival, metabo-
lism and migration4. SGK is a family consisting of three isoforms:
SGK1, SGK2, and SGK3 encoded by the genes SGK1, SGK2 and
SGK3, respectively, and they are activated downstream of the PI3K
pathway5. The SGK isoforms are highly similar in structure, with
almost 80% sequence identity within the catalytic domains and almost
50% within the C-terminus region. The major differences in structure
between the isoforms are at the N-terminus. Specifically, SGK1 has
four distinct variants which all differ in the N-terminal area. The
presence of a six amino acid hydrophobic motif in the most abundant
variant of SGK1 is responsible for its localization to the endoplasmic
reticulum and degradation through the 26S proteasome6. Both SGK2
and SGK3 produce two types of variants; however, the functional
consequence of SGK2 and SGK3 variants are not yet understood6.
SGK1 and SGK3 isoforms are ubiquitously expressed, and SGK2
expression is restricted to the liver, kidney, pancreas, and brain7. SGKs
have two key regulatory sites: a Thr residue in the activation loop of
the catalytic domain (Thr 320 in SGK3) and a Ser residue in the
C-terminal hydrophobic motif (Ser 486 in SGK3, Fig. 1), and
phosphorylation of both sites are required for complete activation5,7,8.
In addition to phosphorylation, SGK1 expression can also be
transcriptionally regulated and degraded by ubiquitination. SGK3 is
phosphorylated at Thr 320 by phosphoinositide-dependent kinase-1
(PDK1), and mammalian target of rapamycin complex 2 (mTORC2) is
proposed to phosphorylate SGK3 at Ser 4869. SGK3 is distinct from
the other two SGK isoforms and the AKT family: it has a Phox (PX)
domain in the N-terminal region (amino acids 12–120) which is
important for its protein kinase activity and responsible for targeting
SGK3 to endosomal compartments and vesicle-like structures9–11.

SGK3 endosomal membrane localization is required for complete
kinase activity9. Mutation of the PX domain prevents phospholipid
binding and endosomal localization, and subsequently results in
decreased SGK3 activity11. Binding of PI(3)P to the PX domain
promotes phosphorylation and activation of SGK3 by PDK1,
however this dependence is lost after phosphorylation of the
hydrophobic motif at the C-terminal region6, suggesting that
membrane binding via the PX domain is important to co-localize
SGK3 and mTORC2, the kinase proposed to phosphorylate SGK3
at the hydrophobic motif. Activation of SGK3 is slower than AKT,
implying that the endosomal location of SGK3 causes a delay in the
activation process compared with activation of AKT at the plasma
membrane7. In addition, unlike AKT, association of SGK with the
cell membrane is not essential for activation9.
3. Structure and activation of AKT

The AKT family also has three isoforms: AKT1, AKT2, and
AKT312,13. All three isoforms share a conserved structure that
includes three functional domains: an N-terminal pleckstrin homol-
ogy (PH) domain, a central catalytic domain, and a C-terminal
regulatory domain containing the hydrophobic motif (Fig. 1)13,14.
SGK isoforms share the same substrate consensus phosphorylation
motif and have similar structural and biological functions to that of
the AKT family6. AKT and SGK3 substrates control a range of
cellular responses to growth factors and other extracellular stimuli
including cell proliferation, survival, migration, metabolism, and
angiogenesis6,7,13,15. Given the similarity in structure and substrate
specificity, the SGK family is also considered as a second AKT
family in cancer signalling6. AKT has two key regulatory sites, Thr
308 in the activation loop of the catalytic domain and Ser 473 in the
C-terminal hydrophobic motif, and similar to SGK, both sites
require phosphorylation for complete activation16,17. AKT is
phosphorylated at Thr 308 by PDK1 and at Ser 473 by mTORC216.
AKT signals downstream of class 1A and 1B PI3K, which are
activated by tyrosine kinase and G-protein-coupled receptors,
respectively18. Once activated, PI3K phosphorylates the 3 hydroxyl
group of the inositol ring of PI(4,5)P2 to generate PI(3,4,5)P3 at the
lipid membrane19,20. AKT is then recruited to the plasma membrane
when its PH domain binds to PIP3, allowing phosphorylation at Thr
308 and partial activation of AKT by PDK1. AKT is fully activated
when it is also phosphorylated by mTORC2 at Ser 47315.
4. SGK and AKT in cancer

Despite the critical role of AKT in tumor development, the
function of downstream effectors that signal independently



Table 1 Some small molecule SGK inhibitors reported in the literature.

*Tested using 500 μmol/L of ATP.
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(i.e., not mediated by AKT) has also emerged. AKT signalling is
clearly diminished in many tumor cell lines, and instead, these
cell lines are dependent on other signalling proteins such as
SGK321. Interestingly, there is mounting evidence to show the
importance of other signalling factors downstream of PI3K that
act independently of AKT to mediate crucial cell processes
involved in malignant transformation6. The over expression of
activated AKT is not enough to restore malignant phenotypes in
PDK1 knockdown cells, suggesting there is a subset of tumors
that are PI3K/PDK1-dependent but AKT independent22. The
expression levels of SGK proteins have a key role in growth and
development of tumors that are resistant to AKT inhibition, as
Sommer et al.23 demonstrated that breast cancer cell lines
expressing high levels of SGK1 were resistant to inhibition of
AKT. Prolonged treatment with AKT inhibitors and class I PI3K
inhibitors have been shown to upregulate SGK3, and dual
treatment with AKT and SGK inhibitors reduces tumor growth
in BT-474 xenograft model24. SGK3 is essential to cell viability
in PIK3CA mutant cell lines with low AKT activation, indicating
a functional dependency on SGK3 in these cells. Amplification
and overexpression of SGK3 is more common than AKT in
hepatocellular carcinoma, and forced expression of SGK3 was
able to mediate increased cell growth, as well as anchorage
independent growth in hepatocellular carcinoma25. Another study
showed that microRNA miR-144-3p was able to inhibit cell
proliferation, migration and angiogenesis by targeting SGK3 in
hepatocellular carcinoma, further implicating the role of
SGK3 in cancer development26. In addition, PDK1 knockdown
decreased phosphorylation of SGK3 at Thr 320 in MCF-7 cells
with low activation of AKT, but this effect was less in T47D cells
with high activation of AKT21. Furthermore, estrogen receptor
(ER) positive breast tumors display a positive correlation
between SGK3 expression levels and tumor prognosis27,28,
and SGK3 contributes to the resistance against aromatase
inhibitors in ER positive breast cancer by maintaining
endoplasmic reticulum homeostasis29. In addition, SGK3 is also
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involved in androgen-mediated prostate cancer cell prolifera-
tion30. Together, these point to the significance of SGK signal-
ling independent of AKT in cancer pathogenesis and
the potential application of SGKs as targets for cancer
intervention.
5. Currently available SGK inhibitors

Given the implications of SGKs in cancer, a handful of SGK
inhibitors have been discovered (Table 1) and a majority of them
were tested against SGK1. These inhibitors bind to the ATP-site,
hence inhibit the kinase activity of SGKs by competing with ATP
and preventing its binding. Among them, 1 (PDB: 3HDM) and 2
(PDB: 3HDN) have been co-crystallized with SGK1, and this
provided important insights into the critical protein-ligand inter-
actions responsible for inhibitory activity31. The azaindole core
forms hydrogen bond donor-acceptor interactions with Asp 177
and Ile 179 in the linker. This is where the adenosine group of
ATP interacts with the protein—a key site of the linker that is
structurally conserved in many other kinases. Another important
conserved residue is the catalytic Lys 127, which is responsible for
interacting with the β phosphate of ATP32, and both 1 and 2
interact with this catalytic lysine. GSK650394, analogous in
structure to 1 and 2, is proposed to make similar interactions at
the active site capable of reducing androgen-mediated LNCaP
prostate cancer cell growth33.

Another class of SGK1 inhibitors with a different scaffold
reported by Merck34–37 represented by 3 was predicted to interact
with the linker via a para-phenol group and with the catalytic
lysine via a carbonyl group38, respectively. A similar compound,
EMD638683, was suggested to be a potential therapeutic agent for
hypertension as it could decrease blood pressure in mice with
hyperglycemia and salt excess39. SI113 identified by Ortuso et
al.40 was able to decrease the growth of RKO colon cancer, MCF-
7 breast cancer and A-172 brain cancer cells41. It is predicted to
make hydrogen bond donor-acceptor interactions with Asp 177
and Ile 179 in the linker via a phenol group, and make π-stacking
interactions with the catalytic lysine40.

Due to the high homology between the SGK isoforms,
especially in the catalytic domain, these inhibitors are not expected
to be strongly selective for any of the SGK isoforms. Indeed, of
those that have been tested in more than one isoform, only
compounds 4 and 5 identified by Halland et al.38 were selective
for SGK1 over SGK3, but not over SGK2 (Table 1). The number
of SGK inhibitors available is rather limited, and information on
their selectivity remains scarce. Therefore, there is a high demand
for further characterization of available tool compounds, exploring
both selectivity and key protein-ligand interactions, and the
development of new SGK inhibitors.
6. Summary

The PI3K/AKT/mTOR signalling pathway is a major target for
cancer therapy, especially those bearing PIK3CA mutations.
SGK is a less explored target in the pathway and is suggested to
play a major role in malignant transformation. SGK is activated
downstream of PI3K and shares similar substrates with AKT,
and is considered a second AKT in cancer signalling. SGK can
also signal downstream of PI3K independent of AKT, con-
tributing to resistance against AKT inhibition in cancer cell
lines. The importance of SGKs in cancer development and the
scarcity of potent and selective SGK inhibitors support the
urgent need for discovery and development of small molecules
inhibitors targeting SGK for PIK3CA mutant cancers, and
especially those that are resistant to AKT inhibition. In order
to achieve this goal, both conventional high-throughput screen-
ing campaigns against structurally diverse chemical libraries
and computational biology-based virtual screens using available
SGK 3-dimentional structure models are required. Cross-studies
on the existing small molecule AKT inhibitors with the SGK
inhibitors reported in the literature may deepen our under-
standing of the signalling mechanisms involved in the patho-
genesis of various types of cancer and provide critical insights
into the development of potent and selective SGK inhibitors.
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