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Abstract: Heat stress strongly negatively affects reproductive traits in dairy cattle. The purpose of the
present study was to investigate the effect of heat stress in superstimulated Thai-Holstein crossbreds
under tropical climate conditions. Data included 75 records from 12 superovulated Thai-Holstein
crossbreds between 2018 and 2020. Cows were superstimulated with conventional treatment. The
mean temperature-humidity index (THI) was evaluated for three data collection periods: during the
9, 21 and 42-day periods before the insemination day to determine the period in which THI mostly
affected superstimulation responses. The THI levels/thresholds were determined and interpreted
together with the superovulatory response. A significantly negative correlation was obtained for the
THI during the period 9 days before insemination. Negative effects on the number of large follicles
and corpora lutea began at a THI of 72 and were apparently severe after a THI of 77, similar to the
ovulation rate, fertilized ova and transferable embryos (p < 0.05). Meanwhile, more degenerated
embryos were found with THI values (p < 0.05). The superovulatory response in Thai-Holstein
crossbreds under tropical climate conditions is highly affected by heat stress starting at a THI of 72
and becomes more severe at a THI higher than 77.
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1. Introduction

Heat stress is such an important issue for dairy production because of its nega-
tive effects not only on depressed milk production [1] but also on reduced reproductive
performance [2,3]. Direct effects of thermal discomfort in summer on fertility have been
described in several reviews [2,4,5]. Heat stress seems to modify the efficiency of folliculo-
genesis and to have negative effects on follicle quality [6]. In vitro cultures have been used
to study the adverse effects of elevated temperature on incomplete oocyte maturation, fer-
tilization and early embryonic development. The direct exposure of oocytes at the germinal
vesicle stage to 41 ◦C for 6–12 h showed reduced ability to undergo nuclear maturation and
embryo development [7]. Pre-incubation of sperm at 40.0–42.0 ◦C for 4 h decreased sperm
motility and integrity and increased sperm damage [8]. Meanwhile, the heat sensitivity
of embryos is considered to be stage-dependent, in which early-stage embryos are more
susceptible to elevated temperatures than advanced-stage embryos, such as morulae or
blastocysts [9–11]. These effects result in low fertility during the hot season.

Therefore, all the biological and technical causes for the failure of a female to produce
a blastocyst 7 day after natural or artificial insemination (AI) are avoided when a blastocyst
is transferred into the female [12]. The embryo transfer has been used instead of AI to
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improve pregnancy rates during the summer season, as those transferrable blastocysts
have a higher heat resistance compared with either ovulated oocytes or earlier-stage
embryos [13]. However, it is noted that to have satisfactory pregnancy results, in vivo-
derived embryos should be collected from non-heat stressed donors [14].

The temperature-humidity index (THI), representing the combined effects of environ-
ment temperature (◦C) and relative humidity (%), is widely used to measure the impact
of heat stress on dairy cattle. A negative correlation exists in cattle on reproduction traits
when the THI crosses a threshold level. The conception rate in dairy cows declines with
the threshold points of THI at 72–73 [15,16]. Some studies have inferred that cows ex-
posed to chronic heat stress for at least two estrous cycles showed impaired conception
rates [16], as the growth of small antral follicles to preovulatory follicles in the cows re-
quires about two estrous cycles [17]. Meanwhile, some studies referred to the period of
one estrous cycle as able to bring about reduced follicle growth and incomplete dominant
follicles [6], subsequently resulting in a decreased conception rate [16]. However, there are
currently no studies that determine the duration of heat load and THI levels that affect the
superovulatory responses in cattle.

The purpose of the present study was therefore to investigate the effects of heat stress
for superovulation parameters in crossbred Thai-Holstein dairy cows under tropical climate
conditions. Specifically, (1) to identify periods of heat stress which are closely relative to
the day of insemination associated with ovarian responses, (2) to estimate heat stress (THI)
levels/thresholds based on large follicles responses and (3) to examine the effect of heat
stress levels on ovarian responses and embryo production in Thai-Holstein crossbreds.

2. Materials and Methods
2.1. Animal Care

Data included 75 records from 12 superovulated Thai-Holstein crossbred cows be-
tween 2018 and 2020. All of the cows were nonlactating, 3 to 6 years of age and had
body condition scores (BCS) between 3 and 3.5 (1–5 scale). They were maintained in
straw and fed twice daily with a total mixed ration formulated based on requirements for
Holstein cows [18]. All cows had free access to water and mineralized salt. All animal
procedures were approved by the Institutional Animal Care and Use Committee of Khon
Kaen University, Thailand (Reference No. 660201.2.11/274 (52)).

2.2. Superovulation Treatment and Embryo Recovery

The superovulation treatment was induced according to (Figure 1). On a random
day of the estrous cycle (Day 0), the estrous cycles were synchronized by an intravaginal
device impregnated with 1.56 g progesterone (Eazi-Breed CIDR-B®, Zoetis Animal Health,
Kalamazoo, MI, USA) and a single dose intramuscular (IM) injection of 5 mg estradiol-17β
plus 50 mg progesterone (SRC Animal Health, Pak Chong, Nakhon Ratchasima, Thailand)
to induce follicular regression and emergence of a new follicular wave. The superovulatory
treatment was initiated on Day 4; cows received 400 mg of FSH (Folltropin®-V, Bioniche
Animal Health, Belleville, ON, Canada) given IM twice daily, in a decreasing dose (80, 80, 60,
60, 40, 40, 20, 20 mg, respectively) over 4 days. In the morning and evening of Day 6, 25 mg
of PGF2α (Lutalyze®, Zoetis Animal Health, Kalamazoo, MI, USA) was administrated IM,
and CIDR-B® were removed on the morning of day 7. Cows received 0.01 mg of GnRH
(Receptal®, MSD, Unterschleissheim, Germany) by IM to induce ovulation in the evening
of Day 8 and were artificially inseminated 12 and 24 h later. Ova/embryos were collected
7 days after insemination (Day 16) using a nonsurgical technique to flush the uterine horns
as described by Ratsiri et al. [19], evaluated and classified for quality according to the
criteria of Lindner and Wright [20]. The numbers of ova and embryos were recorded. The
percentage of fertilize ova was calculated from the number of fertilized ova of the total
number of ova/embryos recovered. Only embryos that graded A and B were considered
transferable while those that were degenerated were classified as degenerated embryos.
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The percentages of transferable embryos and degenerated embryos were calculated based
on the total number of fertilized ova/embryos as reported previously [21].
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Figure 1. Superovulation treatments in the experiment. CIDR-B®, intravaginal device impregnated
with 1.56 g progesterone. EB, 5 mg of estradiol-17β. FSH, 400 mg of follicle-stimulating hormone
in eight decreasing doses. P4, 50 mg of progesterone. PGF2α, 25 mg of prostaglandin F2α. GnRH,
0.01 mg of Gonadotrophin-releasing hormone. FTAI, fixed time artificial insemination.d, day of
superovulation treatment.

2.3. Ultrasound Examination

The ovaries were examined two times by transrectal ultrasonography (HS-2000
ultrasound scanner; Honda Electronics Co., Toyohashi, Japan). Firstly, on Day 9 (before
insemination) to count the number of large follicles (≥10 mm), and secondly, immediately
before embryo collection on Day 16 of the program to count the number of corpora lutea
(CL) and unovulated follicles (≥9 mm). The ovulation rate was calculated by dividing the
number of CL by the number of ovulatory follicles [22].

2.4. Temperature-Humidity Index (THI)

Climate data were obtained from the weather station closest to the dairy farm (3 km
distance). The weather information included daily temperature, and relative humidity
recorded every 3 h, which were used to calculate the THI between 2018 and 2020, as
presented in Figure 2. Meanwhile, those measures of THI in the farm area were recorded
with the same frequency using an automatic temperature and humidity meter (data logger;
EL-USB-2). The THI was calculated according to the National Oceanic and Atmospheric
Administration [23]; THI = (1.8 × temp + 32) − (0.55 − 0.0055 × RH) × (1.8 × temp − 26),
where THI was the temperature and humidity index, temp is the temperature (◦C), and
RH is the relative humidity (%).

To determine which period of heat stress was mainly correlated with the superovula-
tory responses, the means for THI in the farm area during three different periods relative to
the day of insemination were collected and compared with the superovulatory responses.
Period 1 was collected during 9-day period (starting at the time of estrus synchroniza-
tion: Day 0 of superovulatory treatment) to insemination day as a new follicular wave
was induced. Periods 2 and 3 were collected during 21 and 42-day periods before the
insemination day (one to two estrous cycles, respectively) [15,16]. Then, the THI during
the period that heat stress was mostly correlated with the superovulatory responses, was
used to determine the threshold of heat stress and to study the relationship between the
THI and superovulation responses. The THI levels that affected the superovulatory re-
sponse were determined based on visual inspection of the graph’s broken arrow point
and the coefficient of determination (R2) of the graph on the number of large follicles
parameter, which is the most critical parameter that indicated the effect of response to the
superovulation treatment [24].
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2.5. Statistical Analysis

The correlation between THI during insemination and the superovulatory responses
was performed using the Pearson correlation method by “Proc corr” in the SAS program.
The appropriate insemination day was selected for comparative analysis of the THI level
on the superovulatory responses. Two methods are used to determine the threshold point
of heat stress: (1) The visualisation technique was used to determine the heat stress level
by graphing the relationship between THI values and the superovulatory responses and
considering the graph’s broken arrow point. (2) The accuracy of the prediction equation by
THI level depends on the coefficient of determination (R2), which can be calculated from
the equation:

R2 = 1 − SSE
SST

(1)

where SSE is the sum of squares error and SST is the sum of squares total. At the same
time, the influence of the THI level on superovulatory response parameters was also tested
with a simple nonlinear regression analysis and correlation analysis (correlation coefficient;
r-value). Then, an estimated regression equation was constructed based on the regression
equation that best fit the data.

3. Results

The mean temperature and relative humidity were recorded from 2018 to 2020; aver-
ages were 27.68 ◦C and 69.94%, respectively. As shown in Figure 2a, the monthly average
temperature was lowest in December (24 ◦C) and was highest in April and May (30 ◦C).
The average relative humidity was lowest in March (60%) and was highest in September
(81%). Figure 2b shows the minimum, maximum and average for THI of each month,
where the average THI was lowest in December (72) and highest in May (81).
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3.1. Correlation between THI during Periods of Heat Stress Relative to Insemination Day (9, 21
and 42 Days before Insemination) with the Superovulatory Responses

The correlations between the THI during the 9, 21 and 42-day periods before the
insemination day (three periods) with the superovulatory responses in terms of the number
of large follicles, number of CL, number of unovulated follicles and ovulation rate in
Thai-Holstein crossbred cows are shown in (Table 1). A negative correlation was obtained
in all three periods on all parameters of superovulatory responses except ovulation rate.
However, those of significantly negative correlation were only for THI during the period
9 days before insemination (number of large follicles: −0.38, p = 0.04; number of CL: −0.40,
p = 0.03). The increase in the THI value led to the decrease in the number of large follicles
and the number of CL of 0.38 and 0.40 per THI unit, respectively. Therefore, the THI during
the period 9 days before insemination was selected to study the relationship between THI
and superovulatory responses.
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Table 1. Correlation between THI during periods of heat stress relative to insemination day (9, 21 and 42 days before
insemination) with the superovulatory responses in Thai-Holstein crossbred cows.

Periods of Heat Stress
before Insemination

Large Follicles
(Number)

Corpora Lutea
(Number)

Unovulated Follicles
(Number) Ovulation Rate (%)

THI 9-day −0.38 −0.40 −0.27 0.15
p-value 0.04 * 0.03 * 0.21 0.46

THI 21-day −0.32 −0.35 −0.32 0.14
p-value 0.09 0.07 0.14 0.50

THI 42-day −0.24 −0.27 −0.30 0.16
p-value 0.21 0.16 0.16 0.46

* p < 0.05.

3.2. Determination of Heat-Stress Threshold and Relationship between THI and
Superovulatory Responses

Based on the broken arrow point on the graph and R2 regarding the number of large
follicles as the main parameters (see Figure 3a), there was a significant decline in the
number of large follicles starting at a THI of 72, with the highest R2 (0.57) and a more severe
decline after a THI of 77 (R2 = 0.45). The correlation coefficient (r-value) was negative for
the number of large follicles (r = −0.704). In other words, the number of large follicles
decreased with the increase of THI.
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The numbers of CL and the ovulation rate were significantly affected; the r-values
were −0.751 and −0.551, respectively (Figure 3b,d). Meanwhile increasing the THI had no
significant effect on the number of unovulated follicles; the r-value was 0.063 (Figure 3c).

The relationship of THI during the period 9 days before insemination with embryo
quality is shown in Figure 4. The percentages of fertilized ova and transferable embryos
significantly decreased (r-values = −0.427 and −0.736) (Figure 4a,c). Meanwhile more
degenerated embryos were found while THI increased (r-value = 0.530; p < 0.05; Figure 4b).
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The regression equation that best fits the present data was y = b1X3 + b2X2 + b3X + a.
This equation form is a third-order degree polynomial nonlinear regression. This equation
was used in every parameter. However, the difference regression coefficients (b1, b2, and b3)
and y-intercept (a) were variable depending on each parameter’s x and y values. The final
models utilized to generate the regression lines specific to each parameter are demonstrated
in Figures 3 and 4.

4. Discussion

In the present study, we evaluated the impact of heat stress as measured by THI on
superovulation parameters in Thai-Holstein crossbreds under tropical climate conditions.
The mean of the THI during the period 9 days before insemination was used to assess
the risk of heat stress. A significant negative correlation between THI and ovarian follicle
responses in terms of numbers of large follicles and CL that decreased at a THI of 72
and a more severe decline after a THI of 77 subsequently affected the lower ovulation
rate, fertilized ova, and transferable embryos. Meanwhile, significantly more degenerated
embryos were found with increasing THI.

The average THI of the three data collection periods negatively correlates with the
superovulatory response in terms of the number of large follicles and CL. It has been
demonstrated that cows exposed to longer heat stress showed a largely decreased activity
of granulosa cells and androstenedione production in the large follicles, which is necessary
for follicular growth [25]. However, the THI during the period 9 days before insemination
is significantly affected compared with the other periods. Some studies inferred that cows
exposed to chronic heat stress for at least two estrous cycles showed impaired conception
rates [16], as the growth of small antral follicles to preovulatory follicles in the cows
requires about two estrous cycles [17]. Meanwhile, Schuller et al. [15] found that the
decrease in conception rate to 16% occurs when cows experiencing heat stress during the
three weeks before the day of breeding or one cycle of estrous. The effect of heat stress
on the beginning of the estrous cycle reduces follicle growth and incompletely dominant
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follicles [6]. However, in the present study, exogenous hormones were administered to
induce a new follicular wave in our superovulation treatment, suggesting that the period
from starting synchronization in the superovulation procedure (9 days in our study) could
be a critical period to consider heat load that affects to superovulatory response.

A THI account is a useful and easy way to assess the risk of heat stress on production.
Many studies have divided different THI ranges according to either milk production [26,27]
or fertility traits [28]. However, the heat stress levels that affected different dairy herds
were not similar and depended on breed, heat tolerance, temperature, and humidity [29,30].
In Thailand, which is a tropical country, the effect of THI values was studied only for milk
production [31,32]. The THI values that exceeded a threshold of 74 seem to decrease milk
production, while the THI threshold of 80 represented severe heat stress in Thai-Holstein
crossbreds. In any case, the effect of THI in the reproductive traits of Thai-Holstein
crossbreds has been little explored. The average open day of Thai-Holstein crossbreds
increased if THI was higher than 77 [33]. The season of calving influenced the open day
of Thai-Holstein crossbreds [31,34]. In the present study, the declining of superovulation
responses in terms of large follicles and CL started at a THI of 72; however, there was a more
severe decline after a THI of 77, which is higher than in previous studies on conception
rates (at THI 70–75) [15,16,35,36]. These different THI thresholds might result from Thai-
Holstein crossbreds having inherited genes from Bos indicus that help them adapt to heat
tolerance; therefore, the threshold point of the THI of heat stress on the reproductive traits
in Thai-Holstein crossbreds was higher than other breeds. In addition, it is noted that
the THI threshold was lower in our study (reproductive trait) compared with previous
studies on milk production traits in Thai-Holstein crossbreds [31,32], suggesting that the
reproductive traits had a lower tolerance than production traits [37].

GnRH treatment during estrus has been well documented to either prevent ovulation
failure or reduce any variation in the ovulation interval by inducing an LH peak [38,39].
Chankitisakul et al. [21] observed a decline of unovulated follicles and increased ovulation
rates if GnRH was administrated before insemination. Indeed, we supposed that ovulation
failure should not occur with hormone stimulation. However, the ovulation failure with
THI increases was presented even when ovulation was induced with GnRH treatment in
the protocols of our study. Similarly to a previous study, more decreasing ovulation rates
were found in warm periods than in cool periods [40]. It is therefore inferred that heat
stress could increase the proportion of cows that fail to ovulate even when GnRH was
administered at estrus to promote ovulation.

The reduction in fertilization rate and increased embryonic mortality were observed
in heat-stressed dairy cows [41,42]. Similarly, to our results, the percentages of fertilized
ova and transferred embryos significantly decreased at moderate and severe heat stress
compared with mild heat stress meanwhile the more significant degenerated embryos
were found in severe heat stress. A lower fertilized ova might be explained by heat
exposure during oocyte maturation. In vitro studies indicated that exposure of culture
oocytes to physiologically relevant heat shock (41 ◦C) during the first 12 h. of maturation
decreased their cleavage rate and blastocyst rate by 30%–60% [7,43,44]. Meanwhile, the
heat sensitivity of embryos is considered stage-dependent in which early-stage embryos are
more susceptible to elevated temperatures than advanced-stage embryos such as morulae or
blastocysts [9–11]. Excessive reactive oxygen species could reduce the embryo development
rate and increase the number of apoptotic cells in embryos cultured in vitro [45]. A higher
incidence of degenerated embryos was demonstrated in superovulated cows exposed to
heat stress from the period of onset of estrus until embryo development [46].

Considering the year-round THI values of Thailand (Figure 2b), it was evident that
the average THI was above 72 from most of the year. Further, a more severe THI of more
than 77 was unsuitable for superovulation treatment for almost 8 months. We suggest that
the most suitable period for superovutation procedure to realize more large follicles and
transferable embryos in Thailand is during December and January when the average THI
is 72 to 73. In the previous study in Thailand, Kaewlamun et al. [34] report that the THI
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was lowest in December (72) and the highest in April (80). A high ratio of cows calved
with successful breeding in December/January due to the THI being low. Accordingly, the
average milk production was associated with seasonal variations in Thailand, while the
THI was lowest in December and January (73) and highest in April (82) [32]. Moreover,
farm management is vital to embryo production on superovulated cows, and the influence
of heat stress should be resolved.

5. Conclusions

The periods from starting at the time of estrus synchronization, superstimulation to
insemination (total = 9 days in the present study) are important for considering the heat
load that could affect the superovulatory response. The decline in superovulatory response
starts at a THI of 72 and becomes more severe at THI values higher than 77.
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