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Feedback loops between population dynamics of
individuals and their ecological environment are
ubiquitously found in nature and have shown
profound effects on the resulting eco-evolutionary
dynamics. By incorporating linear environmental
feedback law into the replicator dynamics of two-
player games, recent theoretical studies have shed
light on understanding the oscillating dynamics of
the social dilemma. However, the detailed effects
of more general nonlinear feedback loops in multi-
player games, which are more common especially in
microbial systems, remain unclear. Here, we focus on
ecological public goods games with environmental
feedbacks driven by a nonlinear selection gradient.
Unlike previous models, multiple segments of stable
and unstable equilibrium manifolds can emerge from
the population dynamical systems. We find that
a larger relative asymmetrical feedback speed for
group interactions centred on cooperators not only
accelerates the convergence of stable manifolds
but also increases the attraction basin of these
stable manifolds. Furthermore, our work offers an
innovative manifold control approach: by designing
appropriate switching control laws, we are able to
steer the eco-evolutionary dynamics to any desired
population state. Our mathematical framework is
an important generalization and complement to
coevolutionary game dynamics, and also fills the
theoretical gap in guiding the widespread problem of
population state control in microbial experiments.
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1. Introduction
The feedback between environment and evolutionary dynamics is widespread in a large
number of natural systems [1–5]. In human society, a depleted environment or resource state
favours cooperation, which results in the mutual growth of both the environmental state and
cooperators, while subsequently free-riders increase, which in turn leads to the degradation of
the environment [6,7]. Understanding this oscillating system dynamics is of vital importance
when dealing with worldwide problems in human society, ranging from overgrazing of common
pasture land overfishing to some big challenges such as pollution control and global warming
[8–12]. Similar joint effects can also be obtained in some psychological–economic systems, such
as social welfare, overuse of antibiotics and anti-vaccine problems [13–16].

In particular, similar eco-evolutionary feedback loops exist broadly in microbial systems,
and these have received substantial prior attention in evolutionary biology and systems
biology in recent years [17–20]. Among microbes, cooperation often emerges as a result of the
secretion or the release of public goods, such as extracellular enzymes or extracellular antibiotic
compounds [21–25]. A fundamental problem is how these bidirectional feedbacks between
ecology and evolutionary dynamics affect the emergence of long-term cooperation as well as
the corresponding ecological consequences [20,26–30]. An experimental study proves that the
existence of the coupled interaction between population and evolutionary dynamics determines
the demographic fate of social microbial populations [31]. Besides population density, there
are many other ecological properties that have been found to play an important role in such
reciprocal feedbacks, such as spatial structures of the population, resource regeneration and
supply capacity [4,5,32–34].

Furthermore, to give a clear insight into these feedback-evolving games, a theoretical
framework called coevolutionary game theory is proposed to analyse the coupled evolution
of strategies and environment [35–39]. The core idea is to incorporate the game–environment
feedback mechanism into replicator dynamics, in which the feedback changes the pay-off
structure and further influences the evolution of strategies [40,41]. Such a framework successfully
shows the emergence of an oscillating tragedy of the commons. Similar cycles are also confirmed
in asymmetric evolutionary games with heterogeneous environments [42]. As a meaningful
example of the application, the framework is used to explore the effects of the intrinsic growing
capacity of the resources with punishment and inspection mechanisms [43]. In summary, these
eco-evolutionary models reveal the great role that the feedback loop plays in resolving social
dilemma and promoting the emergence of long-term cooperation.

However, it has been proved that, in most microbial systems, the essential factor that
creates density-dependent (or other ecological property-dependent) selection, which leads to the
existence of a feedback loop, is the preferential access to the common good for cooperators [44,45].
In other words, the preferential access mechanism affects the welfare of cooperators and defectors,
which further determines the selection direction of ecological properties. This indicates an
important fact that the current reward and pay-off structures of cooperators in a public goods
game (PGG) may actually be influenced by how well they fare against defectors (namely, the
natural selection gradient in the population). More specifically, the multiplication factor of
cooperators may change during evolution. The changes depend directly on the current pay-offs
of cooperators and defectors. This process in turn affects the evolutionary dynamics and leads to
the existence of an asymmetrical feedback.

While most of the previous works focus on two-player games with environmental feedback
[40,42], this selection gradient engineering via asymmetrical feedback in PGG, which is more
general in microbial systems, is ignored; the effects of this feedback loop remain unclear.
In addition, there is still a lack of proper understanding of nonlinear feedback mechanisms
since most studies concentrate on linear feedback laws. Further, when looking into the current
experimental results in microbial systems, we find that there exists a big theoretical gap in how
to effectively steer a given initial population state to a desired final state with external feedback
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control laws in coevolutionary games dynamics, which may have wide applications in systems
biology.

To advance all these important issues, in this work we propose a general framework which
extends the two-player games with environmental feedback to coevolutionary multi-player
games with asymmetrical feedback driven by a nonlinear selection gradient. Unlike the solely
interior equilibrium phenomenon obtained in previous models, we find the emergence of
multiple segments of stable and unstable manifolds with a number of different feedback control
functions. It is noteworthy that the equilibrium curve of an unstable manifold circumstance in our
model is in line with the separatrix obtained by experimental results in [31]. In addition, a larger
relative changing speed of the asymmetrical feedback can not only accelerate the convergence
speed of stable manifolds but also increase the attraction basin of these stable manifolds. Our
model reveals the detailed effects of the asymmetrical feedback loop driven by a nonlinear
selection gradient in PGG, which is an important complement and generalization for the previous
coevolutionary framework.

Moreover, we develop a new manifold control method based on our framework: when
incorporating time-dependent or state-dependent switching laws that can actually control the
stability of the possible manifolds [46–48], we can steer the coevolutionary games dynamics
to any desired region. Therefore, our framework can be widely applied into culture refresh
modes for establishing continuous culture devices and designing the required chemostat
for microbial experiments, which is of great significance in systems biology and microbial
ecology [49–51].

2. Modelling framework
Here, we propose a general framework for evolutionary dynamics with feedback loops in PGG,
which is based on the current studies on two-player coevolutionary game theory [40]. We begin
from a further observation of the experimental results in [31], which confirms the existence
of a strong feedback loop between laboratory yeast population dynamics and the evolutionary
dynamics of cooperators, the SUC2 gene, as shown in figure 1a. The phase graph of the
coevolutionary system is clearly divided into two regions by the separatrix line, above which
the system converges to an eco-evolutionary equilibrium and the population survives and below
which the population goes extinct. Of particular interest, a specific bi-phasic logistic mathematical
model based on the Lotka–Volterra model of competition has been proposed to reproduce the
emergence of the separatrix line in [31], in which the population growth rates of cooperators
and defectors are distinguished under different cooperator densities. Although originating from
the laboratory yeast, these experimental results are representative of the commonplace existence
of feedback loops in many natural microbial systems. However, for a better understanding of all
those similar coevolutionary dynamics of population strategy and ecological properties, a general
framework is needed such that the population density in figure 1a can be included as an example.
Further, in figure 1b, we raise an important control problem in general coevolutionary games
dynamics, which has wide applications in similar microbial experiments: how can we effectively
steer the given initial population state (x0, y0) to a desired final state (x1, y1) with external feedback
control laws? To make progress on all these unsolved issues, in what follows we present a novel
coevolutionary model with feedback laws that can be engineered based on the nonlinear selection
gradient in the system.

Consider a well-mixed population. An individual finds itself in a group of size S + 1, with
S other players participating in the PGG. All players can choose to be either a cooperator that
contributes c to the public pool or a defector that free rides others’ efforts in the group. In
classical PGG, the total contributions are multiplied by a multiplication factor r and then divided
equally among all participants. In this work, to describe the phenomenon that cooperators have
preferential access to the common good in real microbial systems, which facilitates the formation



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190643

...........................................................

105

104

103

102

105

104

103

102
0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

survival

separatrix

extinction

SUC2 frequency, xSUC2 frequency, x

po
pu

la
tio

n 
de

ns
ity

(c
el

ls
/m

l)

po
pu

la
tio

n 
de

ns
ity

(c
el

ls
/m

l)

(x1, y1)

(x0, y0)

x· = F(x,rc) = x(1–x)(Pc–Pd)

r·c
 = G(x, rc) = ε(rc–a)(b –rc)f (x, rc)

asymmetrical
feedback

nonlinear influence
driven by selection

gradient

replicator dynamics

ecological property evolution

(b)(a)

(c)

Figure 1. Experiment results in [31] and schematic of our eco-evolutionary model framework. (a) Eco-evolutionary trajectories
of yeast population density and the fraction of cooperators, SUC2 gene. This experimental result consists of 60 cultures over
five growth–dilution cycles. The phase graph shows clearly two regions divided by a separatrix line, above which the system
converges to an eco-evolutionary equilibrium and below which the population goes extinct. The separatrix line is predicted by
a bi-phasic logistic model, provided in [31]. (b) Theoretical gap in the control problems of coevolutionary dynamics in microbial
systems: how to steer the given initial population state (x0, y0) to a desired final state (x1, y1)with external feedback control laws.
(c) Schematic of the model framework: eco-evolutionary games with asymmetrical feedback driven by a nonlinear selection
gradient in a PGG.

of an asymmetrical feedback loop, we assume that the multiplication factors of cooperators and
defectors are different, denoted by rc and rd, respectively, and rc ≥ rd. Without loss of generality,
we keep rd constant and let rc change based on nonlinear feedback driven by the selection gradient
(i.e. the nonlinear control function of the current pay-offs of cooperators and defectors) [52]. In
turn, rc affects the relationship of the cooperators’ and defectors’ pay-offs and further drives
evolutionary dynamics. In this way, we characterize all kinds of ecological properties affected
by the fraction of cooperators as a benefit of cooperation, which can be described by the
multiplication factor of cooperators. The schematic of this coevolutionary game framework is
shown in figure 1c.

Assume that x denotes the frequency of cooperators in the population. For any given focal
individual, the chance that k out of other S individuals are cooperators is

(
S
k

)
xk(1 − x)S−k.
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For simplicity and without loss of generality, we set the cooperator’s cost c equal to 1. Therefore,
the expected pay-offs of cooperators and defectors, Pc and Pd, are

Pc =
S∑

k=0

(
S
k

)
xk(1 − x)S−k

[
(k + 1)rc

S + 1
− 1

]

= 1 + Sx
S + 1

rc − 1

and Pd =
S∑

k=0

(
S
k

)
xk(1 − x)S−k krd

S + 1

= Sx
S + 1

rd.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Then the replicator dynamics for the fraction of cooperators x is

ẋ = x(Pc − P̄)

= x(1 − x)(Pc(x, rc) − Pd(x, rd))

= x(1 − x)
(

Sx + 1
S + 1

rc − 1 − Sx
S + 1

rd

)
, (2.2)

where P̄ = xPc + (1 − x)Pd represents the average pay-off of the population. Meanwhile, the
feedback-evolving dynamics, i.e. the ecological property evolution in figure 1c, is given by

ṙc = ε(rc − α)(β − rc)f (x, rc), (2.3)

where ε ≥ 0 denotes the relative changing speed of rc, the cooperator’s multiplication factor,
compared with strategy dynamics. The logistic term (rc − α)(β − rc) ensures that rc is restrained
to the range [α, β], which satisfies 1 < α < β < S + 1 according to the social dilemma in PGG.
In addition, f (x, rc) is a control function that describes the asymmetrical feedback mechanisms
in our model. While f actually characterizes the current impact of population strategies on the
environment, previous works exclusively focus on linear selection gradient feedback laws, such as
f = θx − (1 − x) in [40] and f = eLx + eH(1 − x) in [41]. Here, we stress our effects on the generality
of nonlinearity in feedback control laws, the general form of which is

f (x, rc) = Φ0(x, rc)(Φ1(x, rc) − a1)(Φ2(x, rc) − a2) · · · (an − Φn(x, rc)), (2.4)

in which

Φ0(x, rc) = Pc(x, rc) − Pd(x, rd)

and Φi(x, rc) = θiPc(x, rc) − Pd(x, rd)

}
(2.5)

and ai ≥ 0, θi > 0, n + 1 denotes the order of the control function. Here Φ0(x, rc) = Pc − Pd is the
simplest form of the linear selection gradient. Therefore, equation (2.4) provides a series of control
functions driven by the nonlinear selection gradient in a general polynomial form. Also note
that, to construct a stabilizing selection law, the sign of the last term (i.e. (an − Φn(x, rc))) in
equation (2.4) is contrary to the other terms [52].

Finally, our generalized framework of multi-player evolutionary games with asymmetrical
feedback driven by nonlinear selection gradient can be written as follows:

ẋ = x(1 − x) (Pc − Pd)

and ṙc = ε(rc − α)(β − rc)(Pc − Pd)((θ1Pc − Pd) − a1) · · · (an − (θnPc − Pd)).

}
(2.6)
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3. Results

(a) Emergence of multiple segments of stable and unstable equilibriummanifolds
Firstly, we analyse the simplest circumstance in which the feedback control term f is a quadratic
function, i.e. n = 1,

f (x, rc) = (Pc − Pd)(a1 − (θ1Pc − Pd)). (3.1)

The co-evolutionary model is explicitly described by

ẋ = x(1 − x)(Pc − Pd)

and ṙc = ε(rc − α)(β − rc)(Pc − Pd)(a1 − (θ1Pc − Pd)).

}
(3.2)

In figure 2, we show the emergence of multiple segments of stable and unstable equilibrium
manifolds using phase graphs under different conditions. For simplicity and without loss of
generality, the parameters are chosen as follows: α = 1.5, β = 3.5, S = 3, rd = 1.5, ε = 2, θ1 = 2 and
a1 = 2, 0.5, 0. In addition, in figure 2d, we present all the curves that satisfy f = 0 in figure 2a–c. In
the following parts of this paper, to clearly describe the stability of fixed points, we name Pc = Pd
as the equilibrium curve and θiPc − Pd = ai as the control curves. Under these parameters, there
are five possible fixed points on the boundary and an equilibrium curve for the system in total.
Among the five boundary fixed points, (x = 0, rc = 1.5) is always stable and (x = 0, rc = 3.5), (x = 1,
rc = 1.5), (x = 1, rc = 3.5) are always unstable, while the stability of (x = 1, rc = (25/16) + (ai/2))
depends on the parameter ai. Detailed proofs are provided in electronic supplementary material,
appendix A. Of particular interest, here we focus on the stability of the equilibrium curve.
Unusually, we obtain the emergence of stable equilibrium manifolds in both figure 2b,c, which
means that the system can finally evolve to many different stable states depending on the initial
conditions. This new phenomenon is totally different from the solely interior fixed points situation
discussed in previous models [40,41]. Moreover, the equilibrium curve of unstable manifold
situations in our model (figure 2a) is in line with the phase separatrix observed by experimental
work in figure 1a, which indicates the potential power for our general framework to explain
the abundant eco-evolutionary phenomena shown in real microbial systems. Additionally, we
provide detailed proof of the stability of the manifolds in the following section. For simplicity
and without loss of generality, we use parameters given in figure 2c in which θ1 = 2 and a1 = 0 as
an example. The schematic of this proof is shown in figure 3.

Assume (x∗, r∗
c ) is an arbitrary fixed point on the equilibrium curve Pc = Pd. The phase plane

is separated into two regions by the equilibrium curve, above which is called region A and below
which is region B. Then (x∗, r∗

c ) is stable if and only if

wi · vi < 0, (3.3)

in a small neighbourhood of (x∗, r∗
c ), where vi is the normal vector of the equilibrium curve while

wi is the trajectory field direction, i = 1, 2. According to equation (2.1), the equilibrium curve
Pc = Pd can be written as

rc = rd + S + 1 − rd

Sx + 1
. (3.4)

Defining h(x) as the slope equation of the equilibrium curve, we have

h(x) = drc

dx
= −S(S + 1 − rd)

(Sx + 1)2 . (3.5)

Therefore, we obtain the normal vectors of the equilibrium curve at (x∗, r∗
c ):

v1 = (−h(x∗), 1)

and v2 = (h(x∗), −1).

}
(3.6)
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Figure 2. Emergence of stable equilibrium manifolds when the feedback control function f is in quadratic form. (a–c)
Phase graph under different control conditions. Throughout, α = 1.5, β = 3.5, S= 3, rd = 1.5, ε = 2, θ1 = 2. We change
a1 = 2, 0.5, 0. The stable and unstable parts of the equilibrium curve are indicated by solid and dashed lines, respectively. In
particular, in (c), wemark the typical stable and unstablemanifold situations in a small neighbourhood of the equilibrium curve
with rectangular boxes and (d) presents all curves that satisfy f = 0 in (a–c). (Online version in colour.)

On the other hand, the trajectory vector (ẋ, ṙc) satisfies ṙc < 0, ẋ > 0 when (x, rc) is in region A
and ṙc > 0, ẋ < 0 when (x, rc) is in region B, according to equation (3.2). Thus, the trajectory field
directions in a small neighbourhood of (x∗, r∗

c ) read

w1 = (1, lim
Pc→Pd

g(x∗)), Pc → Pd + δ

and w2 = (−1, − lim
Pc→Pd

g(x∗)), Pc → Pd − δ,

⎫⎪⎬
⎪⎭ (3.7)

where g(x) is the slope function of the trajectory field,

g(x) = drc

dx
= drc/dt

dx/dt

= ε(rc − α)(β − rc)(Pc − Pd)(a1 − (θ1Pc − Pd))
x(1 − x)(Pc − Pd)

. (3.8)
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Substituting equations (3.6) and (3.7) in equation (3.3), we reach the necessary and sufficient
condition that (x∗, r∗

c ) is stable,

lim
Pc→Pd

g(x∗) < h(x∗). (3.9)

Finally, let α = 1.5, β = 3.5, S = 3, rd = 1.5, ε = 2, θ1 = 2 and a1 = 0; then we have

h(x∗) = − 7.5
(3x∗ + 1)2

and lim
Pc→Pd

g(x∗) = 540x∗ − 45
16(3x∗ + 1)2(x∗ − 1)

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

Note that rc ∈ [1.5, 3.5], which leads to x ∈ [1/12, 1] according to equation (3.4). Substituting
equations (3.10) in equation (3.9), we have x∗ > 0.25. Therefore, when x > 0.25, the trajectories
in the neighbourhood of the fixed points will converge to the equilibrium curve, which proves
the stability of the manifolds. On the contrary, when x ∈ [1/12, 0.25), we have wi · vi > 0, and the
trajectories in the neighbourhood evolve away from the equilibrium curve, a situation in which
the manifolds are unstable. Therefore, x = 0.25 is actually a saddle point of the system which
satisfies wi · vi = 0. The typical stable and unstable manifold situations in a small neighbourhood
of the equilibrium curve are marked with rectangular boxes in figure 2c. Similarly, we derive
that the stable region of the equilibrium curve is x ∈ (0.5595, 1) in figure 2b, while there only exist
unstable manifolds in figure 2a. In summary, we have proved the emergence of stable equilibrium
manifolds in our framework. Meanwhile, we provide detailed approach to calculate the saddle
point of the system, which is the critical point for the stability of the equilibrium curve.

In figure 4, we present the detailed effects of the relative asymmetrical feedback speed.
Throughout the figure, α = 1.5, β = 3.5, S = 3, rd = 1.5, θ1 = 4, a1 = 0. We give ε = 0.1, 0.5, 2 in
figure 4a–c, respectively. According to the results presented in the first column, which shows
the phase graphs under different circumstances, we find that the relative changing speed of the
cooperator’s multiplication factor has a strong influence on the slope of the trajectories and further
affects the position of the saddle point on the equilibrium curve, i.e. it influences the stability of
the manifolds. When the relative feedback speed ε is larger, the trajectory field is steeper and the
attraction basin of these stable manifolds increases. We prove this conclusion analytically using
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Figure 4. The effects of relative asymmetrical feedback speed. Throughout, α = 1.5, β = 3.5, S= 3, rd = 1.5, θ1 = 4,
a1 = 0. We change ε = 0.1, 0.5, 2 in (a–c), respectively. The first column presents phase graphs in different situations while
the second and third columns give variations of strategy dynamics as well as the cooperator’s multiplication factor over time,
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version in colour.)

the same approach as shown in the stability proof section. We keep ε as a variable and the other
parameters are the same as in figure 4.

Restraining the slope function of the trajectory field g(x) in a small neighbourhood of the
equilibrium curve, i.e. letting Pc → Pd, leads to rc → 1.5 + 2.5/(3x + 1) and x ∈ [1/12, 1],

lim
Pc→Pd

g(x) = ε(rc − α)(β − rc)(a1 − (θ1Pc − Pd))
x(1 − x)

= 135ε(12x − 1)
32(3x + 1)2(x − 1)

. (3.11)

Let limPc→Pd g(x) = h(x); then we have

x∗(ε) = 27ε + 48
324ε + 48

= 1
12

+ 44
324ε + 48

. (3.12)

Therefore, when x > x∗ the equilibrium curve is stable, while when x ∈ [1/12, x∗) the equilibrium
curve is unstable. Finally, note that x∗(ε) is a monotone decreasing function which indicates that,
when ε is larger, x∗ becomes smaller, i.e. the attraction basin of these stable manifolds increases.
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Figure 5. How the defector’s multiplication factor rd and the group size S influence the position of the equilibrium curve and
stable manifolds. (a) We fix S = 3 and change rd = 0, 0.5, 1.5, 2.5. (b) We fix rd = 1.5 and set S= 3, 4, 5, 6. (Online version in
colour.)

In addition, the second and third columns of figure 4 give variations of the strategy dynamics
and the cooperator’s multiplication factor over time, respectively. In each subfigure, we present
four different initial conditions. Our results show that a larger ε effectively accelerates the
convergence speed of the stable manifold, but it may actually slow down the converging process
of unstable manifolds towards the mutual defection state.

In figure 5, we show the determinants of the position of the equilibrium curve as well as their
detailed effects. In the general framework, the equilibrium equation rc = rd + (S + 1 − rd)/(Sx + 1)
indicates that the position of the equilibrium curve is determined by the defector’s multiplication
factor rd and the group size S, according to equation (3.4). Moreover, we have

∂rc

∂rd
= Sx

Sx + 1

and
∂rc

∂S
= 1 − (1 − rd)x

(Sx + 1)2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.13)

in which rd ≥ 0 and x ∈ [0, 1]. Therefore (∂rc/∂rd) ≥ 0, (∂rc/∂S) ≥ 0, which means that rc increases
as rd or S becomes larger. We present these varying trends in figure 5 in detail, in which S = 3 and
rd = 0, 0.5, 1.5, 2.5 in figure 5a while rd = 1.5 and S = 3, 4, 5, 6 in figure 5b. It is interesting to notice
the similarities and connections between our theoretical outcomes and the experimental results
in the yeast case. Sanchez & Gore [31] further create three environments using different dilution
factors: a ‘benign’ environment with a low dilution factor, an ‘intermediate’ environment with a
moderate dilution factor and a ‘harsh’ environment with a high dilution factor. They found that
the position of the separatrix line moves upwards as the environment becomes harsher. The same
trend can be observed in our results (see figure 5a): when rd becomes larger, the relative pay-off
of defectors increases and the cooperation environment gets worse; the equilibrium curves also
moves upwards. This indicates that the relative value of rd in our model could be a simple symbol
of the environmental state in real microbial systems.

Furthermore, in figure 6, we propose a more complex situation where n = 2 and f is a cubic
function, which can be written as

f (x, rc) = (Pc − Pd)((θ1Pc − Pd) − a1)(a2 − (θ2Pc − Pd)). (3.14)
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Figure 6. Phase graphs under different circumstanceswhere the control function f is in cubic form. Throughout,α = 1.5,β =
3.5, S= 3, rd = 1.5,ε = 2.We use solid versus dashed lines to indicate the stability of equilibrium curves. (a)θ1 = 2, a1 = 1.2,
θ2 = 2, a2 = 2. The stable range of the equilibrium curve is x ∈ (0.09355, 1]. (b) θ1 = 2, a1 = 0, θ2 = 2, a2 = 2. There only
exist unstable manifolds. (c) θ1 = 1.5, a1 = 0, θ2 = 4, a2 = 0. The stable range of the equilibrium curve is x ∈ (0.3395, 1].
(d) θ1 = 2, a1 = 0.5, θ2 = 2, a2 = 2. The stable range of the equilibrium curve is x ∈ (0.1237, 0.3198]. (e) θ1 = 2, a1 = 0,
θ2 = 2, a2 = 0.5. The stable range of the equilibrium curve is x ∈ (0.5984, 1]. (f ) θ1 = 4, a1 = 1, θ2 = 4, a2 = 2. The stable
range of the equilibrium curve is x ∈ (0.1057, 0.2226) and x ∈ (0.622, 1]. (Online version in colour.)

Throughout the figure, α = 1.5, β = 3.5, S = 3, rd = 1.5, ε = 2. In figure 6a–c, we present different
combinations of the two control curves when there is no intersection between the control curves
and the equilibrium curve, while there exists one intersection in figure 6d,e and two intersections
in figure 6f. Not surprisingly, the trajectory field reveals rich probabilities and abundant new
variation trends, an important one of which is that (x = 0, rc = 3.5) becomes a stable fixed point
while (x = 0, rc = 1.5) becomes unstable, indicating an opposite path direction for a range of initial
conditions compared with the n = 1 situations we discussed above. In addition, in figure 6a,c–f,
we obtain stable equilibrium manifolds ranging from a small neighbourhood of the equilibrium
curve, as in figure 6d, to a large region, as in figure 6a, as shown by the solid lines. On the other
hand, figure 6b shows the completely unstable manifolds situation.

In general, our results reveal that we can control the stability of the equilibrium curve
Pc = Pd as well as the stability of the manifolds by giving different feedback control functions f
or changing the relative feedback speed ε. This indicates the possibility for designing population-
state-dependent switching control laws to steer the system evolution towards the desired
directions based on our framework. We provide a detailed control approach as well as two control
examples in the next section.

(b) Manifold control with switching control laws
First, we incorporate two kinds of switching control laws in our general framework, one of which
is time-dependent and the other of which is state-dependent.
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The time dependent switching control law for the control function f can be written as follows:

fσ (t)(x, rc) = fσ ,k(σ )(x, rc)

= (Pc − Pd)((θσ ,1Pc − Pd) − aσ ,1) · · · (aσ ,k(σ ) − (θσ ,k(σ )Pc − Pd)). (3.15)

Here σ (t) : [0, ∞) → I, where I represents a finite index set 1, 2, . . . , m. In addition, k(σ ) + 1 is the
order of the control function fσ .

Additionally, the state-dependent switching control law can be written as

fs(x, rc) = fs,k(s)(x, rc)

= (Pc − Pd)((θs,1Pc − Pd) − as,1) · · · (as,k(s) − (θs,k(s)Pc − Pd)). (3.16)

Here s : q → I, where q ∈ Q, which represents a family of switching surfaces/guards that partition
the x − rc plant into finite regions, and I is a finite index set 1, 2, . . . , m. k(s) + 1 is the order of the
control function fs.

In electronic supplementary material, appendix B, we provide a constructive proof for the
existence of control laws when given a certain final state (x1, r1) with an initial state (x0, r0) in
our general framework. We show the possibility of ending the evolution in any desired region,
both above and below the equilibrium curve, with any fraction of final cooperators, as long as the
initial fraction of cooperators x0 is not too small, otherwise the evolution cannot even reach the
equilibrium curve and directly ends in a mutual defection state. Note that our proof is a heuristic
method for seeking a group of possible control functions, which might not be the only solution
for a certain control problem.

For a better understanding, here we illustrate two detailed control examples in figure 7. The
evolution begins from (x0, r0) = (0.2, 1.6) and we give two desired final states: (x1, r1) = (1, 2.5) and
(0.5, 2).

The first example only uses the time-dependent switching control law, in which the control
functions and the relative feedback speeds are as follows:

ε1f1 = ε1(Pc − Pd)((θ1,1Pc − Pd) − a1,1)(a1,2 − (θ1,2Pc − Pd))

= 2(Pc − Pd)((2Pc − Pd) − 1.2)(2 − (2Pc − Pd))

and ε2f2 = ε2(Pc − Pd)(a2,1 − (θ2,1Pc − Pd))

= 2(Pc − Pd)(1.875 − (2Pc − Pd))

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.17)

with t large enough to end the evolutions at the stable fixed points. The evolution path is the
blue trajectory followed by the red one, which finally stops at (1, 2.5), as shown in figure 7a.
Further, in figure 7b, we provide detailed time evolutions of the population state (x, rc) under
two control stages. The colours of the curves correspond to the two y-axes while the types of the
curves indicate the evolutions under different control laws. The colours of the control laws εifi
correspond to the trajectories in figure 7a.

The second example is composed of three trajectories in figure 7a: the blue, green and orange
ones, ending at (0.5, 2). Here we use the time-dependent switching control law for the first two
trajectories, and the state-dependent switching control law for the third control function to stop
the evolution at x = 0.5. The control functions and the relative feedback speeds are as follows:

ε1f1 = 2(Pc − Pd)((2Pc − Pd) − 1.2)(2 − (2Pc − Pd)),

ε2f2 = 2(Pc − Pd)((2Pc − Pd) − 0)(0.5 − (2Pc − Pd))

and ε3f3 = 3.2(Pc − Pd)((2Pc − Pd) − 0)(2 − (2Pc − Pd)).

⎫⎪⎪⎬
⎪⎪⎭ (3.18)

Additionally, in figure 7c, we show the time evolutions of the population state (x, rc) under three
control stages. Specifically, control law 3 is state-dependent and the evolution stops at about
t = 203.8.

In both examples, when the system evolves to the equilibrium curve and reaches a stable fixed
point, we change the control function and meanwhile provide a small disturbance δ ≤ 0.01 to rc
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Figure 7. Two control examples with switching control laws in the general framework. The fixed parameters are as follows:
α = 1.5,β = 3.5, S= 3, rd = 1.5. (a) Phase trajectories of two control examples. We begin from (x0, r0)= (0.2, 1.6) and give
two desired final states: (x1, r1)= (1, 2.5) and (0.5, 2). The first evolution path is the blue trajectory followed by the red one,
ending at (1, 2.5). Here we only use time-dependent switching control law, in which ε1 = 2 with θ1,1 = 2, a1,1 = 1.2, θ1,2 = 2,
a1,2 = 2 for f1 and ε2 = 2 with θ2,1 = 2, a2,1 = 1.875 for f2. Here t is large enough to end the evolutions at the stable fixed
points. The second example consists of three trajectories: the blue, green and orange ones, ending at (0.5, 2). Here we use time-
dependent switching control law for the first two trajectories, and state-dependent switching control law for the third control
function to stop the evolution at x = 0.5. Detailed parameters for the relative feedback speeds and the control functions are
as follows: ε1 = 2 with θ1,1 = 2, a1,1 = 1.2, θ1,2 = 2, a1,2 = 2 for f1, ε2 = 2 with θ2,1 = 2, a2,1 = 0, θ2,2 = 2, a2,2 = 0.5 for f2,
and ε3 = 3.2 with θ3,1 = 2, a3,1 = 0, θ3,2 = 2, a3,2 = 2 for f3. In both examples, when the system evolves to the equilibrium
curve and reaches a stable fixed point, we change the control function andmeanwhile provide a small disturbance δ ≤ 0.01 to
rc according to the desired direction, by whichmeanswe restart the evolutions. (b,c) Detailed time evolutions of the population
state (x, rc) in the first and second control examples, respectively. The colours of the curves correspond to the two y-axes while
the types of the curves indicate evolutions under different control laws. The colours of control laws εi fi correspond to the
trajectories in (a). In particular, in (c), control law 3 is a state-dependent switching control law and the evolution ends at about
t = 203.8.

according to the desired direction, which restarts the evolutions. The absolute errors for the final
positions of rc when x reaches x1 are within 0.01, according to the numerical solutions of the
equations.

Finally, we look back at the yeast experiment again in order to illustrate how our control
method works in real experimental operations. According to Gore et al. [5], the cooperator strain
in the experiments is a histidine auxotroph (i.e. one that cannot produce histidine endogenously).
Consequently, the multiplication factor of the cooperators in our model can be modulated by
controlling the histidine concentration in the growth medium; namely, the ‘cost of cooperation’,
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which can change the growth rate of the cooperators relative to the defectors. This shows the
practicability of our model framework to steer the coevolutionary dynamics in real microbial
systems.

4. Conclusion and discussions
The coevolutionary game between environment and strategy dynamics has aroused great concern
in recent years, because of the widespread existence of eco-evolutionary feedback loops and their
great importance in a range of natural systems [53–55]. Despite the progress in two-player games
with linear environmental feedback laws, a more general framework is required to describe the
nonlinear coevolutionary dynamics of the population strategy and population properties in PGG.

Inspired by the experimental results in [31] that confirm the existence of strong feedback
loops as well as the emergence of the separatrix line in dynamics, we provide a modelling
framework in multi-player games with asymmetrical feedback driven by a nonlinear selection
gradient, taking into account the fact that the preferential access to the common good for
cooperators directly brings about the emergence of feedback loops in most microbial systems.
We consider ecological properties solely being affected by the fraction of cooperators, such as the
population density in [31], as a benefit of cooperation that can be described by the cooperator’s
multiplication factor, which makes our framework more general. Unusually, we find multiple
segments of stable and unstable equilibrium manifolds in phase graphs with a number of
control functions, which is a new dynamical phenomenon that is totally different from the solely
interior fixed equilibrium situation obtained in previous works. In addition, we show that the
relative asymmetrical feedback speed for group interactions centred on cooperators can accelerate
the converging process of the stable manifolds while slowing down the convergence speed of
unstable manifolds. And a larger feedback speed increases the attraction basin of these stable
manifolds. In addition, the position of the equilibrium curve is determined by the defector’s
multiplication factor and the group size of the game. Finally, we propose an innovative manifold
control approach by incorporating switching control laws which can actually control the stability
of the possible manifolds into our general framework. We provide a constructive proof as well
as two specific control examples to show the possibility of steering the system states evolving
towards the designed directions and entering into any desired region, as long as the initial fraction
of cooperators is not too small.

While some previous works have studied the stochastic dynamics on slow manifolds in
deterministic dynamical systems [56,57], here, for the first time, we find the emergence of stable
equilibrium manifolds in feedback-evolving games. In line with the experimental results, our
model reveals great potential to explain and understand the eco-evolutionary dynamics in a
variety of real microbial systems. Furthermore, the manifold control method that can steer
eco-evolutionary dynamics with external switching feedback control laws fills the challenging
theoretical gap in microbial experiments, which may have wide applications in systems biology
and microbial ecology.

It is worth noting that the equilibrium manifold in our model naturally extends the concept
of population equilibrium points to a manifold (i.e. curve) of stable equilibria; the ultimate
population state will be determined by the initial condition and the eco-evolutionary dynamics
with environmental feedback. This mathematical extension is not only biologically plausible,
but also enables the combination of control theory and evolutionary game theory that aims to
steer the population to the desired states. As the observed coevolutionary behaviours are largely
determined by the nonlinear asymmetrical feedback which is related to the selection gradient,
we may expect qualitatively similar behaviours in other kinds of social dilemma games as well
[58]. Although our present study is focused on group cooperation in multi-person PGGs, our
results on manifold control are applicable to many other important situations, such as balancing
excitatory and inhibitory interactions in neuronal populations and suppressing evolution of drug
resistance in cancer treatment, just to name a few. Finally, since our framework is performed in
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the well-mixed population, the evolutionary results in the structured population could be slightly
different, as observed in some microbial experiments, which may need further studies [59].
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