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OBJECTIVEdTo develop and validate a parsimonious model for predicting short-term all-
cause mortality in patients with type 2 diabetes mellitus (T2DM).

RESEARCH DESIGN AND METHODSdTwo cohorts of patients with T2DM were in-
vestigated. The Gargano Mortality Study (GMS, n = 679 patients) was the training set and the
Foggia Mortality Study (FMS, n = 936 patients) represented the validation sample. GMS and FMS
cohorts were prospectively followed up for 7.406 2.15 and 4.516 1.69 years, respectively, and
all-cause mortality was registered. A new forward variable selection within a multivariate Cox
regression was implemented. Starting from the empty model, each step selected the predictor
that, once included into the multivariate Cox model, yielded the maximum continuous net
reclassification improvement (cNRI). The selection procedure stopped when no further statisti-
cally significant cNRI increase was detected.

RESULTSdNine variables (age, BMI, diastolic blood pressure, LDL cholesterol, triglycerides,
HDL cholesterol, urine albumin-to-creatinine ratio, and antihypertensive and insulin therapy)
were included in the final predictive model with a C statistic of 0.88 (95% CI 0.82–0.94) in the
GMS and 0.82 (0.76–0.87) in the FMS. Finally, we used a recursive partition and amalgam-
ation algorithm to identify patients at intermediate and high mortality risk (hazard ratio 7.0
and 24.4, respectively, as compared with those at low risk). A web-based risk calculator was
also developed.

CONCLUSIONSdWe developed and validated a parsimonious all-cause mortality equation
in T2DM, providing also a user-friendly web-based risk calculator. Our model may help prior-
itize the use of available resources for targeting aggressive preventive and treatment strategies in a
subset of very high-risk individuals.
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The mortality rate of diabetic patients
is about twice as much as that of
nondiabetic individuals of a similar

age (1); this makes diabetes a leading risk

factor for mortality, which accounts for
2.9 million global events yearly (2). This
scenario is expected to further deterio-
rate, given that diabetes prevalence is

increasing worldwide (3). Thus, predict-
ing mortality in diabetic patients is defin-
itively needed in order to target aggressive
prevention strategies to very high-risk
patients.

Only a few models for predicting all-
cause mortality in diabetic patients have
been proposed thus far (4–6). Unfortu-
nately, none of them have been validated
in an external cohort. In addition, these
models have used standard approaches
that are not specifically suited for predic-
tion model building. Instead, new attrac-
tive statistical methods based on the use
of the reclassification measures (7–13)
have become recently available when pre-
diction model building is at issue; among
these, the continuous net reclassification
improvement (cNRI) has beenmathemat-
ically proven to be ameasure of effect size.

The aim of our study was to develop a
parsimonious model for predicting short-
term all-cause mortality in patients with
type 2 diabetes mellitus (T2DM) based on
the use of a forward variable selection
driven by the cNRI approach and to vali-
date it in a second independent sample. For
this purpose, two prospective studies on
patientswithT2DM, theGarganoMortality
Study (GMS) and the Foggia Mortality
Study (FMS), were analyzed.

RESEARCH DESIGN AND
METHODSdTwo cohorts of patients
with T2DM were investigated: the GMS
and the FMS.

GMS
Whites (n = 1,028) from Italy with T2DM
(according to American Diabetes Associ-
ation [ADA] 2003 criteria) were consecu-
tively recruited at the Scientific Institute
“Casa Sollievo della Sofferenza” in San
Giovanni Rotondo (Apulia, central-
southern Italy) from 1 November 2000
to 30 September 2005 for a study aimed
at unraveling predictors of incident all-
causemortality. The only exclusion criterion
was the presence of poor life expectancy
due to malignancies. To date, this cohort
has been followed up for 7.40 6 2.15
years (range 0.04–9.83), with the last in-
formation on vital status obtained on 30
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November 2010. After exclusion of pa-
tients 1) whose information on vital status
at follow-up was not available (n = 190)
and 2) who had some missing data for
one or more baseline features (n = 159),
679 patients with T2DM (66.0% of the
initial cohort) constituted the eligible
sample for the present analysis. Observed
missing data rates were as follows: BMI
1.1%, diabetes duration 0.2%, HbA1c

2.4%, systolic blood pressure (SBP)
0.9%, diastolic blood pressure (DBP)
0.9%, LDL cholesterol 1.6%, HDL cho-
lesterol 3.2%, triglycerides 1.0%, albumin-
to-creatinine ratio (ACR) 4.5%, estimated
glomerular filtration rate (eGFR) 2.5%,
lipid-lowering therapy 0.5%, insulin ther-
apy 3.1%, and antihypertensive therapy
8.7%.

FMS
Whites (n = 1,153) from Italy with T2DM
(according to ADA 2003 criteria) were
consecutively recruited at the Endocrine
Unit of the University of Foggia (Apulia,
central-southern Italy) from 7 January
2002 to 30 September 2008 for a study
aimed at unraveling predictors of incident
all-cause mortality. Also in this case, the
only exclusion criterion was the presence
of poor life expectancy due to malignan-
cies. To date, this cohort has been
followed up for 4.516 1.69 years (range
0.03–9.42), with the last information on
vital status obtained on 31 March 2011.

After exclusion of patients 1) whose
information on vital status at follow-up
was not available (n = 91) and 2) who
had missing data at baseline (n = 126),
936 patients with T2DM (81.2% of the
initial cohort) constituted the eligible
sample for the present analysis.

Observed missing data rates were as
follows: age 5.9%, smoking habits 8.2%,
BMI 6.8%, diabetes duration 4.0%,
HbA1c 6.1%, SBP 6.0%, DBP 6.0%, LDL
cholesterol 7.5%, HDL cholesterol 6.4%,
triglycerides 6.2%, ACR 7.6%, eGFR
6.0%, lipid-lowering therapy 5.8%, insu-
lin therapy 5.9%, and antihypertensive
therapy 5.7%.

Data collection
At baseline, all patients were interviewed
regarding age at diabetes diagnosis and
ongoing antidiabetic, hypolipidemic, and
antihypertensive treatments. Duration of
diabetes was calculated from the calendar
year of data collection minus the calendar
year of diabetes diagnosis. All subjects
enrolled in the study underwent physical
examination, including measurements of

height, weight, BMI, and blood pressure
(i.e., two measurements rounded to the
nearest 2 mmHg in the sitting position
after at least 5 min rest, using an
appropriate-sized cuff; DBP was recorded
at the disappearance of Korotokoff sound,
phase V). Fasting venous blood was sam-
pled from an antecubital vein from all
patients for the measurement of standard-
ized serum creatinine by using the mod-
ified kinetic Jaffè reaction (Hitachi 737
Autoanalyzer), total serum cholesterol
(enzymatic method, Cobas; Roche Diag-
nostics, Welwin Garden City, U.K.), HDL
cholesterol, serum triglycerides (enzymatic
method, Cobas), andHbA1c (HPLCDiamat
Analyzer; Bio-Rad, Richmond, CA). Uri-
nary albumin and creatinine concentra-
tion were determined the same morning
of the clinical examination from an early-
morning first void sterile urine sample by
the nephelometric method (Behring
Nephelometer Analyzer; Behring, Mar-
burg, Germany) and the Jaffè reaction-
rate method, respectively. The urinary
ACR was then calculated. eGFR was cal-
culated with the abbreviated Modification
of Diet in Renal Disease (MDRD) formula
(13).
Study end point. All-cause mortality was
the only end point of this study. At
follow-up, the vital status of study pa-
tients was ascertained by two authors for
each study either by telephone interview
with the patient or his/her relatives or by
queries to the registry office of cities of
residence. Vital status and date of death
were checked and recorded from 1–30
November 2010 for GMS and from
1–31 March 2011 for FMS.

Statistical methods
Patient baseline characteristics were re-
ported as frequency (percentage) and
mean 6 SD or median along with lower
and upper quartiles. Geometric mean
and SD were reported for logarithm-
transformed variables. Overall and age-
adjusted death incidence rates for 100
person-years were also reported and com-
pared using a Poisson model.

Time-to-death analyses were per-
formed using multivariate Cox propor-
tional hazards regression models, and
risks were reported as hazard ratios
(HRs) along with their 95% CIs. The
assumption of proportionality of the
hazards was tested by using scaled
Schoenfeld residuals. The overall survival
was defined as the time between enroll-
ment and death. For subjects who did not
experience the end point, survival time

was censored at the time of the last avail-
able follow-up visit. Survival curves and
survival probabilities were reported ac-
cording to the Kaplan-Meier method.
Discriminatory power was assessed by
estimating survival C indices, along with
95% CI, and comparison between C in-
dices was carried out according to the
Pencina and D’Agostino approach (7).
The survival-based Hosmer-Lemeshow
measure of calibration (8) was also as-
sessed. To control the accuracy of predic-
tions and to increase the reliability of all
statistical analyses, the prediction model
was built on a “training set,” represented
by the GMS, and eventually tested on a
“validation set,” represented by the FMS.
We chose GMS as a training set because of
the longer follow-up as compared with
FMS, which allowed amore stable estima-
tion of the prediction model.

Continuous variables, specifically
BMI, SBP, DBP, LDL, triglycerides, HDL,
eGFR, and ACR, suspected to violate the
multiplicativemodel linearity assumption
were log transformed.

To build the final prediction model,
we used a new forward variable selection
within a multivariate Cox regression. Start-
ing from the empty model, each step se-
lected the predictor that, once included
into the multivariate Cox model, yielded
the maximum cNRI (9–13,14). The selec-
tion procedure, which analyzed all avail-
able variables, stopped when no further
statistically significant cNRI was detected.
cNRI was preferred to the classical Wald
P value because our purpose was to build
a prediction model rather than to assess
statistical associations. Furthermore, cNRI
can be directly interpreted as a measure of
effect size (12). Since we were interested in
predicting short-term all-cause mortality,
we decided to set the time horizon for
risk prediction at 2 years. In addition, we
reasoned that since .90% of the sample
has a follow-up of .2 years, very reliable
estimates of the prediction ability measures
would have been obtained. Results for pre-
diction at 4 years were also reported.

A multivariate Cox proportional haz-
ards regression model with robust stan-
dard errors was also used in the combined
analysis on the pooled samples, account-
ing for potential clustering due to study
effect (15). Regression coefficients from
the fitted Cox model were also used to
develop an interactive web-based tool
that calculates 2-year mortality risk pre-
dictions. Indeed, a normalized overall
mortality risk score (i.e., ranging from
0 to 1) was computed for each patient as
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the sum of the selected nine predictors
weighted according to Cox regression co-
efficients. Furthermore, the recursive par-
titioning and amalgamation (RECPAM)
algorithm (16,17) was used to identify
subgroups of patients at different mortal-
ity risks according to the mortality risk
score. The free web-based calculator is
available at http://www.operapadrepio.
it/rcalc/rcalc.php. The strategy of com-
bining samples provides more stable and
precise risk scores, as widely reported in
the literature (18–22). All statistical anal-
yses were performed using SAS Software
Release 9.1.3 (SAS Institute, Cary, NC).
RECPAM analysis was carried out with a
macro written in SAS by one of the au-
thors (F.P.).

RESULTS

GMS as a training set
Baseline clinical features of the 679 study
patients are shown in Table 1. During
follow-up (7.32 6 2.12 years), 133

(19.6%) patients died with an annual in-
cidence rate of 2.7%.

We used the cNRI-driven forward
variable selection (see STATISTICAL METHODS

for details) to build the 2-year mortality
risk prediction model, including each pre-
dictor one by one. As recently demon-
strated (12), cNRI is the appropriate
statistic to build a predictive nested model
instead of the C statistic or the Wald as-
sociation P values. The model building
stopped at step nine as no statistically
significant values of cNRI were further
observed (Supplementary Table 1).
Therefore, the final model comprised pa-
tient age, BMI, DBP, LDL, triglyceride,
HDL, and ACR levels and antihyperten-
sive and insulin therapy. This parsimo-
nious 2-year mortality prediction model
yielded a C statistic = 0.88 (95% CI
0.82–0.94) and was calibrated (P value =
0.95). The same model also performed
well in the 4-year mortality prediction
with a C statistic = 0.81 (0.75–0.86) and
was also calibrated (P value = 0.73). In

addition, the survival C statistic was not
different across sex strata, being 0.905
(0.846–0.965) and 0.891 (0.821–0.960)
in men and women, respectively.

FMS as a validation sample
The FMS was used as an external sample
to validate our prediction model gener-
ated in the GMS. Baseline clinical features
of the 936 study patients are reported in
Table 1. During follow-up (4.52 6 1.71
years), 169 (18.0%) patients died with an
annual incidence rate of 4.0%. The age-
adjusted annual incidence rate in FMS
was 2.4% and was not different from
that observed in GMS (i.e., 2.1%, P =
0.30).

Using the model built in the GMS, the
prediction of 2-year mortality in FMS
yielded a C statistic = 0.82 (95% CI
0.76–0.87) and was calibrated (P value =
0.66). Similar results were obtained for
prediction of 4-year mortality (i.e., C sta-
tistic = 0.80 [0.76–0.84]; P value for cal-
ibration = 0.71).

Table 1dBaseline clinical features of study patients from GMS (n = 679) and FMS (n = 936) sample

GMS FMS

Variable Mean 6 SD Median (lower2upper quartile) Mean 6 SD Median (lower2upper quartile)

Age (years) 62.1 6 9.8 62.0 (55.0–69.0) 63.6 6 11.8 63.0 (56.0–73.0)
Sex (n, %)
Female 339 (49.9) 456 (48.7)
Male 340 (50.1) 480 (51.3)

Smoking habits (n, %)
Yes 93 (13.7) 424 (45.3)
No 586 (86.3) 512 (54.7)

BMI (kg/m2)* 30.4 6 8.9 30.1 (26.8–33.7) 29.6 6 8.8 29.5 (25.7–33.3)
Diabetes duration (years) 8.37 6 4.14 10.00 (3.00–18.00) 8.40 6 4.00 11.00 (5.00–20.00)
HbA1c (%) 8.7 6 1.9 8.5 (7.2–10.0) 9.0 6 2.1 8.9 (7.4–10.3)
HbA1c (mmol/mol) 72 6 21 69 (55–86) 75 6 23 74 (57–89)
SBP (mmHg)* 132.7 6 27.1 130.0 (125.0–140.0) 129.2 6 26.6 130.0 (120.0–140.0)
DBP (mmHg)* 77.5 6 17.8 80.0 (70.0–82.5) 76.0 6 17.6 80.0 (70.0–80.0)
LDL cholesterol (mg/dL)* 113.5 6 24.1 119.6 (92.2–143.2) 97.0 6 21.3 101.0 (77.2–127.5)
HDL cholesterol (mg/dL)* 42.4 6 11.4 42.0 (36.0–52.0) 44.9 6 11.9 45.0 (37.0–54.0)
Triglycerides (mg/dL)* 136.3 6 27.9 132.0 (95.0–187.0) 143.4 6 29.1 139.0 (99.0–198.5)
ACR (mg/mmol)* 1.8 6 3.8 1.2 (0.6–3.8) 2.5 6 4.3 1.79 (0.66–7.22)
eGFR (mL/min 3 1.73 m2)* 72.5 6 17.0 76.0 (65.0–88.0) 78.5 6 18.1 85.6 (64.2–103.2)
Lipid-lowering therapy (n, %)
No 457 (67.3) 614 (65.6)
Yes 222 (32.7) 322 (34.4)

Insulin therapy (n, %)
No 394 (58.0) 597 (63.8)
Yes 285 (42.0) 339 (36.2)

Antihypertensive therapy (n, %)
No 278 (40.9) 292 (31.2)
Yes 401 (59.1) 644 (68.8)

Continuous variables are reported as mean6 SD and as median (lower2upper quartile). Categorical variables are reported as frequency (percentage). *Continuous
logarithm-transformed variables are reported as geometric mean 6 SD and as median (lower2upper quartile).
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Pooled sample
Multivariate HRs for 2-year mortality of
the nine variables comprised in our pre-
dictive model were estimated on pooled
samples and are reported in Supplemen-
tary Table 2. The predictionmodel had, in
the pooled samples, a C statistic = 0.84
(95% CI 0.79–0.88) and was calibrated
(P value = 0.99). The overall mortality
risk score, built using the estimated Cox
regression coefficients, normalized to a
range from 0 to 1, had mean = 0.53 and
SD = 0.16 (its distribution is reported in
Supplementary Fig. 1). A Cox-based
RECPAM analysis of 2-year mortality par-
titioned the pooled sample into three risk
categories according to different levels of
the overall mortality risk score. Survival
curves, stratified into low (i.e., risk score
#0.67), intermediate (risk score ranging
from 0.68 to 0.79), and high (risk score
$0.80) risk, are reported in Fig. 1. As
compared with individuals with a low
risk score, those with intermediate and
high risk had HR 7.0 (95% CI 4.2–11.6)
and 24.4 (14.4–41.5), respectively.

CONCLUSIONSdDespite T2DM be-
ing a leading cause of overall mortality, so

far, few models have been developed for
predicting diabetes-related mortality (4–
6). To the best of our knowledge, this is the
first study developing a well-performing
model for this event that was validated
in a second independent sample. In addi-
tion, our model is parsimonious, with few
simple-to-measure variables needed to
make it very informative.

Although risk factors for cardiovas-
cular mortality have been widely de-
scribed among patients with T2DM,
only three studies have attempted to
develop a prediction model of all-cause
mortality to be used in the clinical set.
Wells et al. (5) created a tool for predict-
ing 6-year all-cause mortality risk in a
large retrospective analysis of patients
with T2DM from the Cleveland Clinic
electronic health record. The authors
developed a nomogram risk score using
up to 20 predictive variables, which at-
tained an acceptable C statistic of 0.752.
However, only patients that were initially
treated with a single oral hypoglycemic
agent were included, thus making ques-
tionable the generalizability of the pro-
posed score. In addition, as the authors
also recognize, there was a significant

amount of missing data, from 42.3 to
52.5%, for some predictor variables (i.e.,
BMI and LDL, triglyceride, and HDL lev-
els), which were then statistically im-
puted. Although several and efficient
statistical methods have been developed
for missing data imputation, predictors
with a high rate of missing variables
should be omitted in order to keep the
variability low about the estimates of in-
terest (23). Moreover, the imputation
techniques all rely on the missing at ran-
dom assumption, a condition that cannot
be easily verified (23). Finally, and most
importantly, a second independent sam-
ple to be used as a validation set was not
available (5).

Yang et al. (4) have instead used the
Hong Kong diabetes registry, a prospec-
tive cohort of patients with T2DM, to
develop a risk score based on nine predic-
tors for all-cause mortality, which
attained a C statistic = 0.845. Although
they randomly divided the original sam-
ple into training (n = 3,775) and valida-
tion (n = 3,808) samples, a second
external and independent sample for test-
ing the validity of the proposed score was
missing (4).

Finally, very recently, the Translating
Research Into Action for Diabetes
(TRIAD) study (n = 8,334) developed
prediction equations for all-cause, cardio-
vascular, and noncardiovascular mortal-
ity in patients with T2DM. Missing
values (,15%) have been imputed in
this study too. The most parsimonious
model was a logistic model built on
5,982 patients by using up to 15 predic-
tive variables, which attained a C statis-
tic = 0.815, although a Cox model would
have been more appropriate in a survival
context. In addition, and most impor-
tantly in this case, a second validation
cohort was missing (6).

When comparing variables chosen in
our models versus other models, we
found that age, BMI, antihypertensive
therapy, insulin therapy, and LDL cho-
lesterol also significantly predicted all-
cause mortality in the TRIAD study (6).
Age, BMI, increased urinary albumin ex-
cretion, and insulin therapy were related
to all-cause mortality in the Hong Kong
Diabetes Registry study (4). Finally, age,
BMI, DBP, insulin therapy, triglyceride
levels, and LDL and HDL cholesterol re-
lated to all-cause mortality in the study by
Well et al. (5).

Thus, although our well-performing,
parsimonious, and validated model has
not been compared with previous models,

Figure 1dKaplan-Meier survival curves for 2-year mortality in the pooled sample according to
the three risk score categories (low, medium, and high risk) obtained using an RECPAM analysis.
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it represents an alternative for predicting
all-cause mortality in a subset of high-risk
patients, as those with T2DM certainly
have to be considered. Thanks to the risk
engine we have created, our model can
now be tested in additional samples com-
prising diabetic patients from different
geographical regions and/or different eth-
nicities in order to obtain deeper insights
about its generalizability.

An additional important strength of
our study is represented by an innovative
variable selection strategy, based on the
use of reclassificationmeasures (i.e., cNRI
in our case) instead of the classical asso-
ciation tests. The reason for such a meth-
odological choice relies on the fact that we
were interested in building a predictive
model that, by definition, is expected of
significantly capturing the contribution of
predictors that correctly reclassify sub-
jects according to their future outcome; it
is of note that this is exactly what cNRI is
able to guarantee. In addition, as recently
demonstrated, the cNRI is a direct mea-
sure of the predictor’s effect size,
allowing a direct interpretation of its esti-
mate. Furthermore, simulation studies
(13) have suggested that a cNRI approach
reaches a higher level of statistical power,
capturing those good predictors with a
small effect size and a role that would
not be detected by a Wald test or by an
improvement in the C statistic.

We recognize that a limitation of our
study is the lack of information on death-
specific causes, especially those of cardio-
vascular origin. A second possible
weakness is the lack of information on
previous cardiovascular events, which
represent a major risk factor for all-cause
deaths (24). A third limitation of our
study may be viewed in the short-term
(i.e., 2 years) predictability we have ad-
dressed. However, the 4-year horizon
tested as exploratory analysis performed
well and was also calibrated in both the
training and the validation samples, thus
minimizing the risk that our model can-
not be extended to larger time horizons of
prediction. Further limitations are the rel-
atively small sample size we investigated
as compared with previous studies (4–6)
and that the training and validation sets
are both of Italian ancestry, thus not allow-
ing us to address the generalizability of our
model. Finally, missing data from both
GMS and FMS also have to be recognized
as limitations of our present study.

We have observed in our set a low
percentage of patients treated with lipid-
loweringdrugs,which is particularly relevant

in a population with a high percentage of
subjects treated with insulin and poor gly-
cemic control.We believe that a subcultured
environment is the cause of such an unusual
scenario even though it has been changing in
the last few years.

Although addressing the role of var-
iables as considered one by one was not
our aim, some of them, as derived from
the pooled analysis, may deserve some
comments. Not unexpectedly, although
elevated age (6), ACR (25,26), and both
antihypertensive (6,27) and insulin ther-
apy (6,28) predicted higher risk, elevated
HDL (29), BMI (30), and DBP (31) pre-
dicted lower mortality risk.

In conclusion, we have developed an
all-cause mortality equation in T2DM
with good accuracy in calibration and
discrimination in the training data set.We
have also validated this model in a second
external sample of similar patients. Fi-
nally, we have provided a user-friendly
web-based risk engine (http://www
.operapadrepio.it/rcalc/rcalc.php) that
may serve the important function of test-
ing our model in different sets of diabetic
individuals in order to address its gener-
alizability. Under this circumstance, the
implementation of our model may help
prioritize the use of available resources
for targeting aggressive preventive and
treatment strategies in a subset of very
high-risk individuals.
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