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Abstract: In the fingertip blood automatic sampling process, when the blood sampling point in the
fingertip venous area, it will greatly increase the amount of bleeding without being squeezed. In
order to accurately locate the blood sampling point in the venous area, we propose a new finger vein
image segmentation approach basing on Gabor transform and Gaussian mixed model (GMM). Firstly,
Gabor filter parameter can be set adaptively according to the differential excitation of image and we
use the local binary pattern (LBP) to fuse the same-scale and multi-orientation Gabor features of the
image. Then, finger vein image segmentation is achieved by Gabor-GMM system and optimized
by the max flow min cut method which is based on the relative entropy of the foreground and
the background. Finally, the blood sampling point can be localized with corner detection. The
experimental results show that the proposed approach has significant performance in segmenting
finger vein images which the average accuracy of segmentation images reach 91.6%.

Keywords: finger vein; Gabor; Gaussian mixture model; image segmentation

1. Introduction

Due to COVID-19, the technology of fingertip blood automatic sampling has attracted
extensive attention. Compared with traditional manual blood collection, the intelligent
blood collection has outstanding advantages in blood collection efficiency, quality, and
preventing infection of medical staff [1]. In fingertip blood sampling, because of the
insufficient bleeding, the fingertip needs to be squeezed, so that the tissue fluid could
penetrate into the blood mark and destroy the overall structure of white blood cells, then,
the blood sample is diluted, leads to inaccurate test results [2]. Generally speaking, the
accuracy of arm venous blood test is higher than that of fingertip blood [3], and if the finger
venous area is selected as a blood sampling point, the amount of bleeding will be clearly
increased and the accuracy of blood detection will be improved.

Image segmentation methods have made great achievements in many fields, but
some gaps still exist in finger vein segmentation [4,5]. Due to the poor contrast of finger
vein images, current segmentation methods cannot effectively distinguish the vein from
non-venous areas [6,7]. How to locate the blood sampling point to the finger venous area is
the difficulty and hotspot of current research. A large number of new methods have been
proposed, which are basically divided into four categories.

Contrast-enhanced method: this method uses image enhancement algorithms to make
the vein network more obvious and easier to extract. In order to enhance the contrast
of finger vein images, Ezhilmaran et al. [8] improved finger vein image by interval type-
2 fuzzy sets method. Amir et al. [9] adopted dual-contrast limited adaptive histogram
equalization method, which is used to enhance the grayscale color intensity values. Kashif
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et al. [10] used a single scale retinex (SSR) filter with chromaticity preserved algorithm and
Gaussian filter to enhance the low-quality finger vein images. Cao et al. [11] calculated
the amplitude value of the vein image edge operator to punish the fixed neat parameter
in the guided filter which makes the filter possess a better edge protection feature. These
methods can well solve the problem of low contrast of finger vein images.

Energy-based method: this method uses continuous curves to represent the edges
of objects. Zhang et al. [12] achieved finger vein image segmentation by minimizing the
proposed region-based active contour model (ACM) which is served as an energy function,
and the level set method is introduced to solve the minimization problem efficiently.

Curvature-based method: this method doesn’t require any preprocessing to detect
the valley area generated by the texture pattern. Taking into account that there are always
dark valleys in finger vein patterns, a curvature-based method is used to detect the center
of the vein. Vasilopoulos et al. [13] utilized the enhanced maximum curvature Points
(EMC) technique for finger vein pattern extraction. Wang et al. [14] used variable curvature
Gabor filters to extract finger vein features that can simultaneously reflect the directional
information and the curvature of the finger veins. These methods are more efficient in
detecting thin veins and reserve areas.

Deep learning-base method: deep neural network framework has achieved good
results in image segmentation. Reza et al. [15] used a new fully convolutional encoder-
decoder model for lung segmentation and improved the state-of-the-art u-net model which
introduced a pre-trained encoder, a special skip connection, and a post-processing module
in the proposed architecture. It is rarely used in finger vein segmentation for the reason
that there is no expert annotated dataset of the finger vein. To overcome this problem, some
automatic labeling schemes have been proposed. Hou et al. [16] integrated a convolutional
auto-encoder (CAE) with support vector machine (SVM) for finger vein verification. The
CAE is used to learn the features from finger vein images, and the SVM is used to classify
finger vein from these learned feature codes. Qin et al. [17] trained a convolutional neural
network (CNN) model to predict the probability of each pixel of being foreground. The
CNN learns what a finger vein pattern is by learning the difference between vein patterns
and background ones. They still use the traditional modeling method to segment finger
vein as training dataset, so the accuracy of segmentation still depends on the traditional
modeling method.

The latest progress of research about the deep attention-based spatially recursive
networks [18] may achieve good results in finger vein segmentation. It can finely recognize
the visual objects with subtle appearance differences by operating two CNN streams to
automatically learn to attend critical object parts, extract relevant features, and encode them
into spatially expressive representations. The extraction method based on deep learning
needs a large number of manual annotation samples to optimize the learning process. As
far as we know, there is no annotated dataset of finger vein by experts. Therefore, we
choose the traditional modeling method to explore a mathematical method suiting for
finger vein image segmentation.

Gabor feature extraction which has excellent features of time-domain localization,
scale change, and orientation, can simulate the visual recognition mechanism of the human
eye [19] approximately, achieve the capability of multi-scale and multi-orientation descrip-
tion has excellent features of time-domain localization, scale change, and orientation. The
cluster analysis method [20] of Gaussian mixture model can solve the problem of uncertain
classification and image segmentation with complex content [21]. Therefore, the Gabor
feature extraction and GMM have attracted extensive attention in the field of finger vein
image segmentation [22]. But Gabor filter parameters selection needs researchers’ experi-
ence and the large amount of Gabor feature data of the image leads to long processing time
and poor real-time performance.

In view of these difficulties, we a present finger vein segmentation method based on
the joint decision of adaptive Gabor feature extraction and GMM. The primary contribu-
tions of our study are summarized as follows:
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o To take full advantage of the differential excitation of the image, we propose an
adaptive parameter setting method for Gabor filter banks.

e  Dimensionality reduction on high dimensional features is researched, we adopt fusion
algorithm [23,24] based on LBP to fuse the same-scale and multi-orientation Gabor
features of the image.

e GMM is used to classify the features of multi-scale Gabor images after fusion and
optimized with the method of max flow min cut [25,26] based on the relative entropy
of the foreground and the background.

The experiments exhibit that our proposed method is effective for improving the
segmentation accuracy of finger vein images and increasing the amount of bleeding without
being squeezed.

2. Image Feature Extraction
2.1. Fingertip Blood Automatic Sampling Device

The fingertip blood automatic sampling device is shown in Figure 1a. It consists of
a 5-DOF robotic arm, blood collection tube (red box 1), lancet (red box 2) and infrared
imaging module of finger vein (red box 3) constituted. The infrared imaging module
as shown in Figure 1 uses a kind of reflection imaging method. The reflective imaging
facilitates the light source and sensor to be packaged together, and the equipment becomes
more compact. The circuit structure of the imaging module is shown in Figure 1c. It
contains 4 CMOS image sensors. When vein acquisition is performed, the IIC controller
of the main control chip adjusts the intensity of the near-infrared light source in real-time
according to the environment and realizes time-sharing multiplexing of data lines. The
acquired finger vein image is shown in Figure 1d.
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Figure 1. Finger vein imaging and blood sampling device. (a) Mechanical arm, (b) Reflection infrared imaging of finger-vein,
(c) Circuit structure of imaging module, (d) Infrared image of finger-vein.

The original image of finger vein is not preprocessed, and the irrelevant image infor-
mation not only increases the calculation time but also interferes with the segmentation
result of the finger vein image. The blood sampling point is at the end of the finger, so we
only need to segment the fingertip vein, which can improve the accuracy and speed of
finger vein image segmentation.

If we don’t preprocess the original image of the finger vein, the irrelevant image
information will not only increase the calculation time, but it will also interfere with the
segmentation result of the finger vein image. The blood sampling point is at the end of the
finger, and we only need to segment the fingertip vein, which can improve the accuracy
and speed of finger vein image segmentation.
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2.2. Adaptive Gabor Filter Parameter Setting

Gabor filter parameters include polar center frequency, orientation and window width,
etc., and different filters can be obtained by changing these parameters. In addition, the
information obtained in each orientation and scale can fully reflect the characteristics of the
image in the frequency domain by using a set of Gabor filters in different orientations and
scales, so as to filter the finger vein image. The basic Gabor function g(x, y) is expressed

as follows:
1 —(u2+0?)

g(x,y) = me‘ 202 (ejwu _ e*w 02/2> (1)

u=xcosf+ysinf, v = —xsind + ycoso (2)

In which x and y are the pixel positions in the spatial domain, w is the modulation
frequency of the filter, o is the standard deviation of the gaussian function on the x-axis
and y-axis; 6 is the filter direction. The relationship between w and o is expressed as
V20 =~ \21/w =W, W is the time domain window width. The selection of W is highly
important as it determines what information is going to be extracted. The filtered image Iy
can be obtained by convoluting the original image with Gabor function [27,28], Iy can be
expressed: Ip = g(x,y) * I(x,v).

The time-frequency window of the traditional Gabor transform is fixed. In the fea-
ture extraction of finger vein images, different regions of the image need different time-
frequency windows to extract corresponding feature information, and the fixed window has
a poor effect on the feature extraction of finger vein images. Finger vein images have more
veins in some areas and complex frequency composition, which requires better frequency
resolution [29,30], and slow changes in some areas require better spatial resolution.

Differential excitation [31] has the characteristics of reflecting the local changes of
image. In this paper, the differential excitation is used to measure the intensity of the local
image change. The adaptive parameter setting process of filter is shown in Figure 2. After
dividing the finger vein image into K x L blocks, the gradient amplitude and differential
excitation can be obtained by convoluting the sub image blocks with gradient operators in
x and y directions, gradient operators are shown in Wy and W,,. Then we can calculate the
window width of Gabor filter bank according to the image differential excitation.
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Figure 2. Adaptive feature extraction process.

We select a vein sub image block P(u, v), and then the gradient template is convoluted
with the image to obtain the gradient components ¢y and gy in the horizontal and vertical
directions of each pixel, we get

gx = P(u,v) x Wy
{ gy = P(u,v) x W, ©)
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Gradient amplitude is used to describe the relative change of gray level, and the
central window width W is calculated as

W Yato Lyoo /83 +83/P(u,v)

VN (4)

According to the strong setting of the local area change, the width of the Gabor window
function is set, and the sum of all the differential excitation values in the corresponding
image block is divided by the number of pixels in the image block as the window width
of the central window in Gabor transform. Five Gabor windows with different scales
are used, in which the adaptive window width is taken as the center window, and the
other four Gabor windows are selected in steps of 2 in the positive and negative directions,
and the Gabor filter bank is formed in 8 orientations. As shown in Figure 3, 8 different
orientations are used to extract the finger vein feature by 5 Gabor filter groups with different
window widths.

..
..
..

Figure 3. Gabor filter banks with different orientations and window widths.

2.3. Image Feature Fusion

We have obtained Gabor feature images with 5 scales and 8 directions, so each pixel
of the image can get 40 features after Gabor transform, considering the processing time,
the dimension of the data needs to be reduced, so we propose a multi-orientation fusion
method [32,33] of local binary mode. The original Gabor feature of the image is expressed
asP(st),se(1,...,8),te(l,...,4). The average value of the characteristic amplitudes of
the 8 orientations on each scale of the image pixel is used as the threshold to binarize the
characteristic amplitudes of each orientation.

avg = (Pu + Py ...+ Pg,t)/S 5)
The 8 orientations amplitude feature fusion is expressed as:

1, P,y —avg >0
T(S)_(Ps,t—an)_{ ! Pss'tt—av§<0 se(1,2...,8) ©)

T(s) =1,2,...,8is sorted to get an 8-bit binary number p, and each 8-bit binary
number is assigned a weight of 27. Therefore, the decimal form of the fusion code can be
expressed as:

Fu(z) = Y0 (Pyy — avg)2? @)

Algorithm 1 summarizes finger vein image adaptive Gabor filter and image feature
fusion algorithm.
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Algorithm 1 Adaptive Gabor filter and image feature fusion.

Input: Original image of finger vein: I
Step 1: Extract the region of interest of the image I, add 0 to the edge of the image to transform its
size to 256 x 256.
Step 2: Divide the image into 16 x 16 sub-blocks and then obtain the gabor function window
width of each sub-block.
for each row u€1,2,...,16 do
for each column v€l, 2,...,16 do
Compute the gradient components in X and Y directions per Equation (3).
Obtain the window width of Gabor filter per Equation 4.
end
end
Step 3: Gabor transform for each sub-block image: I, = gx(x,y) * I,(x,y), and obtain
Gabor transform of the whole image.
Step 4: Fuse the Gabor image features in 8 orientations with the same gabor transform size per
Equation (3).
Output: Finger vein feature fusion image: F,(z).

After image fusion, feature fusion images on five scales can be obtained, as shown in
Figure 4, and each image contains all Gabor orientation features.

Figure 4. Image feature fusion.

3. Finger Vein Image Segmentation

After fusion of finger vein image features, we obtain the pixel point multi-scale
transformation feature. We use Fu,v = {fi, f2... fr} to represent the feature of the finger
vein image at point (1,v), where L = M x K, and the pixel point is clustered and segmented
by the feature information. According to the Markov random field energy functional [34,35]
definition, the energy function in the finger vein image is defined as:

E(7) =Y per Ro(0) +BY pen San(7) ®)

where p is the vein feature corresponding to the pixel in the image after multi-scale transfor-
mation, a2 and b are the neighboring regions; v is the segmentation label of the foreground
and background, 7 = 1 indicates the foreground, 7y = 0 indicates the background; N is a
collection of all adjacent pixels in the image. The first term of formula 8 describes the
regional information of the image, which indicates the similarity of pixels belonging to the
foreground or background; the second term is used to evaluate the penalty value when
adjacent pixels a and b belong to different label sets; B is the weight factor, the target with
a single shape and a concentrated area has a larger value, and A smaller weight factor is
more suitable for targets with complex and relatively discrete local details.

The GMM probability distribution model has robustness and accuracy for image
description. GMM modeling is used to describe the distribution of multi-scale vein features.
In this case, we have:

Ro(m) = Yoy ex(TT% o7 )" ©)

5= (271073’1(7)) (10)

N—
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(P - ”k,l(7)>2

2

T = ex -2
’ Til(7)

(11)

In the above Equations (9)—(11), Ul%,l ) and Uj () are the mean and the variance of
the corresponding Gabor feature when the product of the scale and direction of the kth
Gaussian part is [, when p is 1, the /th mean and variance of the kth Gaussian part of the
foreground is taken, otherwise, the /th mean and variance of the background are taken.
K is the number of cluster centers; py is the weight of the k Gaussian component part of
GMM, which reflects the feature contribution of the k Gaussian part, and its initial value is

shown in formula (12).
k
] = Zj:l ineck ||X1‘ - Ck| |2 (12)

1
%= 5 ZXEQk X (13)

where ¢y is the center of the kth cluster, Q is the number of data objects in the kth category,
and x; is the ith data point. x; — ¢, represents the Euclidean distance between the ith
object and the kth cluster center. S, () gaussian probability distribution can be expressed
as follows:

Sen(7) = [va # i) (d(a,0) o) (14)

g =exp(—nf(a,b)’) +7 (15)

where vy, and vy, are the label values of a and b; d(a,b) is the Euclidean distance of the
pixel value of the two points a and b; f(a,b) is the vector distance calculated by the LPP
method of the local preserving projection of the multi-scale and multi-orientation Gabor
vein feature of the two points a2 and b. In order to improve the anti-noise characteristics of
the image, we introduce the anti-noise constant T and the segmentation edge length limit
17, 11 is the normalization coefficient of the vein feature, and it can be calculated as follows:

= (2 Zm/neNd(m,n)z/k,») B (16)

where k; is the number of image pixels, and d(m, n) is the LPP distance metric of two
multi-scale features. The energy modeling of vein image segmentation is completed by
GMM modeling of foreground and background.

The image after feature fusion can be transformed into a weighted graph [4,36] with
two endpoints G = (V, E). Where V is the set of image pixels and endpoints (s, t); E is
the set of edges, which includes the weighted similar edges of the pixels belonging to
the foreground and background, and the penalty weights between the pixels and the
neighboring edges.

Figure 5a is the image after feature fusion, where f; is the foreground marker point,
and b, is the background marker point, and the weighted graph model is established
through GMM. The edge between the point and the endpoint (s, ¢) in Figure 5b indicates
the degree of similarity with the foreground or background. The upper half of the edge
represents the similarity between the pixels in the vein image and the foreground [37,38],
and the lower half part of the edge represents the similarity with the background. After
the weighted graph is established, the global optimal graph cut is performed through the
max-flow min-cut to obtain the segmentation curve shown in Figure 5b.
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Figure 5. Max flow min cut. (a) Pixel distribution of vein image, (b) Dividing line.

4. Location of Blood Sampling Point

After the venous area is segmented, we need to determine the coordinates of the blood
sampling point. The vein junction is used as a blood sampling point, and the amount of
blood we collect will be more, so we use the Harris corner detection algorithm to detect the
corner points of the venous network in the target area and select the vein intersection as the
blood sampling point. We first calculate the matrix M related to the gradient autocorrelation
function in the horizontal and vertical directions of the image and its two eigenvalues. The
eigenvalue of the matrix M is the first-order curvature of the autocorrelation function. If
both curvature values exceed the threshold, the point can be regarded as a corner point.
The translation amount of the image window is (1, v) to produce a grayscale change as
E(u,v)

E(u,0) = Y., wlxy)[I(x+u,y+0) — I(x,y)] (17)

where w(x,y) window function adopts Gaussian function, I(x, y) is the gray value of the
image, and the local small movement of the window can be calculated approximately
as follows

E(u,v) = [u, U]M[ Z } (18)
where M is a 2 x 2 matrix, which can be obtained from the image derivative:

_ 2 Ll .
M= Zx’y w(xry) ley IZ ( 9)

The corner point is determined by calculating the gray change of the target pixel in any
direction and the corner response function of the target pixel. When the corner response
function value of the target pixel is greater than a given threshold and local maximum
value, we regard the pixels as corner points.

There are many burrs after segmentation of the finger vein image, and the corner
detection [39] is prone to errors when identifying the blood sampling point. After the
vein network is refined, it can effectively reduce the burr phenomenon, and the accuracy
of identifying the blood sampling point is higher. The refined vein image is shown in
Figure 6.

We select a 100 x 200 rectangular box near the fingertips as the blood collection area,
and calculate the center pixel coordinates of the blood collection area as p(x, y), as shown
by the blue dot in Figure 6. According to the principle of corner recognition, three corner
points 1, 2, 3 are identified in the blood collection area, and we select the corner point 1
which is closest to p(x,y) as the blood collection point.it is shown in the circle position in
Figure 6.
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Figure 6. Location of blood sampling point.

5. Result and Discussion

The experiments were operated using matlab 2018a in a computer with i7-8700CPU
and 8 GB RAM. Firstly, the region of interest (ROI) image is extracted, and then we add 0
to the edge of the finger vein image to transform the cropped image to a size of 256 x 256.
Furthermore, the image is divided into 16 x 16 blocks and it adaptively sets the gabor filter
bank parameters according to the differential excitation. Finally, the finger vein image is
segmented by the Gabor-GMM system which is proposed in this paper.

We use self-collected finger vein infrared images and the finger vein database of
the University of Technology Malaysia (FV-USM) to verify. FV-USM were collected from
123 volunteers comprising of 83 males and 40 females, who were staff and students of
University Sains Malaysia. The age of the subject ranged from 20 to 52 years old. Every
subject provided four fingers: left index, left middle, right index, and right middle fingers
resulting in a total of 492 finger classes obtained. The captured finger images provided two
important features: the geometry and the vein pattern. Each finger was captured six times
in one session and each individual participated in two sessions, separated by more than
two weeks’ time, and a total of 5904 (123 x 4 x 6) images were collected. The spatial and
depth resolution of the captured finger images were 640 x 480 and 256 grey levels.

Before segmenting the finger vein images, we use algorithm 1 to process the original
finger vein image. As can be seen from Figure 7, it is difficult to identify the venous area
from the original image and the vein pattern becomes more prominent through Gabor
filtering and feature fusion.

e
»,

Figure 7. Gabor filter and feature fusion.

In order to estimate the performance of the proposed model on finger vein image
segmentation, the proposed method is compared with other well-known methods.

Qin used CNN to extract vein features [17]. MC, WLD, gabor filter, and other methods
are combined to segment finger vein image, and then the segmented image is used as a
training dataset. This scheme is used to automatically discard the ambiguous region and
to label the pixels of the clear region as foreground or background. As can be seen from
Figure 8, this method can extract smooth vein networks. However, this simple labeling
method also brings serious side effects and reduces the ability of the network to extract
detailed features. It reveals that the network is not adept at distinguishing the blurred area
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and easy to lose vein networks. The above analysis indicates that the automatic annotation
method still faces challenges and greatly affects the accuracy of the network.

P
=y [

il
iy |

[
u

A

- f T

(a) (b) <)

Figure 8. Extracted results of finger vein images; (a) original images; (b) finger vein feature extracted

N\8

by combination scheme; (c) finger vein feature extracted by the CNN.

The challenge of deep learning methods applied in finger vein image segmentation
is the lack of annotated data. [30] divided the finger vein image into a large amount of
blocks with fixed size, and each block could be labeled as venous and non-venous area to
conduct binary classification. This method could effectively increase the training data but
will degrade the segmentation efficiency of the network.

Weber local descriptor (WLD) [14] is a simple and powerful local descriptor in which
differential excitation is redefined by bringing in sobel operator, and it can increase the
discrimination of edge-texture. Meanwhile, the gradient orientation is replaced by double
modified finite radon transform orientation, to obtain a discriminative line feature. As
such, it also effectively improves the recognition performance. Double Gabor weber local
descriptor (DGWLD) [40] used gradient orientation, which is replaced by double Gabor
orientation to reduce the influence of translation and rotation, and a feature cross-matching
algorithm is used to give further improvement on the recognition rate. Maximum curvature
(MC) [41] is to look in the transverse profiles of the image for the maximum curvatures.
In the finger vein image captured by the infrared sensor, the vein is darker than the
neighboring band. Hence the MC method takes advantage of the fact that the transverse
profile of a finger around seems like a dent, the central position of the veins can be obtained
by calculating local maximum curvatures in cross-sectional profiles, and the connection of
all the points of all the profiles forms the vein line.

To further verify the effectiveness of the segmentation method proposed in this paper,
we evaluate the segmentation performance of the method by 150 finger vein images which
are demarcated manually as the ground truth. The Jaccard Similarity (JS) and mean bias
error (MBE) are taken as the evaluation index. The JS and BME are defined as follows:

RsNTg
S=-—->"> 20
J RsUTs (20)
MBE = Rs—Ts (1)
Rs

where Rg is the object region given by the ground truth, Ts is the object region given by
the segmentation methods. JS describes the segmentation accuracy and MBE represents
the segmentation error rate. The average value of JS and MBE is calculated with 150 finger
vein images.

Figure 9a,b respectively show the trend of segmentation accuracy and segmentation
error rate under the increasing number of iterations. As can be seen from Figure 9, the
segmentation model based on our method achieves the best performance on both JS and
MBE. Experiment results show that the proposed segmentation method can extract vein
network from finger vein image reliably.
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Figure 9. The Jaccard similarity and mean biased error. (a) Trend of segmentation accuracy, (b) Trend
of segmentation error rate.

Figure 10 shows the comparison results of different methods in finger vein image
segmentation. Refs. [14,40] transform the gray distribution of the image to make the venous
area easier to distinguish. However, low-contrast area is also easily mistaken for venous
network, as shown in Figure 10b,c. Ref. [41] identifies the vein network by properties of
curvature, which can solve the problem that image gray transform generates fake vein
networks. Nevertheless, the method of [41] is so susceptible to noise that it could seriously
degrade the final segmentation result, as shown in Figure 10d.
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Figure 10. Finger vein image segmentation results by different algorithms. (a) Original images, (b—e)
Segmentation results of WLD, DGWLD, MC, and proposed method.
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Through the above discussion, it is obvious that the vein image segmented by the
proposed method can suppress the noise and improve the smoothness of the boundary
effectively. The quantitative results are shown in Table 1. The average time-consuming
of this method is slightly higher than other methods and the segmentation accuracy is
significantly improved.

Table 1. Different methods of vein segmentation accuracy and time.

Methods Accuracy Processing Time
WLD 0.885 1.24s
DGWLD 0.894 1.75s
MC 0.901 1.62s

Method of this article 0.916 1.86s
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6. Conclusions

In finger vein image segmentation, image preprocessing, feature extraction and classi-
fier design method have a great influence on the accuracy of image segmentation. Deep
learning method has achieved a good result in image segmentation, and due to the lack of
annotated dataset of the finger vein, the accuracy of finger vein segmentation is compara-
tively low. The methods of WLD and DGWLD are easy to mistake low-contrast area for
the venous network; MC method is susceptible to noise and it could seriously degrade the
final segmentation result.

This paper makes improvements from the perspective of vein image feature extraction,
adaptively sets the parameters of the Gabor filter bank according to the local differential
excitation of the image, dynamically adjusts the spatial frequency resolution to obtain more
feature details of the pixels, and innovatively proposes the Gabor filter bank and GMM
model joint decision finger vein feature classification algorithm that based on the relative
entropy combined with the image segmentation method of max-flow min-cut to realize the
global optimization of finger vein image segmentation, therefore the boundary continuity,
smoothness and visual consistency of the target area of image segmentation are better,
and more vein feature details can be extracted by segmentation. Compared with other
methods, the accuracy of finger vein image segmentation is improved when the processing
time is similar. The vein image segmented by this method can meet the requirements of
finger vein blood sampling point recognition and experiments have verified that it can
segment the finger vein image accurately and locate the blood sampling point in fingertip
blood automatic sampling quickly. It is helpful to improve the accuracy of fingertip
blood detection. As future work, we would like to design a more discriminative and
computationally practicable segmentation process and we will annotate the dataset of
finger veins to establish a training dataset for deep learning.

Author Contributions: X.L. created models, analyzed the results and wrote the manuscript. D.Y.
designed and the prototype, implemented the experiments. L.H. and L.Z. reviewed the manuscript.
J.L. and Z.L. formulation of overarching research goals and funded the research. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the natural science foundation of Chongging, China
(No. cstc2020jcyj-msxmX0702), the science and technology research program of Chongqing municipal
education commission (Grant No. KJQN202002804) and (Grant No. 200027-015Z).

Institutional Review Board Statement: Ethical review and approval were waived for this study, due
to the research is mainly on finger-vein image segmentation and location of blood collection point on
image, and human experiments are not involved at present.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://drfendi.com/fv_usm_database/.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Li, F; Huang, Z.; Xu, L. Path Planning of 6-DOF Venipuncture Robot Arm Based on Improved A-star and Collision Detection
Algorithms. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6-8
December 2019; pp. 2971-2976.

Zhang, C. The Influence of Venous Blood and Peripheral Blood on the Results of Routine Blood Test in College Students. Contin.
Med. Educ. China 2018, 010, 31-32. [CrossRef]

Wei, S.; Xie, X. The stability of results of blood test in venous blood and peripheral bloodusing hematology analyzer. Clin. Lab. |.
2018, 7, 112-115.

Lu, Z; Ding, S.; Yin, J. Finger vein recognition based on finger crease location. J. Electron. Imaging 2016, 25, 043004. [CrossRef]
Vasqucz-Villar, Z.; Choquehuanca-Zevallos, ].; Ludefia-Choez, J. Finger Vein Segmentation from Infrared Images Using Spectral
Clustering: An Approach for User Indentification. In Proceedings of the IEEE 10th International Conference on System
Engineering and Technology (ICSET), Shah Alam, Malaysia, 9 November 2020; pp. 245-249.

Shen, C.; Liu, C.; Tan, H.; Wang, Z.; Xu, D.; Su, X. Hybrid-augmented device fingerprinting for intrusion detection in industrial
con-trol system networks. IEEE Wirel. Commun. 2018, 25, 26-31. [CrossRef]


http://drfendi.com/fv_usm_database/
http://dx.doi.org/10.1186/s13020-018-0186-9
http://dx.doi.org/10.1117/1.JEI.25.4.043004
http://dx.doi.org/10.1109/MWC.2017.1800132

Sensors 2021, 21, 132 13 of 14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.
37.

Liu, H.; Yang, G.; Yang, L.; Su, K,; Yin, Y. Anchor-based manifold binary pattern for finger vein recognition. Sci. China Inf. Sci.
2019, 62, 52104. [CrossRef]

Ezhilmaran, D.; Rose, P. Finger vein image enhancement using interval type-2 fuzzy sets. In Proceedings of the IEEE International
Conference on I-SMAC, Palladam, India, 10-11 February 2017; pp. 271-274.

Hajian, A.; Ramli, D.A. Sharpness Enhancement of Finger-Vein Image Based on Modified Un-sharp Mask with Log-Gabor Filter.
Procedia Comput. Sci. 2018, 126, 431-440. [CrossRef]

Shaheed, K.; Yang, L.; Yang, G. Novel Image Quality Assessment and Enhancement Techniques for Finger Vein Recognition. In
Proceedings of the IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), Jinan, China, 14-17
December 2020.

Cao, W.; Wang, H.; Shi, ]. Enhancement Algorithm of Finger Vein Image Based on Weighted Guided Filter with Edge Detection.
Laser Optoelectron. Prog. 2017, 54, 021007. [CrossRef]

Zhang, J.; Lu, Z.; Li, M. Finger-vein image segmentation based on KFCM and active contour model. In Proceedings of the IEEE
International Instrumentation and Measurement Technology Conference, Auckland, New Zealand, 20-23 May 2019; pp. 1-6.
Vasilopoulos, C.; Skodras, A. A Novel Finger Vein Recognition System Based on Enhanced Maximum Curvature Points. In
Proceedings of the IEEE 13th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Zagorochoria, Greece,
10-12 June 2018.

Wang, H.; Du, M.; Zhou, J.; Tao, L. Weber local descriptors with variable curvature gabor filter for finger vein recognition. IEEE
Access 2019, 7, 108261-108277. [CrossRef]

Reza, S.; Amin, O.B.; Hashem, M. TransResUNet: Improving U-Net Architecture for Robust Lungs Segmentation in Chest X-rays.
In Proceedings of the IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5-7 June 2020; pp. 1592-1595.

Hou, B.; Yan, R. Convolutional Autoencoder Model for Finger-Vein Verification. IEEE Trans. Instrum. Meas. 2019, 69, 2067-2074.
[CrossRef]

Qin, H.; El-Yacoubi, M.A. Deep Representation-Based Feature Extraction and Recovering for Finger-Vein Verification. IEEE Trans.
Inf. Forensics Secur. 2017, 12, 1816-1829. [CrossRef]

Wu, L.; Wang, Y.; Li, X; Gao, ]. Deep Attention-Based Spatially Recursive Networks for Fine-Grained Visual Recognition. JEEE
Trans. Cybern. 2019, 49, 1791-1802. [CrossRef] [PubMed]

Zhang, Y,; Li, W.; Zhang, L. Adaptive learning Gabor filter for finger-vein recognition. IEEE Access 2019, 7, 159821-159830.
[CrossRef]

Gupta, P,; Tiwari, K.; Arora, G. Fingerprint indexing schemes—A survey. Neurocomputing 2019, 335, 352-365. [CrossRef]

Chen, W,; Yang, L.; Yang, G.; Yin, Y. Geometric shape analysis based finger vein deformation detection and correction. Neurocom-
puting 2018, 311, 112-125. [CrossRef]

Fandos, R.; Sadamori, L.; Zoubir, A.M. High quality segmentation of synthetic aperture sonar images using the min-cut/max-flow
algorithm. In Proceedings of the 19th European Signal Processing Conference, Barcelona, Spain, 29 August-2 September 2011.
Yang, J.; Wei, J.; Shi, Y. Accurate ROI localization and hierarchi-cal hyper-sphere model for finger-vein recognition. Neurocomputing
2019, 328, 171-181. [CrossRef]

Wiy, S.; Liu, Y.; Zhou, Y.; Huang, J.; Nie, Y. Finger-vein recognition based on dual-sliding window localization and pseudo-
elliptical trans-former. Expert Syst. 2016, 64, 618-632.

Win, H.; He, X; Yao, X.; Li, H. Finger-vein verification based on the curvature in Radon space. Expert Syst. 2017, 82, 151-161.
Jia, S.; Deng, B.; Xie, H.; Deng, L. A Gabor feature fusion framework for hyperspectral imagery classification. In Proceedings of
the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17-20 September 2017.

Li, L.; Ying, Z.; Yang, T. Facial expression recognition by fusion of gabor texture features and local phase quantization. In
Proceedings of the 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 19-23 October 2014.

Isa, N.; Salamah, S.; Ngah, U. Adaptive fuzzy moving K-means clustering algorithm for image segmentation. IEEE Trans. Consum.
Electron. 2019, 55, 2145-2153.

Liu, Z.; Yin, Y.; Wang, H.; Song, S.; Li, Q. Finger vein recognition with manifold learning. J. Netw. Comput. Appl. 2010, 33, 275-282.
[CrossRef]

Zhang, J.; Lu, Z; Li, M. Active contour based method for finger-vein image segmentation. IEEE Trans. Instrum. Meas. 2020, 69,
8656-8665. [CrossRef]

Snelick, R.; Uludag, U.; Mink, A.; Indovina, M.; Jain, A. Large-scale evaluation of multimodal biometric authentication using
state-of-the-art systems. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 450-455. [CrossRef] [PubMed]

Kumar, A.; Zhou, Y. Human identification using finger images. IEEE Trans. Image Process. 2012, 21, 2228-2244. [CrossRef]
[PubMed]

Yang, J.; Shi, Y. Finger-vein segmentation based on multi-channel even-symmetric gabor filters. In Proceedings of the IEEE
International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20-22 November 2009; pp. 500-503.
Yang, J.; Shi, Y. Fingercvein roi localization and vein ridge enhancement. Pattern Recognit. Lett. 2012, 33, 1569-1579. [CrossRef]
Han, M.; Wang, ].T.; Meng, ].Y.; Liu, ]. M. Energy Functional of Local Entropy Combined with Non-Convex Regularization for
Image Segmentation. Comput. Eng. Appl. 2019, 55, 160-167.

Li, L.; Way, A,; Liu, Q. Graph-Based Translation Via Graph Segmentation. Meet. Assoc. Comput. Linguist. 2016, 1, 97-107.

Chan, T.E; Vese, L.A. Active contour without edges. IEEE Trans. Image Process. 2001, 10, 266-277. [CrossRef]


http://dx.doi.org/10.1007/s11432-018-9651-8
http://dx.doi.org/10.1016/j.procs.2018.07.277
http://dx.doi.org/10.3788/LOP54.021007
http://dx.doi.org/10.1109/ACCESS.2019.2928472
http://dx.doi.org/10.1109/TIM.2019.2921135
http://dx.doi.org/10.1109/TIFS.2017.2689724
http://dx.doi.org/10.1109/TCYB.2018.2813971
http://www.ncbi.nlm.nih.gov/pubmed/29993796
http://dx.doi.org/10.1109/ACCESS.2019.2950698
http://dx.doi.org/10.1016/j.neucom.2018.06.079
http://dx.doi.org/10.1016/j.neucom.2018.05.044
http://dx.doi.org/10.1016/j.neucom.2018.02.098
http://dx.doi.org/10.1016/j.jnca.2009.12.006
http://dx.doi.org/10.1109/TIM.2020.2995485
http://dx.doi.org/10.1109/TPAMI.2005.57
http://www.ncbi.nlm.nih.gov/pubmed/15747798
http://dx.doi.org/10.1109/TIP.2011.2171697
http://www.ncbi.nlm.nih.gov/pubmed/21997267
http://dx.doi.org/10.1016/j.patrec.2012.04.018
http://dx.doi.org/10.1109/83.902291

Sensors 2021, 21, 132 14 of 14

38.

39.

40.

41.

Li, C.; Xu, C.; Gui, C.; Fox, M.D. Distance regularized level set evolution and its application to image segmentation. IEEE Trans.
Image Proces. A Publ. IEEE Signal Process. Soc. 2010, 19, 3243-3254.

Shi, G.M.; Suo, ]J.D. Multi-scale Harris corner detection algorithm based on canny edge-detection. In Proceedings of the
International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 18-20 August 2018.
Wang, H.; Li, M.; Zhou, J.; Tao, L. Double Gabor Orientation Weber Local Descriptor for Palmprint Recognition. J. Electron. Inf.
Technol. 2018, 40, 936-943.

Ismail, B.; Zmirli, M.O. Enhancement of Finger Vein Patterns Extracted by Maximum Curvature Method. In Proceedings of the
International Conference on Applied Smart Systems, Medea, Algeria, 24-25 November 2018.



	Introduction 
	Image Feature Extraction 
	Fingertip Blood Automatic Sampling Device 
	Adaptive Gabor Filter Parameter Setting 
	Image Feature Fusion 

	Finger Vein Image Segmentation 
	Location of Blood Sampling Point 
	Result and Discussion 
	Conclusions 
	References

