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Abstract: Wind tunnel testing techniques are the main research tools for evaluating the wind loadings
of buildings. They are significant in designing structurally safe and comfortable buildings. The
wind tunnel pressure measurement technique using pressure sensors is significant for assessing the
cladding pressures of buildings. However, some pressure sensors usually fail and cause loss of data,
which are difficult to restore. In the literature, numerous techniques are implemented for imputing
the single instance data values and data imputation for multiple instantaneous time intervals with
accurate predictions needs to be addressed. Thus, the data imputation capacity of machine learning
models is used to predict the missing wind pressure data for tall buildings in this study. A generative
adversarial imputation network (GAIN) is proposed to predict the pressure coefficients at various
instantaneous time intervals on tall buildings. The proposed model is validated by comparing the
performance of GAIN with that of the K-nearest neighbor and multiple imputations by chained
equation models. The experimental results show that the GAIN model provides the best fit, achieving
more accurate predictions with the minimum average variance and minimum average standard
deviation. The average mean-squared error for all four sides of the building was the minimum
(0.016), and the average R-squared error was the maximum (0.961). The proposed model can ensure
the health and prolonged existence of a structure based on wind environment.

Keywords: wind-pressure coefficients; wind load; machine learning; data imputation; generative
adversarial imputation network; tall building

1. Introduction

With the advancements in construction technologies, numerous large-span roof struc-
tures have been built, and clusters of tall buildings are abundant. These flexible, lightweight
structures with low damping ratios and low frequencies are very sensitive to wind loads [1].
When wind passes through these tall buildings, wind loads acting on the buildings will
reduce or amplify the loads equally [2]. The amplified wind loads may cause severe vibra-
tions in buildings and discomfort to the occupants [3,4]. The building shapes play a vital
role in determining wind-flow patterns and wind loads [5,6]. Wind effects on these struc-
tures may be low, moderate, strong, or extremely destructive. Moderate and low winds
are beneficial, whereas strong and destructive winds may cause structural damages [7].
Additionally, changes in the wind environment around a building may affect the structural
durability of nearby buildings [8]. Hence, considerable research efforts have focused on
the changes in the wind environment, wind flow, and wind pressure characteristics in tall

Sensors 2021, 21, 2515. https://doi.org/10.3390/s21072515 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4226-7435
https://orcid.org/0000-0001-9205-3836
https://doi.org/10.3390/s21072515
https://doi.org/10.3390/s21072515
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21072515
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/7/2515?type=check_update&version=2


Sensors 2021, 21, 2515 2 of 23

buildings [9–11]. It is thus necessary to understand the characteristics of the wind effects
on each structure.

The structural safety of tall buildings depends on their structural designs and their
capacities to withstand wind loads and wind-induced vibrations [12]. To understand
the wind effects on a structure, it is essential to obtain wind load information for that
particular structure [13]. Wind loads can be obtained from a wind tunnel test on a rigid
structural model [14]. Wind tunnel tests focus on the measurement of the wind loads on
structures, structural responses, and cladding effects on structures under different wind
conditions [15]. The wind tunnel test also helps in evaluating the wind pressures generated
on the surfaces of buildings with different shapes [16]. Pressure taps are installed on the
surfaces of structures to collect wind-pressure values. It is necessary to find an effective
method to predict wind pressures on the entire surface of a building even in the absence of,
or with faulty pressure taps [17].

Rigid model testing, namely high-frequency base balance (HFBB), provides overall
wind loads. The HFBB results can be analyzed using frequency- or time-domain techniques.
The HFBB technique is based on concurrent measurements at different locations on the
outer surfaces of buildings [18,19]. The wind tunnel test produces wind pressure coeffi-
cients, which can be used to analyze the effects of wind loads on buildings. Technological
advancements render it promising for instantaneous measurement of wind pressures at
more than 1000 locations on a building model with the deployment of pressure taps [20].
The autonomous monitoring of tall buildings was increased following the installation of
various types of sensors to assess structural deformation [21], model parameters, and major
stress on buildings [22,23]. Long-term building monitoring and maintenance is a necessary
task that increases the longevity of buildings [24–28]. However, the functionality of the
sensors diminishes with the effects of time and external factors, such as intense pressure
and microparticles, which can damage the electronic circuits.

In addition, the pressure sensors installed in a building for monitoring wind pressure
may fail in due course owing to vibration, shock, variation in pressure, electrical interfer-
ence, and chemical damage. In tall buildings, it is very difficult to identify and replace
faulty pressure taps at different locations. In such cases, data relayed from pressure sensors
may be corrupted or missing. Data-centric research based on these data face a tremendous
threat due to these inevitable data losses. Figure 1 illustrates the need for a data imputation
model to analyze the wind-induced pressure response for the buildings with malfunction-
ing pressure taps and wind response at the new locations of the building without pressure
taps installed. Thus, numerous techniques have been developed for imputing missing
pressure tap values that may arise owing to tap failure or data loss [29,30]. Missing values
are imputed by analyzing the correlation between other pressure coefficients [31]. Opti-
mization techniques estimate the randomly missing time series pressure coefficients [32,33],
and sampling techniques have been used to reconstruct the lost data [34].

However, most works related to data imputation in the existing literature focus on
predicting the missing data from of multiple points at single time instances. Imputing the
missing data for multiple points at multiple time instances remains challenging. This study
focuses on handling the data loss by predicting the wind-induced pressure coefficients
at different time intervals using a generative adversarial iterative network (GAIN). The
performances of the models were quantified using standard statistical measures. GAIN
is a light-weight ML model, and its performance shows that it predicts the values more
accurately than the other deep learning algorithms applied in the literature [35–37]. The
remainder of this paper is organized as follows. In Section 2, we summarize the related
works in data imputation by machine learning and deep learning algorithms. Section 3
describes the process involved in generating the wind pressure data for buildings with a
square section. Section 4 presents the proposed GAIN model and its implementation for
predicting missing time series values. Section 5 presents the results and a comparative
study of the proposed ML models for the prediction of the missing values. Section 6
concludes the paper and discusses the future scope.
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Figure 1. Data imputation model for analyzing wind-induced response.

2. Related Works

In the literature, artificial neural network (ANN)-based multilayer perceptron (MLP)
models were used to estimate the pressure coefficients on the walls and roof of a building by
considering the building geometry and wind attack angle [38]. ANNs were used to predict
the root-mean-square pressure coefficients of the buildings and the wind-induced pressure
at different time intervals on various structures [39,40]. MLP and decision trees were imple-
mented to analyze the nonlinear relationship between the various environmental factors
for predicting the deformation of the unstable slopes [41]. Convolutional neural network
(CNN) is a deep learning approach which is mostly applied for image-related applications.
Regarding predictions, CNN is applied to analyze the wind-induced responses of high-rise
structures. Time series data in the time and frequency domain were set as input to the
CNN model. CNN models were used to predict the strains in the columns of buildings
based on future wind loads with measured wind-response data [42]. Back Propagation
Neural Network (BPNN) was implemented for time series predictive model to analyze the
displacement based on the captured environmental factors [43]. BPNN and fuzzy neural
network were developed to predict the wind pressures on a large gymnasium roof at
different time intervals [44]. Subsequently, BPNN was integrated with proper orthogonal
decomposition (POD-BPNN) to predict the wind pressure coefficients. The results showed
that POD-BPNN was effective in predicting the individual pressure data of a tall building
with the minimum number of pressure taps [45]. The Autoregressive recurrent networks
(ARN) model based on time series was implemented for identifying the slope displace-
ment [46,47]. ARN models find it difficult to operate on the missed data and impute it
with meaningful time series values. Deep neural network (DNN) integrated with long
short-term memory (LSTM) is used for the regression analysis to analyze the time series
data [48,49]. A deep learning-based autoencoder network is implemented for landslide
susceptibility prediction [50]. LSTM-based DNN manages to predict the discontinuity in
the electrical resistivity, but dependency on the optimization of the large number of the
hyperparameters remains as a major limitation during the time series prediction. Missing
values can be imputed using any of the deep learning models, such as ANNs, CNNs, and
recurrent neural networks [51–53]. Although neural-network-based models can predict
wind pressures on structures, the prediction of wind pressure data at multiple points of the
structures at different time intervals remains challenging [54].
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Machine learning (ML) models are preferred over deep learning models for the
prediction of missing wind pressure values due to pressure tap failure [55,56]. Random
forest (RF) is one of the most widely applied ensemble methods to train the data for
prediction by aggregating multiple weak learners [57]. The Extreme Gradient Boosting
Regressor (XGBoost) algorithm [58] was implemented for forecasting short-term load in the
power plant units. XGBoost struggles to attain the maximum performance with the sparse
time series data of a large dataset [59,60]. Although both ML and deep learning work well
for data imputation, the deep learning model uses multiple parameters for imputation,
resulting in data overfitting [61,62].

To avoid overfitting, an ML-based shallow approach is deployed in this study to com-
pute missing values. In addition, the proposed ML model can be trained and implemented
with a smaller amount of data [63]. The missing values in several incomplete, multivari-
ate datasets are imputed using many ML models such as singular value decomposition,
general iterative principal component imputation, regularized expectation maximization,
truncated total least-squares expectation maximization, K-nearest neighbor (KNN), multi-
ple imputations by chained equations (MICE), and generative adversarial iterative network
(GAIN) [64–67]. The KNN algorithm is used for short-term wind speed forecasting [65].
MICE is found to be more flexible in imputing categorical and quantitative (including
skewed) variables [64]. GAIN was implemented on five real-world datasets obtained
from the University of California (Oakland, CA, USA), Irvine repository to quantitatively
evaluate the imputation performance. It was observed that GAIN models significantly
outperformed the other state-of-the-art data imputation methods [68–70]. A comparison
about the models used in the literature for data imputation and prediction is presented
in Table 1.

Table 1. Comparison of techniques used for data imputation and prediction.

Technique Learning Scenarios Functionality Pros Cons

ANN/MLP
Supervised,

unsupervised,
reinforcement

Modeling data with
simple correlations

Naïve structure, easy to
build

Slow convergence rate,
high complexity, and not
suitable for heavy
applications

BPNN Supervised,
unsupervised

Modeling the learning
derivatives

Fast and simple,
efficient for a clean
dataset

Sensitive to noisy data,
difficult to fix the
learning rate

CNN
Supervised,

unsupervised,
reinforcement

Spatial data modeling
Weight sharing,
customizable layer
stack arrangement

High computational cost,
difficult to optimize the
hyperparameters

RCNN
Supervised,

unsupervised,
reinforcement

Sequential data modeling Good in capturing the
temporal dependencies

Heavily complex model,
stuck with vanishing
gradient, exploding
problems occurs on
complex data

ARN Supervised,
unsupervised

Modeling time series and
interpretable model

Operates on variety of
data and various
conditions

Generating variable
length output is difficult

Autoencoder Unsupervised Dimensionality
reduction, compression

Very effective in
computation, powerful
for unsupervised
learning

Pretraining is expensive
Stuck with performance
for timeseries data

DNN–LSTM
Supervised,

unsupervised,
reinforcement

Control problems with
high dimensional inputs

Fully connected layer
arrangement, can
overcome vanishing
gradient problem.

Depends on large
amount of data, very
expensive in
computation
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Table 1. Cont.

Technique Learning Scenarios Functionality Pros Cons

XG-Boost Supervised,
unsupervised

Modelling less feature
engineering applications

Fast in operations, less
overfitting

Difficult to optimize the
hyperparameters

Randomforest Supervised,
unsupervised

Modelling applications
for feature selection

Very effective in highly
correlated features

Depend on highly
correlated features

KNN Supervised,
unsupervised

Modelling instance-based
applications

Easy implementation,
evolving model for new
data points

Depends on
homogeneous features

MICE Supervised,
unsupervised Data imputations

Flexible, can handle
variables of varying
types

Sensitive to outliers,
depends on
homogeneous features

GAIN Supervised,
unsupervised Data generations Effective in generating

the similar patterns Convergence is difficult

3. Materials and Methods

Analyzing the wind-induced response on the high-rise structures remains important
for observing the impact of wind on the structures. As the impact of the wind directly af-
fects the durability of the structures, wind-induced responses on the structures plays a vital
role to enhance the longevity of the structures with effective structural maintenance [71–74].
The technical improvements in implementing the pressure sensors around the high-rise
structures for monitoring the wind-induced response gained its maximum attention. Fur-
thermore, the advancements in the field of artificial intelligence (AI) leads a way to develop
an integrated system to analyze the deep insights out of the data generated from the
pressure sensors. The operational failures and malfunctions that occurs in the pressure
taps produce the missing data. Analyzing the wind-induced response from the missing
data will not lead to a meaningful insight. In addition, it is also necessary to develop a
model which is capable of analyzing the wind-induced response of the building at random
locations of the high-rise structures in the absence of pressure taps [75–77]. This proposed
work concentrates on developing a data imputation model capable of imputing the missing
values. Section 3.1 discusses the wind-tunnel test setup for generating the wind-induced
response data. An overview of developing an intelligent data prediction model is discussed
in Section 3.2.

3.1. Wind Tunnel Test and Wind Pressure Data

In this study, an aerodynamic database of wind pressures on tall buildings was
constructed based on wind tunnel experiments. A tall building model with a square
section and dimensions of height (H): 600 mm, width (W): 120 mm, and breadth (B):
120 mm was used in the pressure measurement tests. A synchronous multi-pressure
measurement system was employed because of its capability to simultaneously measure
multiple-point local pressures on the building model. The oncoming flow conditions were
set in terms of Category 2 terrain according to the Australian/New Zealand standard
(AS/NZS 1170.2:2011). The normalized wind characteristics between the measured profiles
and target profiles are compared in Figure 2.

The mean wind speed at the top of the building model was 13 m/s. Hence, the
Reynolds number was 1.03 × 105, which was higher than the minimum Reynolds number
requirement as specified in AWES-QAM-1-2001 [78,79]. The sampling frequency was set
to 800 Hz, and the measurement duration was 150 s. The local pressure coefficients were
calculated using the following Equation:

Cp_ij =
pij(t)− p0

1
2 ρV2

H
(1)

where i = 1, 2, . . . , 10 indicates the pressure tap level, j represents the pressure tap number
in each level, p0 is the local static pressure, ρ is the air density, and VH is the velocity at the
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top of the building model. In this proposed work the incoming wind flow is considered as
0º on the building model placed in the wind tunnel test. As the wind flows at 0º, the front
face of the building is perpendicular to the incoming wind.
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A total of 200 pressure taps were distributed on all four faces of the building, and
each face had 50 pressure taps. Figure 3a illustrates the arrangement of pressure taps on
the building model, and Figure 3b shows the pressure tap locations on the four faces. The
measured wind pressures on the building surface were utilized as a database to train the
ML model to predict wind pressures on untested locations of the proposed building.

Data preprocessing yields the most significant outcome of any data-based study. Cor-
rupted data and missing values remain a challenge for data-driven research. Computing a
missing value has been a lifesaver for such studies. Conventionally, data imputation is per-
formed with simple mathematical computations, such as imputation using mean/median
values, using the most frequent values, or simply using a constant value. However, these
conventional imputation techniques have flaws, such as data inaccuracies, data bias, and
effects on data correlations. ML-based imputation models, such as GAIN, KNN, and
MICE, have been proven to be effective techniques for predicting missing values while
maintaining the data accuracy and intactness. In recent years, GAIN has revolutionized
many fields through its implementation of the ML paradigm [70]. GAIN has transformed
data imputation with its highly accurate imputation predictions.

3.2. Intelligent Data Prediction Model

This study aims to build an intelligent data prediction model (IDPM) using ML
algorithms. The GAIN-based data prediction model is adopted to impute the missing
pressure data at locations with faulty sensors or without pressure taps. The pressure
values predicted by GAIN are validated by comparing the model’s performance with those
of KNN and MICE. Figure 4a presents the workflow of the ML-based intelligent data
prediction model. Eighty-five percent of the measured pressure data were used for training
the model and the rest of the data were used for model validation.
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Figure 4b presents the workflow of the IDPM. For each face with 50 pressure taps,
the data from 1000 instantaneous time intervals data of 50 pressure taps for each side of
the building is considered. For each face with 50 pressure taps, wind pressures acquired
from all 50 pressure taps were used for training the model among which the values from
7 pressure taps were intentionally imputed with NaN (Not a Number) values to represent
the missing values and used for model validation. The NaN was included at two different
patterns, namely, missing at random (MAR) and missing completely at random (MCAR).
This ensures that 15% of the data contains missing values among the entire data considered
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for training. Eighty-five percent of the wind pressures measured at 1000 time intervals in
the wind tunnel tests were used for training; the rest were used for testing.

4. Construction of Wind-Induced Pressure Prediction Model
4.1. GAIN

GAIN is a method that generalizes the well-known generative adversarial network
(GAN) framework, which can impute data when complete data are unavailable. GAIN
is composed of two networks: generator and discriminator. The goal of generators is to
impute the missing data, and the discriminator attempts to distinguish the observed com-
ponents and imputed components [53]. These two networks are trained in an adversarial
manner so that the discriminator minimizes the classification loss, and the generator is
trained to maximize the classification loss of the discriminator.

In the process of data imputation, the generator (G) imputes the missing components
and outputs a completed vector to the discriminator (D). Then, D attempts to determine
which components were actually observed and which were imputed. The hint vector (H)
is used to provide additional information to ensure that D forces G to learn. H reveals
partial missing information to D to focus its attention on imputation quality. In addition, H
ensures that G learns to generate the true data distribution.

GAIN is the new state-of-the-art algorithm for data imputation, which uses a modified
GAN architecture (Figure 5). The pressure coefficients are obtained from 50 pressure
sensors in the form of a 10 × 5 matrix. Some specific values in the matrix are converted
to NaN values to extrapolate the malfunctioning sensor and missing sensor values. The
reshaped matrix of pressure coefficients is transformed into data, random, and mask
matrices. The data matrix is an instance of the input that retains all the available sensor
values in position but is filled with zeros instead of NaN for missing values. The random
matrix consists of randomly generated values in place of the missing values, and the rest of
the sensors’ actual values are changed to zeros. The mask matrix is a binary matrix that
indicates the missing positions in a matrix using zeros in place of the missing values and
ones for occupied positions.

Using these three matrices, G then generates an imputed matrix. This imputed matrix
and the data matrix are compared to calculate the mean-squared error (MSE). The hint
generator generates a hint matrix depending on the mask matrix, which ensures that D
forces G to learn. D outputs the estimated imputed matrix, which is compared with the
mask matrix, and the loss is calculated in terms of D’s performance of correctly identifying
the missing value. It is used to back propagate to change D’s weights. This loss found in D
is also given in summation with the MSE found before G for back propagation. This back
propagation is performed until the optimum results are achieved. Both networks are said
to learn the parameters during back propagation.

Missing Data Imputation Using GAIN

The prediction of the pressure values at the missing locations is formulated as a data
imputation problem. Consider a d-dimensional space X = X1 × . . . × Xd. Represent
X = (X1, . . . , Xd) as a random variable taking values in χ with a distribution P(X).

Let M = (M1, . . . , Md) be a random variable that takes values as {0,1} in d-dimensional
space. X represents the data vector and M is the mask vector. For each i ε {1, . . . , d},
denote χ̃i = χi

⋃
{*}, where * is a point that does not belong in any χi, and it represents an

unobserved value.
Let χ̃ = χ̃1 × . . . × χ̃d and X̃ = (X̃1, . . . , X̃d), where

Xi =

{
Xi, i f Mi = 1
∗, Otherwise

(2)

M indicates which components of X are observed.
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In imputation, the goal is to impute the unobserved values in each χi. To compute
the unobserved values, it is necessary to generate samples according to P(X|X̃ = x̃i ).
The conditional distribution of X is represented as X̃ = x̃i and is used to fill missing data
points. To impute the missing values in the data collected, a vector with real data with
some missing values is provided as an input to G, and the missing values are imputed
accordingly. D takes the imputed data and determines which data were originally missing.

G takes the value of X̃ as input along with the Z and M values. M is a noise variable,
Z denotes the noise vector, and P̃ is the output variable with the missing values being
imputed. Let G: p̃i × {0,1}n × [0, 1]n → X be a function, and Z = (Z1, . . . ., Zn) be a n
dimensional noise variable. The random variables P̃, P̂
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X are expressed by

P = G
(

P̃, M, (1−M)� Z
)

(3)

P̂ = M � P̂ + (1−M)� P (4)
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where � denotes element-wise multiplication, P corresponds to the vector of the imputed
values, and P̂ corresponds to the completed data vector. This is similar to the standard
GAN with Z being analogous to the noise variables in the framework. D is introduced and
used as an adversary to train G. In a standard GAN framework, the output of the generator
is either completely real or completely fake. To identify the entire vector as real or fake,
the discriminator attempts to distinguish the real components and fake components for
predicting the mask vector, m. The discriminator function is given as D: P→ [0, 1]n with
the i-th component of D (P̂) corresponding to the probability that the i-th component of X̂
is observed.

A hint mechanism is introduced to avoid the failure of the missing data imputation al-
gorithm. If sufficient information about M is not provided to D, then multiple distributions
can be generated by G that are optimal with respect to D. To overcome the data insufficiency,
the hint-matrix mechanism is followed. H depends on M, and for each imputed sample (P̂,
m), h is drawn according to the distribution H|M = m. h is passed as an additional input
to D, and thus it becomes a function D: P × H→ [0, 1]d, where the i-th component of D (P̂,
h) corresponds to the probability that the i-th component of P̂ was observed subject to the
condition that P̂ = P̂ and H = h. By defining H in different ways, the amount of information
contained in H about M is controlled.

The goal of the discriminator is to maximize the probability of the successful prediction
of M, and the goal of the generator is to minimize this probability. Then, define the quantity
V(D,G) as

V(D, G) = Ep̂, M, H
[
M, log D

(
X̂, H

)
+ (1−M), log

(
1−D

((
X̂, H

))]
(5)

where log is the element-wise algorithm, and X̂ depends on G. The imputation model is
associated with the standard GAN, and the objective of GAIN is then defined to minimax
the problem as

min
G

max
D

V(D, G) (6)

Define the loss function L: {0, 1}d × [0, 1]d→
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by,

L(a, b) = ∑d
i=1 ai log bi + (1− ai) log(1− bi) (7)

By expressing M̂ = D (X̂, H), (6) can be rewritten as,

min
G

max
D

E
[
L
(

M, M̂
)]

(8)

The working code explaining the functionality of GAIN (Algorithms 1) for the predic-
tion of the wind-induced pressure values is presented in the following section.

In MICE, each missing value was predicted multiple times by multiple imputations.
The analyses of imputation values were considered to handle the uncertainty and achieve
the minimum standard errors. If there is no meaningful information regarding the missing
values, the imputation will vary and will lead to high standard errors. In contrast, if
the observed data are meaningful and highly predictable, the imputations will be more
consistent with more accurate values. MICE can operate based on the assumption that
the given variables used in the imputation procedure are missing-at-random and missing-
at-complete. The probability of the missing value depends only on the observed values
and not on the missing values. The MICE method runs a series of regression procedures,
wherein each missing variable is modeled conditionally on other data variables. The
regression procedure normally uses logistic regression for binary variables and linear
regression for continuous variables.

The MICE algorithm, which operates on the pressure coefficients at various time
intervals, is shown in Figure 6.
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Algorithms 1 GAIN for data imputation.

1. While training loss has not converged do
2. Discriminator (D)
3. Get kD samples from the dataset {(x(j), m(j))}kD

j=1

4. Get kD independent and identically distributed samples {z(j)}kD
j=1 of Z

5. Get kD independent and identically distributed samples {b(j)}kD
j=1 of B

6. For j = 1 . . . kD do
7. x(j)← G(x̃(j), m(j), z(j))
8. x̂(j) ← m(j)� x̃(j) + (1−m(j))� x(j)
9. h(j) = b(j)�m(j) + 0.5(1− b(j))
10. End for
11. Update D using adaptive moment estimation optimization (Adam) using the loss obtained
from the loss function of D
12. ∇D − ∑kD

j=1 LD(m(j), D(x̂(j), h(j)), b(j))
13. Generator (G)
14. Draw kG samples from the dataset {(x(j), m(j))}kG

j=1

15. Draw kG independent and identically distributed samples {z(j)}kG
j=1 of Z

16. Draw kG independent and identically distributed samples {b(j)}kG
j=1 of B

17. For j = 1 . . . kG do
18. h(j) = b(j)�m(j) + 0.5 (1− b(j))
19. End for
20. Update G using Adam (for fixed D) based on the loss obtained from the loss function of G
21. ∇G − ∑kG

j=1 LG(m(j), m̂(j), b(j)) + αLM(x(j), x̃(j))
22. End while
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The chained equation process is explained based on the MICE algorithm for a set
of time series pressure values p1, . . . ., pk. Assuming that some of the pressure values are
missing, all missing values are initially filled randomly or with the mean values.

P =
(
∑ pi

)
/n (9)

where pi is the time series value and n is the total number of values. This means that the
imputation can be considered as the set of filler values. The filler values are obtained by
the imputation of one variable and are reset to missing. The first variable with at least
one missing value, p1, is regressed on the other variables p2, . . . ., pk. In this regression
model, given in Equation (3), variable p1 is a dependent variable, and the other variables
act as independent variables. The model operates based on the same assumptions of linear
regression while imputing the missing data. The missing value for p1 is predicted by the
regression model, and the dataset is imputed with the new predicted values. All missing
data are imputed as described above.

p1 = a + b p2 + ε (10)

where p1 is the dependent variable, p2 is the independent variable, a is the intercept, b is
the slope, and ε is the residual.

Filling each of the missing variables constitutes one iteration. Missing values are
predicted at the end of one iteration using the regression relationship observed in the data.
The number of iterations is determined based on the error rate calculated at the end of each
iteration. The iteration procedure is stopped at a minimum error rate with stable values.
The optimum number of iterations depends on the type of data and the number of data
values missing in a specific dataset.

4.2. KNN

The KNN algorithm is an effective supervised ML algorithm used for data imputa-
tion. KNN relies on labeled input data to build a function that produces an appropriate
output while handling the missing data. KNN operates based on the assumption that
similar data values are in close proximity with each other [57,58]. The KNN measures the
similarity between two points by measuring their distance. Although there are different
methods to quantify the distance between two points, the most commonly used is the
Euclidean distance.

The time series of wind pressures are represented as vectors in a multidimensional
feature space. An ML model for data imputation can be developed by using KNN and
by considering all the available time series values for training. The value K in KNN is a
user-defined constant. During the model training process, the KNN algorithm is iterated
with multiple K values, and the error associated with each K value is monitored. This
iteration process will be stopped at a particular K value when the values are stable and the
error rate is minimal. The prediction accuracy of KNN can be improved significantly by
selecting the optimum value of K.

The KNN algorithm takes wind pressures as input. The dataset is split into a training
and testing data. The random number of neighbor values is initialized as K. The dis-
tance between the pressure points is calculated using the Euclidean measure according
to Equation (4).

d(x, y) =

√
∑n

i=1 (Yi − Ŷi)
2 (11)

where Yi and Ŷi are Euclidean vectors that start from the origin of the space and have
specific ending points. K nearest points are selected based on the minimum distance
measure, and the mean pressure value for all available k points is then calculated. The
error rate is calculated for the associated k values. The procedure is repeated for the next k
values, and iterations are performed for different seed values. The iteration procedure is
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stopped when the error rate is minimized. The MSE is calculated for all associated k values
according to Equation (5).

MSE =
1
n ∑n

i=1 (Yi − Ŷi)
2 (12)

The optimum K value is selected based on the accuracy of data imputing. The KNN
model is imputed several times. Different K values and the optimum values are selected
based on the error rate. The prediction becomes less stable when the K value decreases.
For example, if the value of K is selected to be one, it simply replaces the missing value
with the nearest value. This will become an unstable value. As the value of K increases, the
predictions become more stable owing to averaging done by the majority of the neighboring
values, and thus more accurate predictions are likely to be made. However, it is possible to
witness an increasing value of errors when the K value is pushed too far.

5. Performance Discussions

This section presents the experimental results of GAIN and the performance compari-
son of proposed GAIN-based wind-induced pressure prediction with other ML models. In
this proposed work, the GAIN model is proposed as an imputation model for filling the
missing values generated from the pressure sensors. The performance of the GAIN model
is validated by comparing its performance with other familiar ML models, such as MICE
and KNN (Figure 7).
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Figure 7. Data imputation models and performance comparison.

5.1. Experimental Results of GAIN

The performance of the GAIN algorithm is quantified by calculating the average
mean-squared error (AMSE) and average R-squared error (ARSE) values for all four sides
of the building. The AMSE of the building was measured to be 0.011, 0.013, 0.021, and
0.019 for front, back, side 1, and side 2 of the building, respectively, as shown in Figure 8.
The ARSE values were 0.95, 0.962, 0.972, and 0.96, for front, back, side 1, and side 2 of the
building, respectively, as shown in Figure 9.

The time series plots of the AMSE and ARSE values of GAIN for all four sides of the
building are shown in Figures 10 and 11 respectively.

In addition to the AMSE and ARSE values, the performance of the GAIN algorithm
was quantified in terms of accuracy and loss values at different iterations of GAIN. The
GAIN algorithm was executed with 5000 iterations and the accuracy and loss values were
calculated (Figures 12–14).
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Sensors 2021, 21, x FOR PEER REVIEW 14 of 24 
 

 
Figure 7. Data imputation models and performance comparison. 

5.1. Experimental Results of GAIN 
The performance of the GAIN algorithm is quantified by calculating the average 

mean-squared error (AMSE) and average R-squared error (ARSE) values for all four sides 
of the building. The AMSE of the building was measured to be 0.011, 0.013, 0.021, and 
0.019 for front, back, side 1, and side 2 of the building, respectively, as shown in Figure 8. 
The ARSE values were 0.95, 0.962, 0.972, and 0.96, for front, back, side 1, and side 2 of the 
building, respectively, as shown in Figure 9. 

 
Figure 8. Average mean-squared error (AMSE) of GAIN. 

 
Figure 9. Average R-squared error (ARSE) of GAIN. 

The time series plots of the AMSE and ARSE values of GAIN for all four sides of the 
building are shown in Figures 10 and 11 respectively. 

- New locations for wind response analysis
- Malfunctioning pressure taps
- Correctly functioning pressure taps

High-rise Building 
with Pressure Taps

GAIN imputed values

KNN imputed values

MICE imputed values

Imputed pressure  values

KNN

MICE

GAIN

Data imputation 
models

Model 
Validation

Performance 
Comparison

Model validation 
for data imputation

Wind induced response 
from pressure taps

MCAR Values
MAR Values

CWP Values

MAR   – Missing at random
MCAR – Missing completely at random

CWP    – Complete wind pressure

0.0110
0.0130

0.0210
0.0190

0.000

0.005

0.010

0.015

0.020

0.025

Front Side  Back Side  Side 1 Side 2

A
M

SE

Average Mean-Squared Error

0.950

0.962

0.972

0.960

0.93

0.94

0.95

0.96

0.97

0.98

Front Side  Back Side  Side 1 Side 2

A
R

SE

Avereage R- Squared Error

Figure 9. Average R-squared error (ARSE) of GAIN.
Sensors 2021, 21, x FOR PEER REVIEW 15 of 24 
 

 
Figure 10. AMSE predicted by GAIN. 

 
Figure 11. ARSE predicted by GAIN. 

In addition to the AMSE and ARSE values, the performance of the GAIN algorithm 
was quantified in terms of accuracy and loss values at different iterations of GAIN. The 
GAIN algorithm was executed with 5000 iterations and the accuracy and loss values were 
calculated (Figures 12–14). 

0.00

0.10

0.20

0.30

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

M
ea

n 
Sq

ua
re

 E
rr

or

Time Series

Average Mean-Squared Error 

 Front Side  Back Side  Side 1 Side 2

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

R
 S

qu
ar

e 
Er

ro
r

Time Series

Avereage R-Squared Error 

 Front Side  Back Side  Side 1 Side 2

Figure 10. AMSE predicted by GAIN.
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Figure 12. GAIN accuracy measure.
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Figure 14. GAIN overall performance.

As the iterations increased, the validation accuracy also increased, and the validation
loss decreased. The training and validation accuracies reached the maximum (Figure 12)
and stabilized as the iterations increased. The training and validation losses reached the
minimum (Figure 13) as the iterations increased.

5.2. Experimental Comparisons

The computational performance of GAIN was compared with those of the MICE and
KNN models. Initially, the performances of the proposed algorithms were evaluated in
terms of AMSE and ARSE by comparing the ground truth and predicted values. During
experimentation, MICE was iterated with various i values, such as 3, 5, 7, 8, 9, and 10, to
identify the best fit for missing values. Among all the iterations, the results at the eighth
iteration (i = 8) produced the best fit with the AMSE and ARSE values. Similarly, KNN was
experimented for different k values ranging from 2 to 9. The results at k = 3 produced the
best fit with the minimum AMSE and maximum ARSE values.

Considering the accuracy of the proposed models, the maximum accuracy in this study
was 0.95, and it was achieved by the GAIN prediction model. The MICE and KNN models
struggle to attain the maximum accuracy using an iteration model separately for distinct
iteration in MICE and by using different k values in KNN. The GAIN model was iterated
and the discriminator provided better accuracy with increasing iterations. In addition,
the maximum accuracy and minimum loss values were achieved by the GAIN model in
successive iterations. However, other models exhibited variations and decreased accuracy,
although the k and i values increased. In summary, it is found that the GAIN model works
well for finding missing values with high ARSE, low AMSE, decreased loss, and increased
accuracy values. GAIN maintains the highest ARSE values (Figure 15) of 0.95, 0.962,
0.972, and 0.962 for the front, back, side 1, and side 2 of the building, respectively. In this
proposed work, the building perpendicular to the wind flow is considered for developing
the intelligent data imputation model. So, the wind induced responses generated by the
pressure taps in the front face of the building is dispersed compared with the other faces of
the building. Hence the variance and standard deviation values at the side of the building
differs from the sides of the building.

GAIN produces the minimum AMSE values (Figure 16) of approximately 0.011, 0013,
0.021, and 0.019 for front, back, side 1, and side 2, respectively. The KNN algorithm
maintains an average AMSE of approximately 0.015, 006, 0.039, and 0.031 for front, back,
side 1, and side 2, respectively. The MICE algorithm values deviate considerably from the
original values based on the maximum AMSE values in comparison with GAIN and KNN.
It is observed that the variance and standard deviation values at the sides of the building
remains much closer to each other (Figures 17 and 18). In addition, GAIN manages to
produce the minimum standard deviation (Figure 17) and minimum variance (Figure 18).
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These analyses indicate that the GAIN model is well suited to the prediction of missing
pressure value.
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Figure 15. ARSE comparison.
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Figure 16. AMSE comparison.
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Figure 17. Average standard deviation comparison.
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Figure 18. Average variance comparison.

The comparison of the original pressure values and the imputed pressure values of
the MICE, KNN, and GAIN models at different pressure tap locations for all four sides
of the building is depicted in Figure 19. It is clearly shown that the GAIN predicted
average produces closer imputed values with the actual values when compared with MICE
and KNN.
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Figure 19. Average pressure value comparison on all sides. (a) Average pressure—front side; (b) Average pressure—back
side; (c) Average pressure—side 1; (d) Average pressure—side 2.

The regression analysis values of the test and predicted mean CP values of KNN,
MICE, and GAIN are shown in Figures 20–22. It is observed that the test and predicted
mean CP values exhibit the best fit for the GAIN model. The MICE model performs
overfitting, and the predicted mean CP values are scattered. The KNN algorithm can
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manage the predictions with minimum deviations. The GAIN performance clearly shows
that the test and predicted mean CP values are close to each other with a minimal deviation
in comparison with the KNN and MICE algorithms. The performance analyses depicts
that the GAIN algorithm can impute the pressure data more accurately than the other
ML models.
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Figure 20. Predicted mean pressure coefficient by MICE.
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6. Conclusions

Predicting the wind pressure coefficient values at the missing locations plays a vital
role in the continuous monitoring of the wind environment around structures. Inevitable
data losses and corruption in structural monitoring sensors have tremendous effects on
structural health research experiments. In this study, missing wind-induced pressure
data at various time intervals of a square-shaped building were predicted by constructing
an intelligent data prediction model (IDPM) with ML algorithms. This proposed IDPM
model could predict the missing values that occurred owing to faulty sensors. In addition,
the IDPM model predicted the wind pressure coefficients on a building by considering
the nearby pressure tap values without using multiple pressure taps. A prototype of a
proposed building was constructed to conduct the wind tunnel test for data generation.
The ML algorithms, namely KNN, MICE, and GAIN, were implemented and validated for
predicting missing values. Performance analysis of the proposed ML models indicated that
GAIN was more accurate in imputing the missing pressure coefficient values compared
with KNN and MICE. GAIN provided a minimum AMSE of 0.01 and a maximum ARSE of
0.96 in comparison with other models. In addition, GAIN exhibited excellent performance
with minimum standard deviation and minimum variance between actual and imputed
pressure coefficients.

The proposed work applied the best ML algorithms to predict the missing wind
pressure values. This study provides a pathway to predict the wind-induced pressure
coefficient values of faulty and malfunctioning pressure taps. In addition, it is viable and
can predict the wind response at a particular locations on the structure even in the absence
of pressure taps. Therefore, the future scope of this work is to minimize the usage of
pressure sensors on structures for continuous monitoring of the wind environment.
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