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Abstract
TheWHO’s early-release guideline for antiretroviral treatment (ART) of HIV infection based

on a recent trial conducted in 34 countries recommends starting treatment immediately

upon an HIV diagnosis. Therefore, the test-and-treat strategy may become more widely

used in an effort to scale up HIV treatment and curb further transmission. Here we examine

behavioural determinants of HIV transmission and how heterogeneity in sexual behaviour

influences the outcomes of this strategy. Using a deterministic model, we perform a system-

atic investigation into the effects of various mixing patterns in a population of men who have

sex with men (MSM), stratified by partner change rates, on the elimination threshold and

endemic HIV prevalence. We find that both the level of overdispersion in the distribution of

the number of sexual partners and mixing between population subgroups have a large influ-

ence on endemic prevalence before introduction of ART and on possible long term effec-

tiveness of ART. Increasing heterogeneity in risk behavior may lead to lower endemic

prevalence levels, but requires higher coverage levels of ART for elimination. Elimination is

only feasible for populations with a rather low degree of assortativeness of mixing and

requires treatment coverage of almost 80% if rates of testing and treatment uptake by all

population subgroups are equal. In this case, for fully assortative mixing and 80% coverage

endemic prevalence is reduced by 57%. In the presence of heterogeneity in ART uptake,

elimination is easier to achieve when the subpopulation with highest risk behavior is tested

and treated more often than the rest of the population, and vice versa when it is less. The

developed framework can be used to extract information on behavioral heterogeneity from

existing data which is otherwise hard to determine from population surveys.
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Author Summary

HIV is endemic in populations of MSM in Western countries. As ART reduces transmis-
sion risk, increased testing and treatment rates are expected to lower HIV incidence. How-
ever, concerns are that in MSM populations changing risk behavior may counteract the
impact of ART on transmission. Using a mathematical model, we investigated how hetero-
geneity in sexual behavior influences the possible effects of a test-and-treat strategy on
HIV prevalence and in particular the prospects of eliminating HIV from these popula-
tions. We demonstrated that behavioral heterogeneity plays an important role in deter-
mining the impact of ART on reducing HIV transmission. Knowledge of behavioral
heterogeneity is key in setting intervention goals in populations of MSM.

Introduction
Recently, a large trial conducted at various sites in 34 countries provided evidence that start-
ing ART as soon as possible regardless of CD4 count is advantageous for health prospects of
HIV infected persons [1]. The WHO’s early-release guideline for ART initiation now reflects
these findings recommending to start treatment immediately upon an HIV diagnosis [2].
Therefore, the test-and-treat strategy, where a population is tested for HIV regularly and
those found positive are treated immediately, may become widely used in countries with a
generalized HIV epidemic. Earlier, it was investigated whether and under which circum-
stances a test-and-treat strategy and a more general strategy of treatment as prevention
would eventually lead to elimination of HIV from a population [3–8]. While much discus-
sion has been devoted to the possible influence of high infectiousness during primary HIV
infection on expected effects of large scale ART on HIV incidence [9–12], less attention has
been directed to behavioural determinants of HIV transmission dynamics and how heteroge-
neity in sexual behaviour will influence the impact of a test-and-treat strategy on HIV trans-
mission. Models of HIV treatment as prevention already included heterogeneity (e.g. [7])
but there has been no systematic investigation of how results depended on assumptions
about it.

Sexual behaviour influences HIV transmission dynamics in various ways. Changes in sexual
risk behaviour over time have been observed, first decreasing risk behaviour as a response to
the emerging HIV epidemic in the 1980’s, and later increasing risk when ART became available
at the end of the 1990’s. These changes have been especially apparent in populations of MSM
[13–16]. More recently, modelling studies showed the impact of changes in risk behaviour of
individuals over time on HIV transmission dynamics [17–27].

Here we developed a modeling approach which allows a systematic investigation into the
effects of various mixing patterns in populations stratified by rates of partner change on the
basic reproduction number, treatment effects and prospects of elimination. We investigated
how endemic levels and elimination threshold depend on the level of overdispersion in the dis-
tribution of numbers of partners and on a mixing parameter that reflects assortativeness of
mixing. We studied how the infection is distributed across population strata in endemic steady
state and how this changes with various levels of diagnosis and treatment. We chose baseline
parameter values to reflect the HIV epidemic among MSM inWestern countries.
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Materials and Methods

Model formulation
We considered an extended version of a previous model used to evaluate prospects of elimina-
tion of HIV with test-and-treat strategy [5]. Here, we explicitly incorporated risk heterogeneity
in sexual activity and mixing between population groups by sexual activity.

The model represents a population of MSM of size N(t) stratified intom risk groups of
size Nl(t) with partner change rates cl, l = 1, . . .,m. Here NðtÞ ¼ Pm

l¼1 NlðtÞ is the time-
dependent population size that changes due to additional mortality from HIV infection.
Individuals remain in their risk group. The population in group l consists of susceptible,
Sl(t), infected, Ilk(t), and treated, Alk(t), individuals in stage of infection k = 1, . . ., n, where n
is the number of disease stages. The population size in group l can then be expressed as
NlðtÞ ¼ SlðtÞ þ

Pn
k¼1½IlkðtÞ þ AlkðtÞ�.

In each risk group the model describes HIV infection process, disease progression through
n stages of infection, birth, background and HIV related mortalities, the uptake of and drop-
ping out of ART (Fig 1). Individuals enter the risk class l at rate mN0

l as susceptible, where N
0
l is

the initial number of individuals in group l. Susceptibles can become infected with the first
stage of HIV infection at rate Jl(t) (force of infection). In the absence of treatment infected indi-
viduals progress through n stages of infection with varying durations and infectivities ending
with death from HIV. Infected individuals in any stage can be screened and start ART at rate τ.
When we will consider heterogeneous ART uptake by risk group, we will denote τl the uptake
by risk group l. Treated individuals progress through n stages of infection with varying dura-
tions too, albeit at smaller rates. The rates of progression from stage k to stage k + 1 for
untreated and treated individuals are denoted as ρk and γk, respectively. Treated individuals in
stage k revert to an infection of stage k at rate f. This transition represents leaving the virally
suppressed state; this can be due to treatment failure, dropping out of treatment or other rea-
sons. In the following, we will refer to f as drop out rate. Finally, all classes of individuals are
subject to background mortality at rate μ.

Fig 1. Schematic diagram of the HIV model. The model describes HIV infection process, disease
progression through n stages of infection, birth, background mortality and HIV related mortality, the uptake of
and dropping out of ART. The model assumes that the population is divided into the classes of susceptibles,
Sl(t), infected, Ilk(t), and treated, Alk(t), in n stages of infection, k = 1, . . ., n. The population is stratified intom
risk groups indicated by the label l = 1, . . .,m in the subscript, and the diagram describes the dynamics in one
of them. The risk groups differ only in their partner change rates and initial group sizes, whilst the disease
progression and dropping out of treatment are the same for all risk groups. The diagram shows the situation
when treatment uptake is the same by all risk groups. We denote τl the uptake by risk group l when we
consider heterogeneous ART uptake by risk group. The interaction between the groups is encoded in the
time-dependent force of infection Jl(t) that takes into account mixing between the risk groups.

doi:10.1371/journal.pcbi.1005012.g001
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The model was formulated as a system of differential equations for the number of individu-
als in different classes as follows

dSlðtÞ
dt

¼ mN0
l � mSlðtÞ � JlðtÞSlðtÞ; ð1Þ

dIl1ðtÞ
dt

¼ JlðtÞSlðtÞ � ðmþ r1 þ tÞIl1ðtÞ þ �Al1ðtÞ; ð2Þ

dIlkðtÞ
dt

¼ rk�1Il;k�1ðtÞ � ðmþ rk þ tÞIlkðtÞ þ �AlkðtÞ; ð3Þ

dAl1ðtÞ
dt

¼ tIl1ðtÞ � ðmþ g1 þ �ÞAl1ðtÞ; ð4Þ

dAlkðtÞ
dt

¼ tIlkðtÞ þ gk�1Al;k�1ðtÞ � ðmþ gk þ �ÞAlkðtÞ; ð5Þ

where k = 2, . . ., n and l = 1, . . .,m. For heterogeneous uptake by risk group τ has be substituted
by τl in Eqs (1)–(5).

The time-dependent force of infection (per year) in risk group l is given by

JlðtÞ ¼ lcl
Xm
l0¼1

Mll0 ðtÞ
Xn

k¼1

hk

Il0kðtÞ
Nl0 ðtÞ

þ �
Al0kðtÞ
Nl0 ðtÞ

� �
:

Here λ is the transmission probability per partnership, � is the infectivity for an individual on
ART, whereas hk describe the infectivity in stage k of infection. Infectivity is defined as a
dimensionless quantity describing the relative contribution of each disease or treatment stage
to overall infectiousness.

Them ×mmixing matrixM(t) = [Mll0(t)]l,l0 2 {1,. . .,m} with the elementsMll0(t) denoting mix-
ing of susceptible in the risk group l with infected in risk group l0 is defined as follows

Mll0 ðtÞ ¼ o
cl0Nl0 ðtÞXm

l00¼1

cl00Nl00 ðtÞ
þ ð1� oÞdll0 ; ð6Þ

where δll0 = 1 if l = l0 and δll0 = 0 otherwise.
The mixing parameter 0� ω� 1 describes the degree of assortative mixing by risk level.

When ω = 0 mixing between the risk groups is fully assortative (like with like), when ω = 1 mix-
ing is fully proportionate. Eq (6) means that a proportion (1 − ω) of the partnerships are
formed only with the individuals of the same risk group l = l0, whereas the remaining propor-
tion ω of the partnerships is formed with each risk group (l0 = 1, . . .,m) proportionally to the
number of partnerships offered by those risk groups. Mixing between groups was random
meaning that we did not incorporate preferential mixing for adjacent risk groups. This method
of incorporating mixing between different population subgroups is commonly used in sexually
transmitted infections (STI) models [11, 28–31].

The proportion of new susceptible individuals entering each risk group was chosen such
that, in the absence of HIV, this proportion would remain constant. In the model the total pop-
ulation size, N(t), however, as well as the population sizes ofm risk groups, Nl(t), l = 1, . . .,m,
are not constant because of additional mortality from HIV infection. Note that the burden of
HIV due to HIV related mortality is different per risk group as the groups with the highest
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number of infected individuals will have more HIV related deaths. S1 and S2 Figs show the
time-dependent behavior of the model variables for the default parameter values without and
with ART, respectively.

The mathematical model was implemented inMathematica 9.0.

Model parametrization
For parameterizing the model we chose values that are plausible for describing populations of
MSM inWestern countries, but it was not our aim to fit the model to a specific population. We
used data to choose the order of magnitude for parameters. Estimates for parameter values
relating to heterogeneity in sexual behavior were obtained from Rutgers World Population
Foundation (WPF) data on MSM collected in 2005–2006 in the Netherlands and previous
studies of STI dynamics among MSM in the UK. Parameters relating to disease progression
and infectivity were extracted from published literature. The parameters for the model and
their baseline values are summarized in S1 Table.

We assumed that the rate of recruitment to the sexually active population, μ, equals the
death rate. The average duration of sexual activity is 1/μ = 45 years [32–34]. We made use of
Rutgers WPF data on the number of MSM in the Netherlands as the baseline value for the total
population size in the beginning of HIV epidemic, N0 [35, 36]. The model can accommodate
any number of risk groups,m. Here we focused on the casem = 6 considered previously in
modeling dynamics of Hepatitis B virus in MSM populations in the UK and the Netherlands
[33, 34, 36–38]. From these studies we adopted the initial fractions of the population in the 6

risk groups, ql, where ql � 1 for l = 1, . . ., 6 and
P6

l¼1 ql ¼ 1. We calculated the initial numbers
of individuals in each risk group, N0

l , from the relation N0
l ¼ qlN0.

Any number of HIV stages, n, can be incorporated into the model. Following Refs. [3, 5, 39]
we parametrized the model for the case n = 4, because for this choice of n estimates for the
rates of transition between infection stages for untreated, ρk, and treated, γk, individuals, as well
as for the infectivities of untreated, hk (all parameters for k = 1, 2, 3, 4), and treated, �, individu-
als were available. It should be noted that these infectivities were estimated for heterosexual
couples but we used them for MSM in the absence of similar estimates for this population. For
n = 4, infection stages are primary infection, asymptomatic chronic stage, the last two stages
together define the symptomatic AIDS stage which is subdivided into an infectious and a non-
infectious period (due to severe illness leading to cessation of sexual activity). In the model the
stages of the population under treatment have no biological interpretation. They were chosen
in our previous work (Ref. [5]) such that the survival probability has a distribution function
that agrees with CASCADE data from the time period after introduction of ART.

The rate of treatment uptake, τ, and the rate of dropping out from treatment, ϕ, can be var-
ied in the model. We present the results in terms of annual treatment uptake and dropout
percentages, τ� and ϕ�, respectively. These were computed from the expression for the proba-
bility that an event (treatment or dropping out) takes place within one year as percentage =
(1 − e−rate×1 year)100%. In case of heterogeneous uptake by risk group, the uptake percentage
by group l, t�l , is computed using the same expression. Unless stated otherwise, the annual
dropout percentage was fixed throughout the analysis at 5%.

The mixing parameter quantifying the degree of assortativeness, ω, is a variable parameter
of the model. Data on the mixing between different risk groups are hard to obtain because
information about the characteristics of sexual partners is required. In STI modeling studies,
including HIV, the value of ω has been either assumed to have a certain value [29, 30] or esti-
mated by fitting a model to incidence data using Bayesian analysis [11, 31]. The direct estimates
of mixing were obtained in three studies of sexual behavior based on contract tracing among
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patients of STI clinics in the USA and in three studies based on a survey of the general popula-
tion in the USA, France and the UK [40–42]. These estimates indicate weak like-with-like mix-
ing. However, they do not generalize to the USA MSM population, and, to our knowledge, no
more data on mixing is available for this population in the USA or other countries. In our anal-
ysis, ω is a free parameter that takes on the whole range of possible values, ω 2 [0, 1].

We fixed λ at 5% such that HIV prevalence [43] and R0 [5] in our study represent a plausible
range of values that is compatible with HIV dynamics in MSM in Western countries.

Estimation of partner change rates
To estimate partner change rates, cl, l = 1, . . ., 6, we used Rutgers WPF sexual behavior data for
MSM population in the Netherlands [35]. In the Rutgers WPF survey, respondents were
recruited via an existing internet panel. Since there were few MSM in the panel, MSM were
additionally recruited via banners on websites that are frequently visited by MSM. This resulted
in the final list of respondents. Numbers of respondents with certain demographic characteris-
tics (sex, age, education, residence) were matched with the distribution in the population of the
Netherlands, such that the survey population was representative in these demographic vari-
ables. Younger age groups (15–45 years) and certain ethnic minorities were oversampled.
Therefore weighting factors were then used by Rutgers WPF to come to a representative sample
with respect to the above variables. From this survey population, we extracted male respon-
dents who reported sex with men. We used data on the self-reported number of partners in the
last 6 months including information about a steady partner in the last 6 months and condom
use for 176 respondents aged 15 to 70 years. The question respondents answered was: “How
often did you use condoms in the last 6 months with casual partners with whom you had anal
sex?” A similar question was posed for steady partners. As we estimated the number of new
partners, the number of partners was corrected (minus 1) if a person reported a steady partner,
and the duration of relationship with this partner was longer than 6 months. Condom use was
encoded in a binary variable (0 = always, 1 = not always), where all respondents who reported
condomless sex in the last 6 months were grouped into one category. This variable was used as
a multiplication factor for the number of partners, so that individuals who always used con-
doms effectively had 0 partners.

We fitted the probability density function for a Weibull distribution to the WPF data histo-
gram by maximum likelihood method. The resulting Weibull distribution is a continuous
probability distribution with two parameters, a shape parameter α = 0.5 and a scale parameter
β = 1.26, both of which were obtained from the fitting procedure. Fig 2A shows the probability
density function and S3 Fig shows the corresponding cumulative distribution function. From
this distribution we obtained the mean rate of partner change, c = 2.54 partners per year, and
mean rates of partner change, cl, per intervals defined by the initial fractions of the population
in the 6 risk groups, ql, l = 1, . . ., 6. Fitting a Gamma distribution with two parameters resulted
in similar estimates of the mean partner change rate and of the mean rates in different risk
groups, see S4 Fig for details.

Following standard theory, the basic reproduction number for the SIR model with demogra-
phy and constant population size in a population stratified by partner change rates and with
proportionate mixing is proportional to σ2/c, where σ2 and c are the variance and the mean of
the distribution in the partner change rate [44]. To study the impact of heterogeneity in partner
change rates on the dynamics of the model, we fixed the mean rate and varied α and β to obtain
Weibull distributions with different variances, σ2. The mean rates of partner change for each of
the distributions, cl, were then computed as before (S2 Table). The variance of the distributions
in our analysis ranged from 1.8 to 63.5 yr−2, see Fig 2B for probability density functions and
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S3 Fig for the corresponding cumulative distribution functions. The estimate of the variance
obtained from the Weibull distribution best-fitting to the data was σ2 = 32.6 yr−2.

Computation of the effective reproduction number
We analyzed the threshold behavior of the model using the next-generation matrix approach.
An extensive discussion of this approach has already been given at length in the literature in
the context of compartmental epidemic models, and we refer the reader to [45, 46] for formal
details. In S1 Text we described the aspects that are important for this paper. In essence, the
method allowed us to compute a parameter, known as the basic reproduction number, R0,
from Eqs (1)–(5). Following standard theory [44], if R0 > 1 the infection will reach an endemic
equilibrium as t!1, whereas if R0 < 1 the infection cannot spread in a population. There-
fore, R0 is a threshold parameter for the model. We distinguish R0 from Re: the effective repro-
duction number in a population with treatment. Here we use the term “effective reproduction
number” to determine the threshold below which HIV cannot persist in a population under
treatment. This is different from the reproduction number in the transient phase of the epi-
demic. The latter is influenced by density dependent effects, the former is not. Before ART was
introduced, the HIV epidemic in populations with persistent HIV transmission was character-
ized by R0 > 1. As we will see, treatment lowers R0 and thus Re � R0. Elimination by treatment
occurs if Re < 1. The computation of both quantities is similar, but in terms of interpretation it
is more clear if we distinguish these two, see S1 Text for the details.

Lorenz curves
To describe the distribution of infections across risk groups for populations with different lev-
els of heterogeneity and mixing we used a method based on the so-called Lorenz curve. This
method was shown to be useful for calibrating STI models that include risk structure [47]. The

Fig 2. Distributions in the partner change rate used in the analysis have the samemean rate estimated from the data and different variances.
(A) Probability density function for theWeibull distribution in the partner change rate fitted to theWPF data histogram by maximum likelihood method.
The dashed lines indicate the intervals defined by the initial fractions of the population in the 6 risk groups, ql, l = 1, . . ., 6, per which mean rates of
partner change were estimated. For a better visualization the ranges of the x and y axes differ among the panel A and the panel B that is why not all
dashed lines can be seen, see S3 Fig for more detail. (B) Weibull distributions with the same mean of c = 2.54 partners per year and different variances,
σ2, were obtained by varying the shape parameter, α, and the scale parameter, β. The Weibull distribution that best fits to the data is shown in black.

doi:10.1371/journal.pcbi.1005012.g002
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Lorenz curve is a graphical representation of a cumulative probability distribution, namely it
represents the cumulative proportion of HIV infected individuals as a function of the cumula-
tive proportion of the population in different risk groups ranked in the order of their partner
change rate. In the model the population sizes of different risk groups change [over time] as a
result of the differential burden of HIV in each risk group, so in principle we could use the
cumulative proportion either of the initial or of the final population as the x-axis. We checked
that Lorenz curves were not affected much by this choice, therefore we used the initial popula-
tion fractions in our analysis (S1 Table). The skewness in the distribution of HIV infections
across the risk groups is measured by the deviation of the Lorenz curve from the diagonal line.
The diagonal denotes the symmetric situation, i. e. the situation where every risk group has the
same HIV prevalence.

Results
We present results regarding the elimination threshold, as given by the effective reproduction
number Re, the endemic prevalence and the Lorenz curves. First, we analyzed the model with-
out treatment for a range of distributions in the partner change rate with the same mean rate
and different variances. Then, we introduced ART (and consequently dropping out from ART
too) into the model and focused on the distribution of partner change rate fitted to the Rutgers
WPF data. The prevalence was computed in the steady state. In the case when there is treat-
ment, prevalence is computed as the percentage of all infected individuals including those on
ART.

Analysis without ART
Fig 3 shows the basic reproduction number R0 as a function of the mixing (assortativeness)
parameter ω in the model without treatment. We observe that R0 has a strong dependence both

Fig 3. The impact of mixing on the basic reproduction number in the model without treatment. The
results are for populations with different variances in partner change rates, σ2, and the mean rate of partner
change kept constant. Mixing is proportionate (assortative) forω = 1 (ω = 0). The dashed line indicates the
threshold value of R0 = 1 below which HIV cannot spread in the population. R0 decreases as the mixing
becomes proportionate and the variance gets lower. For low variances and high levels of mixing (i.e. low
levels of assortativeness) R0 can be smaller than 1 even in the absence of treatment. For the lowest variance
we used in the analysis HIV cannot persist for any level of mixing (the yellow curve).

doi:10.1371/journal.pcbi.1005012.g003
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on ω and on the heterogeneity of the population as quantified by the variance in the rate of
partner change, σ2. Our model predicts that R0 is below 1 for populations with a low variance
and low levels of assortativeness even in the absence of treatment. For the lowest variance used
in the analysis, σ2 of 1.8 yr−2, HIV cannot persist in the population for any level of mixing.

Fig 4 demonstrates the impact of mixing on prevalence. For a fixed variance, prevalence
does not necessarily change monotonically as mixing ranges from proportionate to interme-
diate to assortative (ω ranges from 1 to 0), see Fig 4A. For example, for σ2 = 63.5 yr−2, the
total prevalence is highest for proportionate mixing (blue bars) but for a lower variance, σ2 =
32.6 yr−2, prevalence is highest for intermediate levels of mixing (black bars). This nontrivial
effect occurs because population sizes of subgroups are not constant due to HIV related mor-
tality (see S5 Fig). For populations with high variance, prevalence is reduced by more than
half (from 2.5% to 1.2%) as the mixing changes from proportionate to assortative. The assor-
tativeness parameter quantifies the extent to which different risk groups of the population
are coupled. As ω decreases HIV is able to persist in a lower number of risk groups but preva-
lence per risk group gradually gets higher (Fig 4B). The increase in prevalence with an
increasing partner change rate is not unexpected and corroborates the concept of a ‘core’
group.

In Fig 5 we plot the Lorenz curves that represent the cumulative proportion of infected indi-
viduals as a function of the cumulative proportion of the initial population when the risk
groups are ranked in the order of their average number of partners per year. The diagonal line
represents the situation in which every risk group would have the same HIV prevalence. The
Lorenz curves deviate significantly from the diagonal, indicating that the infection is concen-
trated in the groups with the highest numbers of partners. This skewness in the distribution of
HIV is more pronounced for higher assortativeness of mixing as seen from the comparison of
the solid, dashed and dot-dashed curves in the plot.

Fig 4. The impact of mixing on endemic prevalence in the model without treatment. (A) Total prevalence in the population. The color of the bars
corresponds to the variance in the rate of partner change, σ2. Note that prevalence is zero for the parameters where HIV is not able to spread (yellow
curves for all levels of mixing and the green curve for proportionate mixing in Fig 3). (B) Prevalence per risk group for a population with a variance in the
rate of partner change σ2 of 32.6 yr−2 corresponding to the data. The color of the bars denotes the number of the sexual activity class.

doi:10.1371/journal.pcbi.1005012.g004
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Impact of ART on HIV dynamics
Treatment is able to decrease the basic reproduction number and eliminate HIV if Re gets
below 1. In Fig 6A Re is shown as a function of annual treatment uptake τ� and mixing. The
model predicts that for proportionate mixing elimination is feasible in populations with an
annual treatment uptake above 30%. The range of ω where Re < 1 gets wider with increasing
τ�. Nonetheless, it is not feasible to eliminate HIV from populations with high degree of

Fig 5. Lorenz curves in the model without treatment. The results are for populations with different variances in partner change rates, σ2, and the
mean rate of partner change kept constant. The diagonal line represents the situation in which every risk group would have the same HIV
prevalence. Lorenz curves deviate from it which means that the distributions of infection across the risk groups for proportionate, intermediate and
assortative mixing are skewed with high prevalence in small high risk groups. This effect gets stronger as the mixing becomes more assortative.
Note that we did not plot the results for the parameters used in Fig 3 for which HIV is not able to spread (yellow curves for all levels of mixing and the
green curve for proportionate mixing).

doi:10.1371/journal.pcbi.1005012.g005

Fig 6. Effective reproduction number and treatment coverage for different annual treatment uptakes and dropout percentages. (A) The
impact of annual treatment uptake, τ*, on the effective reproduction number for a population with the variance in the rate of partner change
corresponding to the data. Mixing is proportionate (assortative) forω = 1 (ω = 0). The curve plotted for τ* = 0.0 is, by definition, R0. The dashed line
indicates the threshold value of Re = 1 below which HIV is eliminated from the population. Re decreases with increasing treatment uptake and mixing.
(B) Treatment coverage as a function of annual treatment uptake τ* for different dropout percentages ϕ* and the remaining parameters as in A.

doi:10.1371/journal.pcbi.1005012.g006
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assortativeness without additional intervention measures even if treatment uptake is as high as
90% annually if treatment uptake is the same in all risk groups.

To translate these findings into results on treatment coverage in the population required for
HIV elimination, we show in Fig 6B the coverage as a function of annual treatment uptake for
different dropout percentages. Here, the coverage is defined as percentage of infected individu-
als who are on treatment in the steady state,—a measure that can be obtained from HIV data
on diagnosis and treatment. Note that in our model the infected population includes those who
are unaware of their infection. Our results indicate that annual treatment uptake of more than
30% required for elimination corresponds to a coverage of almost 80% if 5% drop out from
ART due to treatment failure or other reasons annually. For mixing with a higher degree of
assortativeness, treatment coverage has to be even higher. This 80% coverage is in line with the
UNAIDS 90/90/90 treatment target according to which 90% of all people living with HIV will
know their HIV status, 90% of all people with diagnosed HIV infection will receive sustained
ART and 90% of all people receiving ART will have viral suppression by 2020 [48]. The first
two objectives lead to a coverage of 90% × 90% = 81% meaning that it may be possible to reach
elimination for a realization of these objectives in relatively homogeneous populations, but not
in populations with strong heterogeneity in sexual behavior and mixing.

In Fig 7 we show the percentage reduction in the total HIV prevalence due to treatment.
The reduction is 100% for proportionate mixing and annual ART uptake above 60%, meaning
that for these parameters we can achieve elimination. For other types of mixing patterns elimi-
nation is not feasible but the reduction in prevalence is still significant if treatment uptake is
sufficiently high. The reduction is 38% and 57% for τ� = 30% and intermediate and assortative
mixing, respectively, and even higher for higher values of τ�. In some cases, however, treatment
can have even a slight adverse effect on prevalence, as for τ� = 10% and assortative mixing.
This happens because this treatment uptake is not sufficient to decrease HIV transmission sub-
stantially when different risk groups do not interact whilst the average lifespan of individuals
on ART, and thus the total number of infected individuals, increase. In the model with treat-
ment we again find skewness in the distribution of infections among risk groups that gets more
pronounced with decreasing ω, see Lorenz curves in S6 Fig. ART uptake has only modest

Fig 7. Percentage reduction in the total prevalence due to treatment. The variance in the rate of partner
change equals that of the data. The color of the bars corresponds to the annual treatment uptake, τ*.

doi:10.1371/journal.pcbi.1005012.g007
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impact on this distribution, with its shape almost entirely defined by the type of mixing
pattern.

Heterogeneous uptake of testing and treatment
The national survey data on HIV testing and risk behavior in Britain shows that voluntary con-
fidential HIV testing by men is significantly associated with reporting greater numbers of
same-sex partners [50]. We thus investigated how heterogeneity in uptake of testing and treat-
ment possibly affect our conclusions regarding the levels of ART necessary for elimination. In
Fig 8 we considered progressively higher uptake rates by groups with higher numbers of part-
ners. Specifically, we assumed that uptakes by the lowest and highest risk groups, t�1 and t

�
6,

were 10% and 90%, respectively, and uptakes by the remaining 4 groups were equally spaced
and increasing from 26% to 74% (indicated in the figure legends). In this case, elimination was
possible for populations with values of mixing parameter above 0.8, i. e. for populations with
mixing closer to proportionate. Heterogeneous testing and treatment offers much better pros-
pects for HIV elimination than a constant treatment uptake rate of 23.25% computed as an

average of uptakes by different groups weighted by their population size, t� ¼ P6

l¼1 qlt
�
l (Fig

8). For this level of uptake elimination was not feasible at all. However, very high treatment
uptakes in the highest risk groups amount to even higher treatment coverages in those groups,
which would require intense screening programmes. The results for other combinations of
treatment uptakes by different risk groups are shown in S7 Fig. There we show that Re has val-
ues above 1 (elimination is unfeasible) in a wider range of mixing parameter when ART uptake
by highest risk individuals is smaller than by the rest of the population, and vice versa if they
are tested and get treated more frequently.

Fig 8. Effective reproduction number for heterogeneous uptake of testing and treatment. t�l denotes
the uptake by risk group l. We considered progressively higher uptake rates by groups with higher numbers of
partners. Specifically, we assumed that t�1 ¼ 10% (lowest risk group), t�6 ¼ 90% (highest risk group), and
uptakes by the remaining 4 groups were equally spaced and increasing from 26% to 74%. The dashed line is
R0 before ART. Also shown is Re for a constant treatment uptake rate of 23.25% computed as an average of
uptakes by different groups weighted by their population size,

P6
l¼1 qlt

�
l . Heterogeneous test-and-treat with

increasing treatment uptakes by higher risk groups has a larger impact on Re than homogeneous test-and-
treat with a constant average uptake. See also S7 Fig with results for other combinations of treatment
uptakes by different risk groups.

doi:10.1371/journal.pcbi.1005012.g008
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Sensitivity analysis
Ratio of primary to chronic infectivity. The analysis presented so far implied that the

ratio of primary to chronic infectivity, h1/h2, is according to estimates obtained by Hollings-
worth et al [39], namely the primary phase is about 26 times as infectious as the chronic stage
(h1 = 2.76 and h2 = 0.106, S1 Table). A recent study indicates that this ratio may be as low as 5
(h1 = 0.62 and h2 = 0.12, [49]) and that the duration of primary phase is 1.7 months instead of
about 3 months. Using lower values for h1/h2 leads to more optimistic model predictions for
the prospects of elimination. For the sensitivity analysis we shifted infectivity from primary to
chronic infection while retaining a constant total infectivity. For a ratio of h1/h2 = 4.65 with h1
= 0.828 and h2 = 0.178 elimination can be achieved for smaller values of treatment uptake per-
centage and in a wider range of mixing parameter (ω 2 [0.85, 1] and ω 2 [0.58, 1] for τ� of 30%
and 90%, respectively; see Fig 9). If we further shortened the duration of primary phase, the
results would get even more favorable for elimination prospects. However, for a given R0 lower-
ing h1/h2 would imply an increase in λ. Had we taken h1/h2 = 4.65 in our main analysis the
value of λ would have had to be higher to correspond to a plausible range of R0. Taking both
effects together (lowering ratio h1/h2 and increasing λ) would lead us back to similar results as
described above, as there is a trade-off between the effects of these two parameters [11].

Treatment uptake during primary infection. So far we have assumed that treatment
uptake is independent of infection stage. In Fig 10 we relax this assumption by setting treat-
ment uptake rate during the primary infection to 0 for all risk groups. As expected, elimination
is more difficult to achieve in this case, especially if treatment uptake rate is high (compare the
dashed and solid lines in Fig 10).

Population stratification. In our analysis the number of risk groups,m, and the respective
initial fractions, ql, where l = 1, . . .,m, can be chosen arbitrarily. This choice then determines
estimates of cl, l = 1, . . .,m. To illustrate the effect of population stratification on the effective

Fig 9. Effective reproduction number as a function of mixing and treatment uptake for low and high
ratios of primary to chronic infectivity. The solid lines are repeated from Fig 6A and correspond to the
baseline value of the ratio h1/h2 = 26.04. The dashed lines were obtained for h1/h2 = 4.65 by shifting infectivity
from primary to chronic infection while retaining a constant total infectivity. Elimination can be achieved for
smaller values of treatment uptake percentage and in a wider range of mixing parameter if the infectivity of
the primary phase is lower.

doi:10.1371/journal.pcbi.1005012.g009
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reproduction number we compared our baseline parameter values to the extreme case when all
initial population fractions are equal (ql = 1/6 for l = 1, . . .,m = 6), see S8 Fig. The equal stratifi-
cation leads to the situation closer to the homogeneous population because it smoothens out
differences in partner change rates in the 6 risk groups. In this case Re is below 1 for a treatment
uptake above 10% independently of the mixing pattern.

Discussion
We investigated how heterogeneity in sexual behaviour impacts on model predictions concern-
ing the effects of ART on endemic HIV prevalence and on the prospects of eliminating HIV
from a population. Heterogeneity in the model depended on two parameters, namely the vari-
ance in the rate of partner change and the mixing between subpopulations with different risk
levels. This allowed us to compare populations that have the same average partner change
rates, but differ in the way partnerships are distributed in the population.

We found that both parameters had a large influence on the basic reproduction number and
endemic prevalence before ART. HIV would not have been able to spread in populations with
proportionate mixing and a low level of overdispersion in the distribution of numbers of part-
ners. For realistic MSM populations, where some degree of assortativeness is always present, R0
is above 1 and is higher if high risk individuals preferably mix with other high risk individuals.
The distribution of infection across risk groups is skewed with high prevalence in small high
risk subgroups. Moreover, this effect gets more pronounced as assortativeness of mixing
increases.

The range of variances and any level of assortativeness in the model can reflect the range of
MSM sexual behaviours found in Western societies. We used an average partner change rate
estimated fromMSM sexual behavior survey in the Netherlands. A different value for this
parameter estimated from another data set (e.g. UK NATSAL data [51]) would lead to slightly
different quantitative predictions but all qualitative conclusions for the dependence of the basic

Fig 10. Effective reproduction number as a function of mixing and treatment uptake with and without
uptake during the primary infection. The solid lines are repeated from Fig 6A and correspond to the annual
treatment uptake percentage, τ*. The dashed lines were obtained when treatment uptake during the primary
infection was set to 0 for all risk groups. As expected, elimination is more difficult to achieve in this case and
the impact of not treating primary infection increases with increasing treatment uptake.

doi:10.1371/journal.pcbi.1005012.g010
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reproduction number on mixing and overdispersion in the distribution of numbers of partners
would remain unchanged.

In the model, ART uptake is able to decrease the effective reproduction number below 1 and
lead to HIV elimination. For some optimistic scenarios we found that an annual treatment
uptake of at least 30% by all risk groups is necessary to eliminate HIV from populations with
proportionate mixing. This uptake translates into a treatment coverage of at least 80% of all
HIV infected individuals which is in line with the UNAIDS 90/90/90 treatment target to be
reached by 2020. Thus we demonstrate that it may be possible to reach elimination for a reali-
zation of these objectives in relatively homogeneous populations regardless of heterogeneity in
uptake of test-and-treat by risk group, but not in populations with strong heterogeneity in sex-
ual behavior and mixing. For other types of mixing patterns which are more realistic even
higher levels of coverage are necessary. For subpopulations with strongly assortative mixing,
the model predicts that elimination with test-and-treat strategy is not feasible and additional
interventions reducing the number of sexual partners and/or promoting condom use and PrEP
uptake have to be applied. These conclusions agree with those of Dodd et al [52] who showed
that test-and-treat in a hyper-endemic African setting generates a smaller impact in a popula-
tion with heterogeneous risk distribution and assortative mixing than in that with random
mixing assuming the intervention is implemented in the same way in both populations. In our
model this happens because a high risk core group with a lot of within group mixing will enable
persistent transmission within this small group. However, in the presence of heterogeneity in
ART uptake, elimination will be easier to achieve when the subpopulation with highest risk
behavior is tested and treated more often than the rest of the population. HIV elimination will
be easier to achieve as well if the infectivity of primary phase is lower and its duration is shorter
as was proposed by Bellan et al [49]. When HIV cannot be fully eliminated, the reduction in
endemic prevalence will be still significant. Even if a population is almost fully assortative, we
expect the reduction to be of about 57% for an annual treatment uptake of 30% by all risk
groups and baseline infectivities.

For many populations we have some knowledge of rates of partner change, or at least num-
bers of partners reported in a given time period, but usually we have much less information on
mixing patterns. Nevertheless, we are interested in using mathematical models based on avail-
able data for projecting effects of interventions into the future. We therefore need to be aware
of the strong influence of heterogeneity on model outcomes. While it is probably not realistic
to gather detailed information on sexual network structure for large populations, our modelling
approach offers other ways of extracting information on behavioural heterogeneity from exist-
ing data. Linking the impact of behavioural heterogeneity with epidemic outcome distributions
in a Lorenz curve allows estimation of the parameters which control heterogeneity by fitting
the model to the data based on Lorenz curve. This requires collecting data with individual link-
age of sexual behaviour and infection status, as was collected for chlamydia infection in the
large UK NATSAL studies [51]. Earlier, comparing such data with outcomes for several indi-
vidual based models was used to compare the ability of different models to correctly reproduce
underlying sexual behaviour networks from population level parameters [47].

As with all models, also our approach has limitations. Our model is deterministic and thus
it does not take stochastic effects into account. While stochastic fluctuations can play a role in
real populations, where one superspreading individual can have large influence on transmis-
sion dynamics, here we were interested in mean effects that can occur over a long time period.
The model is simplistic in some aspects of diagnosis, testing and ART uptake. In particular,
there is no distinction between HIV-infected individuals who diagnosed and undiagnosed.
First, second and third line treatments are not incorporated in the model explicitly. The param-
eters of the model are based on self-reported sexual behavior which might not be a true
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reflection. Sexual risk behaviour is stratified into a constant number of levels, and individuals
remain in the same strata during their life time. That changes of risk behaviour of individuals
in various phases of their lives can be important for HIV dynamics has been highlighted in
recent work by Alam et al; Henry et al [19–22, 24, 25]. Also, our model does not take partner-
ship duration into account, and therefore does not allow for long term concurrent relation-
ships, which have been debated as a possible driver of HIV transmission in sub Saharan
African heterosexual populations [53–55]. Therefore, our model is more amenable for describ-
ing HIV epidemics in MSM populations where concurrent partnerships are less influential for
HIV transmission dynamics [56]. The data sets were used as an example to choose plausible
parameter values, but we did not attempt to formally fit the model to a comprehensive set of
available data. A more data driven approach to analyzing the HIV epidemic among MSM
under ART in the Netherlands, for whom the degree of mixing has not been measured directly,
is a focus of our ongoing work.

To conclude, we developed a modeling approach to investigate the impact of various mixing
patterns in a population stratified by rates of partner change on the basic reproduction number,
treatment effects and prospects of elimination. Our analysis revealed that both the variance in
the rate of partner change and mixing between subpopulations with different risk levels have a
large influence on endemic prevalence before introduction of ART and on possible long term
effectiveness of ART. The developed framework offers a way of extracting information on
behavioral heterogeneity from existing data, particularly assortativeness of a population, which
would be otherwise very hard to measure in a population survey. Such information on beha-
vioural heterogeneity should be taken into account when setting intervention goals and for
analysis of cost-effectiveness of test-and-treat programmes in populations of MSM.
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