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Abstract

It is difficult to describe host–
microbe interactions in a manner
that deals well with both patho-
gens and mutualists. Perhaps a way
can be found using an ecological
definition of tolerance, where tol-
erance is defined as the dose
response curve of health versus
parasite load. To plot tolerance,
individual infections are summa-
rized by reporting the maximum
parasite load and the minimum
health for a population of infected
individuals and the slope of the
resulting curve defines the toler-
ance of the population. We can
borrow this method of plotting
health versus microbe load in a
population and make it apply to
individuals; instead of plotting just
one point that summarizes an
infection in an individual, we can
plot the values at many time points
over the course of an infection for
one individual. This produces
curves that trace the course of an
infection through phase space
rather than over a more typical
timeline. These curves highlight
relationships like recovery and
point out bifurcations that are
difficult to visualize with standard
plotting techniques. Only nine ar-
chetypical curves are needed to
describe most pathogenic and mu-
tualistic host–microbe interactions.
The technique holds promise as
both a qualitative and quantitative
approach to dissect host–microbe
interactions of all kinds.

When I get infected, I don’t think, ‘‘my

TLRs and inflammasomes are activating!’’

As an infected patient, I worry about two

things: ‘‘how sick am I going to get?’’ and

‘‘when am I going to get better?’’ Physicians

and nurses understand these questions

innately because it is their job to keep us

from getting sicker and to bring us back to

health. There is an unfortunate disconnect

between these issues and the questions basic

scientists study. Basic scientists are terrific at

uncovering the fundamental mechanisms

controlling the activation of immune re-

sponses, identifying the effectors that clear

microbes, and determining how much

pathology will be caused by an infection.

However, it is difficult to move from these

molecular markers to the emergent prop-

erties of health and recovery in a patient.

Here I discuss two frameworks for

considering the questions ‘‘how sick will

I get?’’ and ‘‘when will I get better?’’

The first is the idea of tolerance–the dose

response curve of health with respect to

microbe number in a host population.

This concept is well established in the

plant literature [1–5] and has crossed over

recently to discussions about infections in

animals [6–8]. The second, and focus of

this perspective, is a discussion on how to

take this concept of a health-by-microbe

space as defined by tolerance curves in

populations and apply this to individuals.

This approach highlights parts of the

infectious process that are understudied

and provides a new quantitative approach

for attacking this problem.

There are many other models that

describe host–microbe interactions, rang-

ing from discrete mathematical models to

global theories, and they run the gamut

from mathematically rigorous construc-

tions to thought-provoking cartoons [6,9–

17]. Each model is useful for highlighting a

different aspect of host–microbe interac-

tions, but the purpose here is to discuss

tolerance and its extensions.

Summarizing Infections in
Populations Using the Concept
of Tolerance

How can we summarize an infection by

reducing it to a small number of points that

can be compared within an infected

population? One way is to pick obvious

landmarks from health or microbe timelines

of the infection, such as the peak parasit-

emia or the lowest health. If we plot these

values together on a health-by-microbe

graph we produce a single point for a

patient. By collecting many of these points

we can create a scatter plot showing what

happens when a population is exposed to

this pathogen. Ecological immunologists

have defined an elegant system for discuss-

ing such graphs in which the relationship

between health and microbe numbers in a

scatter plot is defined as tolerance [1,2–

8,18]. Tolerance is the dose response curve

for the system; it defines the slope of health

to parasite load in a population.

The concept of tolerance can be used as a

tool to dissect infections. By monitoring how

the curve changes when host genetics or

environments are altered we can learn

about the factors contributing to a host–

microbe interaction. Tolerance allows us to

differentiate between physiological mecha-

nisms that are mostly required to clear

pathogens and distinguish these from mech-

anisms that impact our health. This second

group of mechanisms tends to be discussed

less than immune effectors. Tolerance

promises to teach us how to tune a body’s

response so that we prevent microbe growth

while limiting the negative effects on health.

Tolerance is useful for studying popula-

tions, not individuals. A tolerance curve
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informs us that humans in general react in a

certain manner to a given pathogen and we

can plan our treatment accordingly. If a

newly infected patient walks into a doctor’s

office there are two barriers to using

tolerance to treat that person as an

individual. The first barrier is that we

would have to let the patient reach peak

parasitemia and minimum health to place

them on the above tolerance curve, and by

that point they would have likely suffered

through the worst part of the infection; that

is no help. What we learn from a tolerance

curve depends upon the way we define it; if

we use the maximal parasite load and

minimal health to summarize infections,

then we don’t learn anything about recov-

ery. The second barrier is that even if we

could gather these summary data, we can

only place one point on the scatter plot for

this patient. This might tell us that the

patient is aberrant, if they fall far from the

curve, but we can’t measure their tolerance

because the patient represents one point on

the curve. We aren’t measuring their

response in a variety of states and therefore

can’t generate a dose response curve. How

can we apply this idea of health-by-microbe

space to personalized medicine?

Applying Health-by-Microbe
Number Space to Individuals

The conventional method of following

infections is to plot dependent variables

(for example: parasitemia, fever, anemia,

weight loss) versus time; this obscures some

important relationships (Figure 1A). For

example, it is simple to pick out the peak

values and times for health and parasit-

emia, but the relationship between health

and parasitemia is harder to see because

the relationship changes continuously. We

presume that parasite load drives changes

in health, but we seldom monitor this

directly.

What would happen if instead of taking

the peak parasitemia and minimum health

as a summary of an infection, we plotted

health-by-microbe values at every time

point [11]? Imagine the individual depict-

ed in Figure 1A. This patient is initially

infected by a parasite, which produces a

single large red lump on his hand. The

parasite reproduces, creating more red

lumps, but this doesn’t have a large effect

on health. At some point the immune

response turns on and the parasites are

removed; the patient now suffers an

immunity-driven loss of health, as indicat-

ed by his posture. Ultimately, the patient

recovers his initial health and all of the

parasites are cleared. This is a resilient

system. By resilience, I mean the proper-

ties of a system that push it back to its

original state following a perturbation.

That we get better following an infection

means that we are resilient.

Instead of plotting parameters versus

time, I’ve plotted dependent parameters

against each other in the phase plane as

health-by-microbe number in Figure 1B.

This produces a looping curve that better

shows the relationship between health and

microbe number across the whole infec-

tion. This relationship changes across the

course of the infection: In the first portion,

microbe load increases without affecting

health. Next, both health and microbe

numbers simultaneously crash. Finally,

health increases and microbe numbers

drop to zero.

Though all of the information is present

in the original, this new type of plot reveals

some properties that are hard to visualize

from the timelines. It is clear that in this

infection, microbes are not the direct cause

of pathology; rather, the immune response

is causing damage because there is no

pathology until microbe clearance begins.

The relationship that becomes very ap-

parent out in this presentation is recovery;

at some point during the infection the

patient heals. Much of our research into

microbial pathogenesis is directed towards

limiting microbe growth or limiting pa-

thology with the hope that if we don’t get

severely ill then it will be easier to recover.

This graphing approach highlights recov-

ery and provides a quantitative method for

measuring recovery.

This presentation is useful as a two-

dimensional map and it is easy to overlook

the hidden third property–velocity. The

spacing of each data point indicates how

quickly an individual passes through

health-by-microbe space (Figure 2A). For

example, it is easy to imagine two

individuals that traverse the same health-

by-microbe space but differ in their

velocity and that it is the velocity that

leads to different outcomes. A change in

velocity (acceleration) during the course of

the infection in an individual also provides

useful information (Figure 2B). For exam-

ple, when the rate of parasite growth

decelerates, that suggests that antimicro-

bial effectors are being produced. Like-

wise, when health starts to accelerate in a

positive direction, this suggests that repair

mechanisms are being expressed. It is

therefore important to study the velocity

and acceleration of these curves in addi-
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Figure 1. Plotting data in the phase plane to better monitor infections. (A) A sick
‘‘patient’’ is depicted in frames at the top where the red dots indicate parasites and the stature of
the ‘‘patient’’ depicts health. In a simple timeline, parasites can be seen to rise and fall and the
health falls and returns to its original levels. The relationship between health and parasite levels is
visible but not as simple to interpret as shown below in (B). (B) The curves from (A) are replotted
in a health by parasite load phase plot. The plot shows three sections: First, the parasites grow but
do not affect health (dark blue). The slope here is quite flat. Second, (medium blue) the host
begins to clear the pathogens but the health crashes as well in this pathogenesis portion of the
plot. Third (light blue), the health recovers while the microbes continue to be cleared.
doi:10.1371/journal.pbio.1001158.g001
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tion to the simple phase space depiction of

infection.

The disease curve shown in Figure 1B is

drawn in two dimensions, but there is no

theoretical limit to the number of dimen-

sions that could be used. Physicians

working in an intensive care unit might

find this obvious as they monitor dozens of

parameters when they coax a person’s

health back to a survivable range. Those of

us studying microbial pathogenesis in the

lab tend not to look at all of these

parameters at once, but by drawing even

two-dimensional disease curves explicitly

we can highlight processes that have been

understudied.

Applying the Idea of Health-by-
Microbe Space Broadly to
Infections

Having generated a disease curve from

an imaginary infection, it is worthwhile to

think about how these curves might look

for well-studied infections. I suggest that

there is a relatively small alphabet of

curves that can describe most host–mi-

crobe interactions.

Regarding pathogens: In curve one

(Figure 3), which could be used to

describe an acute infection of uncompli-

cated dengue or flu, the pathogen levels

rise, health falls, and both ultimately

return to original healthy levels. Curve

two depicts a situation where the host

clears the pathogen but suffers irreversible

damage, as might occur in a case of

encephalitis or gangrene. Curve three

shows a case where the microbe is cleared

but the host becomes locked into an

inflammatory state that causes further

damage, triggering an autoimmune dis-

ease like reactive arthritis or rheumatic

fever. The fourth curve shows a stable

and non-resolving infection like tubercu-

losis (or see [19] for a related curve). The

health placement of this whorl will vary

with the particular infection; there are

some situations, as with herpes or vari-

cella infections where the steady state

health of the host would be normal (or

perhaps higher than the uninfected state

as discussed below). The fifth curve shows

the outcome of septicemic shock–like

illnesses where the body is not failing to

clear microbes, but the host dies because

of overwhelming pathology. The final

pathogenesis curve, six, depicts a situation

where the host can’t control the growth of

a microbe and this ultimately leads to

death, for example, an uncontrolled

gangrene or Streptococcus pyogenes infection.

These curves can also be used to

describe mutualistic host–microbe interac-

tions; this is critical because if new a

system that strives to explain host–microbe

interactions can’t describe mutualists as

readily as it describes pathogens, then it is

dead on arrival. Three of the disease

curves described above can be inverted or

rotated upwards to describe the interac-

tion of hosts with beneficial microbes.

There aren’t corresponding mutualist

curves for each disease curve, as not all

of the pathogenesis curves make sense

when flipped. For example, a pathogenic

infection that led to an unstable ever-

decreasing health would be inverted to

create a curve that led to constantly

increasing health. This is a formula to

create a superhero, which doesn’t happen

often enough in modern medicine. Curve

seven describes a fleeting interaction with

a mutualist, perhaps a probiotic; the

microbe provides benefit to the host while

it is on its limited journey through the

digestive track, and this benefit ends once

host and microbe part ways. Curve eight

describes a permanent change that could

be induced in a host by a live vaccine that

remains even after the attenuated patho-

gen has been removed. In this case it is

likely that the initial infection would cause

some pathology but would ultimately

result in higher health. That higher health

would be conditional, as it would depend

upon later exposure to the infected

pathogen. Curve nine describes a long-

term mutualistic interaction that reaches a

relatively steady state, like the association

of humans with their gut microbiota or

endosymbionts that can protect insects
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Figure 2. The contribution of velocity to disease curves. The cartoons in this article don’t show imaginary data points and thus don’t give an
impression of the velocity that a host will pass through health-by-microbe space. Here I’ve used vectors to show velocity. (A) Depicts two curves, one
resilient and another leading to parasite growth and host death. Near the origin, both curves traverse the same space and can’t be distinguished on
this basis; however, the curves differ in velocity. This highlights the point that it is important to measure velocity when plotting these curves. (B)
Depicts a bifurcation point in a curve after an unknown ‘‘something changes’’. The three following curves differ in their velocity as indicated by the
length and direction of the vector arrows. On the right, the vectors are compared next to triangles to make it easier to see the components
controlling parasite growth and health. The green curve has exactly the same health to parasite slope as the original, but the velocity of the curve is
reduced. Perhaps an antimicrobial has been induced that blocks parasite growth but does not harm the host. The blue curve has the same parasite
growth rate but the slope is steeper. In this case an ineffective and host-damaging immune response could have turned on. The red curve shows a
reduction in parasite growth and a decrease in slope. Here, an effective but host-damaging antimicrobial may have been produced. This figure
highlights the importance of measuring the acceleration of these curves.
doi:10.1371/journal.pbio.1001158.g002
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from infections by parasitoids or viruses

[20–24].

All of the curves described above were

drawn as strictly increasing or decreasing

health, but there are some examples that

could cross the line repeatedly. The bobtail

squid–Vibrio fischeri symbiosis provides an

example [25]. This squid has a light-

producing organ that relies upon the bacte-

rium V. fischeri to produce the light. These

bacteria are harvested from seawater by the

squid and are not passed down maternally.

Every morning, the squid squirts out the

majority of the bacteria in the light organ

and then the organ regenerates and the

bacteria grow back. This will produce a

looping health-by-microbe curve that cycles

every day. Herpes infections in mice, though

they cause short-term decreases in health,

can be protective against other infections

[26]. This sort of curve would resemble the

mutualist curve nine, except that it would

initially dip below 100% health before it hit

its final steady state.

There are cases where these sorts of phase

curves will not be helpful in dissecting an

infection. For example, if a parasite doesn’t

replicate in the host, a phase curve of

parasite number versus pathology will not

be informative. An example of such a

situation would be the pathology that

hookworms or ascaris cause when the

worms migrate through our bodies on the

way to our guts, as this pathology doesn’t

depend upon the replication of the parasites.

Defining Microbe Levels

It should be simple to determine

microbe levels for many pathogens. In-

sect-borne pathogens will be particularly

easy because these have to reach relatively

high levels in the circulation in order to be

taken up by a blood-feeding insect.

Plasmodia, trypanosomes, filarial worms,

and arboviruses fit into this class since

pathogen levels can be measured from the

blood. Diarrhea-causing infections that

shed microbes should be equally simple

to assess. Infections of immune cells, like

HIV, are also addressable in this fashion.

Theoretically, this approach will work

for all infectious diseases because there is a

relationship between the microbe and

host, but this isn’t going to be simple to

assess with pathogens that infect deep

tissues and don’t circulate. For example,

there aren’t simple methods of determin-

ing how many tuberculosis bacilli or

pneumonia-causing bacteria are found in

an infected lung of a living patient.

Likewise, it isn’t simple to determine the

amount of hepatitis C virus growing in a

liver. These are two simple problems, but

there will likely be situations where

microbes infect a variety of hard to assay

tissues and each tissue will contribute

differently to health. Our inability to

measure the levels of these pathogens does

not mean that these relationships do not

exist. We will make progress with systems

where it is immediately feasible to do

experiments. Success with these infections

will drive interest in applying this ap-

proach to more difficult situations.

I’ve described these curves as if parasites

are simply unchanging particles that need

to be counted; this is clearly an oversimpli-

fication and we will eventually need to deal

with the microbe’s varying contribution to

pathology [18]. Hosts and pathogens form

systems in which the behavior of each

component is so dependent upon the other

that we cannot easily separate them. Hosts

have tolerance curves and the properties of

infecting microbes describe a similar viru-

lence curve. We already know that microbe

behavior will change as they find them-

selves in extracellular or intracellular com-

partments or within different organs. Mi-

crobe behavior will also vary over time as

they switch from vegetative to transmissive

forms. Still, we can make progress imme-

diately by simplifying the system, and later

we can add the complications caused by

microbial participation.

How Can We Define ‘‘Health’’?

Phase plots like these require microbe

loads to be plotted against health, and

though it is reasonably clear what consti-

tutes microbe load, defining ‘‘health’’ is

more contentious. The answer, from an

evolutionary perspective, is that health is

the reproductive fitness of an individual.

But this isn’t an acceptable answer for

modern medicine, where the focus lies on

the quality of life and lifespan. In modern

medicine, health can be any physiological

correlate that matters to patients or

scientists. It would be useful to define a

1

2

3

4
5

6

7

8
9

Microbe Number

H
e

a
lt

h

M
u

tu
a
li
s
ts

P
a
th

o
g

e
n

s

Figure 3. Nine simple curves describe the infectious route of all infections. Curve
definitions: Pathogenic: 1. Recovery (uncomplicated flu, measles, gastritis). 2. Permanent and stable
disability (lasting meningitis/encephalitis damage). 3. Unstable disability (rheumatic fever sequelae
or reactive arthritis). 4. Persistent pathogen infection (tuberculosis, herpes). 5. Death while defeating
a microbe (sepsis). 6. Uncontrolled microbial growth and death. Mutualistic: 7. Short-term
colonization with a beneficial microbe (transient probiotics). 8. An infection that is cleared but
permanently changes the state of the host (live vaccines). 9. Persistent infection with a mutualist
(Rhizobium, Hamiltonella, Wolbachia [20–24], herpes [26]).
doi:10.1371/journal.pbio.1001158.g003
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core set of standard health measurements,

as it would enable us to compare between

diseases.

Some commonly used health parameters

won’t work for these plots; for example,

survival is a terrific health indicator but isn’t

useful in a phase plot because it is binary–

the host is alive or dead.

To plot phase pictures like those

depicted in Figure 3, we need health

outputs with a broad dynamic range. It

is tempting to use cytokine or immune

effector levels as molecular markers, but

these don’t necessarily correlate with

disease. We know that there is a tolerance

curve that correlates health to microbe

load. Similarly, for every immune effector

or cytokine, there is a tolerance curve that

correlates microbe levels to the levels of

the effector, but unfortunately there is

another tolerance curve that correlates

effector level to health. The problem is

that we don’t always measure both of these

curves. It might be simpler to start with the

downstream symptoms that we care about.

Gross measurements such as weight,

hematocrit, organ function, energy stores,

appetite, tissue damage, fever, and activ-

ity–disease symptoms–could serve well.

Such measurements are often decried as

‘‘fuzzy’’ because we can’t trace directly

how these properties connected to the

immune response, but this is why these

responses are so interesting; that we see

individual variation in health in individu-

als suffering similar infections means that

there are processes linking health and

immunity that we still don’t understand.

The phase picture approach will let us

follow these changes and learn what is

necessary to help patients; the gross

physiological mechanisms that control

our daily health are altered by infection.

The idea of health space and disease

curves could be used prospectively to find

useful health correlates if none exist yet.

Imagine an infection where the typical

health correlates aren’t providing good

indicators of outcome. It might be possible

to generate health-by-microbe curves

while searching for biomarkers that move

in the manner expected for a resilient

infection. This approach could be used to

identify transcripts or cytokines or metab-

olites that correlate well with different

parts of the expected disease curve, be it

the health crash or recovery.

I am using a narrow definition of health;

in these plots, ‘‘health’’ measures the

current level of some interesting parame-

ter. If that level is normal, then the patient

is currently healthy. This could create

some confusion with other definitions for

health; for example, a patient infected with

a single virion of an always fatal virus will

appear healthy by these standards but will

soon die. Is that person really healthy?

This raises the distinction between health

as an immediate property and a predictive

property; are you healthy now and will

you be healthy tomorrow? These curves

are currently descriptive and report the

path that a patient took through the course

of an infection. As we gather a larger data

set, the curves will become predictive

because we will learn which spaces and

velocities suggest trouble. Hopefully we

will get to the point where we can look at

how health correlates change with respect

to each other and predict outcomes

without measuring pathogen load directly.

No matter how much data we gather,

there are some parts of the curves that

may never contain much predictive infor-

mation. The very start of infections could

be like this, where the microbe load is too

low to measure and health has not yet

been knocked out of the normal range.

Disease Curves Emphasize
What We Don’t Know

Perhaps the most important character-

istic of these disease curves is that they

highlight the parts of disease processes that

we have yet to explore. Resilience, the

ability to return to the starting state, is one

such property. The current focus of host–

microbe interactions is on the immune

response and subsequent pathogenesis. It

is simple to find textbooks concerning the

induction of the immune response, im-

mune effectors, or microbial virulence

factors. The way we run most experiments

makes us experts at describing exactly how

sick an individual will get during an

infection, but we tend not to measure

recovery. Our assumption is that if we can

limit the depth of an illness then we will

have a shallower hole to escape. We hope

to improve patient health by decreasing

the distance that a patient has to recover.

Does this work?

We know little about how an animal

recovers from an infection. Recovery must

be an active process. Damage has to be

repaired, energy tradeoffs have to be reset,

and physiological systems have to be

brought back to a standard healthy state.

Phase diagrams like those shown in

Figure 3 highlight this recovery part of

the curve; for example, in Figure 3, curves

2 and 3 (and possibly 4 and 5) show the

host is capable of clearing the infection but

faces a problem recovering. These curves

could provoke questions and new methods

for studying recovery. What is the slope of

health-by-microbe number in a recovery

curve and can this vary? Can recovery

occur only after the microbes are cleared

or can it start earlier? Do all health traits

recover with the same health by microbe

slope or health by time slope? Do all

pathogenic infection curves trace a clock-

wise path? These curves would be partic-

ularly useful for dissecting processes

thought to be involved in the resolution

of inflammation or tissue repair.

There are some problems that could

particularly benefit from analysis in the

phase plane, for example, aging-induced

immune senescence and frailty. We know

that the immune system changes as we age,

but how exactly does this lead to failure?

Are disease curves more likely to bifurcate

from the normal curves in the aged? If this

is the case then we can learn much by

determining where the curves are bifurcat-

ing. Figure 4 depicts a resilient curve in

black and four different bifurcating curves

in red. Curve one and other curves like it

that would peel off in the dark blue zone

would likely have defects in clearing

pathogens. Curve two could have defects

in both pathogen clearance and damage

control. Curves three and four, which peel

off in the light blue zone, likely have defects

in repair but seem to be able to clear

pathogens properly. Does an elderly patient

trace the same health space as a young

patient but at a different velocity, or is the

curve warped? By observing changes in the

shape and speed of these curves we could

perhaps diagnose the effects of age on

immunity better than by studying individ-

ual components of the immune response.

What Do We Need to Do to
Make Disease Curves Useful?

If we understood the normal traces of

infections, these curves could be immedi-

ately helpful to patients in two ways. First,

we might be able to define ‘‘bad neigh-

borhoods’’ in the health-by-microbe land-

scape. These would be regions in which

nobody fares well, and when a patient is

identified in this region they could be

targeted for special attention. With bad

neighborhoods, a single sample measuring

health and microbe levels would let the

physician know whether the patient was at

risk. Second, if we could plot a fragment of

a patient’s infection curve, we could

determine their likely disease trajectory.

If the patient has a favorable trajectory

they might not need significant support,

whereas a patient with a similar general

health and microbe load might require

immediate assistance. There are situations

where it is expected that health will drop,

but this could be acceptable so long as the
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microbes are being cleared at an appro-

priate rate.

To collect examples of these processes

we will have to pick our infections

carefully and start with model systems.

As discussed above, we should concentrate

first on infections where it is easy to

quantify the pathogen. However, patho-

gens that don’t circulate at high levels

could be followed using luminescent or

fluorescent microbes in model systems by

measuring antigen levels in patients or by

measuring pathology that was indicative of

pathogen load. These experiments obvi-

ously have to be done in model organisms

that can be infected and repeatedly

monitored. If we use small model organ-

isms like flies, worms, and fish that can be

ground up and tested for pathogen loads,

we can gather large amounts of data. This

would remove the personalized disease

curve aspect of the process, but if the

curves were reproducible and the animals

genetically similar this process would still

yield the desired information.

Recently there have been arguments

made that more work must be done on

humans because mechanistic immunolog-

ical models are not translating well from

models into the clinic [27]. One common

explanation for this perceived problem is

that model organisms are too diverged to

teach us about people. A second possibil-

ity, highlighted by our lack of understand-

ing of the forces shaping disease curves, is

that we have been systematically asking

the wrong questions, and we’ve been

doing that in at least two different ways:

First, we’ve been looking at the immune

response without measuring microbes at

the same level of resolution (if we measure

them at all). The immune response pushes

against microbes, and it is impossible to

understand the activity of the immune

response without knowing what the mi-

crobes are doing. Second, we have been

looking at proximal immune responses

without measuring real health outputs.

The precise mechanism of immune acti-

vation does not define how sick an animal

will get or whether it will be able to

recover. We need to connect molecular

mechanism with outcome and that has yet

to be achieved in any system.
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