Letters to the Editor

To the Editor:

Since its recognition as the "3rd gaseous mediator," the role of hydrogen sulfide (H₂S) has been equivocally discussed in the context of acute lung injury. Depending on the experimental model, both its protective and deleterious effects were reported. However, in viral lung diseases, e.g., paramyxovirus and respiratory syncytial virus infection, both endogenous as well as exogenously delivered H₂S were shown to be protective due to direct antiviral activity in addition to its well-established anti-inflammatory properties (1). Therefore, we read with interest the recent report by Renieris et al. (2) on the relation between serum H₂S concentrations and outcome in patients with SARS-Cov-2-coronavirus pneumonia. The authors reported that survivors presented with significantly higher H₂S levels at days 1 and 7; moreover, mortality was increased when H₂S levels decreased by more than one-third over time. Finally, a threshold value of approximately $150 \,\mu\text{M}$ H₂S allowed differentiation between survivors and non-survivors. The authors concluded that serum H₂S concentrations could be a marker of severity in patients with SARS-CoV-2-coronavirus pneumonia. Consequently, maintaining endogenous H₂S availability and/or even exogenous H₂S supplementation via slow releasing compounds may represent a therapeutic approach in these patients.

We are struck, however, by the high absolute values of the H₂S concentrations reported in the study, which were measured using the monobromobimane derivatization assay followed by reverse phase high performance liquid chromatography separation (3): according to Figure 1A and B of the study, median serum H₂S concentrations on days 1 and 7 were 188 versus 129 and 177 versus 55 µM in survivors and non-survivors, respectively, the highest individual value measured being approx. 383 µM. These H₂S concentrations are about two orders of magnitude higher than those reported by others using this method for blood and/or tissue H₂S quantification in mice, rats (3), swine (4-6), and humans (healthy volunteers and patients) (7, 8). Administration of Na₂S in rats (bolus injection of 4 mg/kg, continuous i.v. infusion of 20 mg/kg/h (3)) and swine (maximum infusion rate 2 mg/kg/h (4-6)) only increased H_2S levels to a maximum of 2.5 to 6.5 μ M. Although the reported plasma levels of H₂S very much depend on the experimental method used, high micromolar H₂S plasma concentrations have to be questioned based on the physico-chemical properties of H₂S: the gas/water coefficient of distribution for H₂S is 0.39, and at physiological pH and at 37° C, $\sim 20\%$ of the total free sulfide is present as dissolved gas (9). Assuming that only 20% of physically dissolved H₂S gas, i.e., 4% to 10% of the total free sulfide, disappears from a blood sample with an H₂S concentration of the above-mentioned approx. 150 µM

into the head space due to volatilization (9), this blood sample would smell like rotten eggs, since the human nose' odor threshold is at ~ 1 μ M solutions (9). Finally, while baseline H₂S levels in rats measured using the same technique were ~ 0.74 μ M, H₂S levels of ~ 51 μ M upon Na₂S administration were lethal (10).

Potential pitfalls of the different methods to measure H_2S concentrations in biological samples have been highlighted previously (9). Clearly, the monobromobimane assay *per se* does not solely measure free sulfide concentrations in blood serum or plasma samples due to interferences with the total sulfide pool. Moreover, the measured values largely depend on the analytical conditions, i.e., alkylation time, light exposure, tight temperature control, the actual monobromobimane concentrations used, pH, and/or the presence or absence of chelators (e.g., in the tubing used for blood sampling) (11, 12).

These pronounced discrepancies between reported data on H₂S concentrations have two major consequences: no direct relation between measured blood H₂S concentrations and biologic effects of therapeutic approaches modulating the H₂S are possible, and unless rigorously standardized procedures, which are based on consensus statements (e.g., as for the use of the single-cell gel electrophoresis ("comet assay"), are used even for the same analytical method, the absolute values of the data reported from different studies cannot be compared. Nevertheless, the trends and directions observed within the same study, when all the samples were analyzed by the same method, can, remain valid. Thus, the above methodological concerns (i.e., the uncertain chemical nature of the species measured by the method used here) do not necessarily question the primary conclusions of the study discussed above (2), i.e., that low H₂S concentrations-or probably more broadly, low 'reactive sulfur species concentrations correlate with worse outcomes in SARS-CoV-2-coronavirus pneumonia patients. Nevertheless, follow-up studies to confirm these findings (preferably, using independent, different methods of H₂S or reactive species analysis) are recommended. Moreover-if the inverse correlation between H₂S levels and SARS-CoV-2 outcomes is, indeed confirmed-the potential therapeutic effect of H₂S donation on the outcome of SARS-CoV-2 could also be tested, first in preclinical models, and if positive, potentially in subsequent translational studies as well.

Acknowledgments

This work is supported by the DFG (CRC 1149; GRK 2203).

Peter Radermacher Enrico Calzia Oscar McCook Ulrich Wachter Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany Peter.Radermacher@uni-ulm.de

The authors report no conflicts of interest. Csaba Szabo

Chair of Pharmacology, OMI Department, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland

REFERENCES

- Bazhanov N, Ansar M, Ivanciuc T, Garofalo RP, Casola A: Hydrogen sulfide: a novel player in airway development, pathophysiology of respiratory diseases, and antiviral defenses. *Am J Respir Cell Mol Biol* 57(4):403–410, 2017.
- Renieris G, Katrini K, Damoulari C, Akinosoglou K, Psarrakis C, Kyriakopoulou M, Dimopoulos G, Lada M, Koufargyris P, Giamarellos-Bourboulis EJ: Serum hydrogen sulfide and outcome association in pneumonia by the SARS-CoV-2 Coronavirus. *Shock* 54(5):633–637, 2020.
- Wintner EA, Deckwerth TL, Langston W, Bengtsson A, Leviten D, Hill P, Insko MA, Dumpit R, VandenEkart E, Toombs CF, et al.: A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. *Br J Pharmacol* 160(4):941–957, 2010.
- Simon F, Scheuerle A, Gröger M, Stahl B, Wachter U, Vogt J, Speit G, Hauser B, Möller P, Calzia E, et al.: Effects of intravenous sulfide during porcine aortic occlusion-induced kidney ischemia/reperfusion injury. *Shock* 35(2):156–163, 2011.
- Osipov RM, Robich MP, Feng J, Chan V, Clements RT, Deyo RJ, Szabo C, Sellke FW: Effect of hydrogen sulfide on myocardial protection in the setting of cardioplegia and cardiopulmonary bypass. *Interact Cardiovasc Thorac Surg* 10(4):506–512, 2010.
- Osipov RM, Robich MP, Feng J, Liu Y, Clements RT, Glazer HP, Sodha NR, Szabo C, Bianchi C, Sellke FW: Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. *J Cardiovasc Pharmacol* 54(4):287–297, 2009.
- Rajpal S, Katikaneni P, Deshotels M, Pardue S, Glawe J, Shen X, Akkus N, Modi K, Bhandari R, Dominic P, et al.: Total sulfane sulfur bioavailability reflects ethnic and gender disparities in cardiovascular disease. *Redox Biol* 15:480–489, 2018.
- Kožich V, Ditrói T, Sokolová J, Křížková M, Krijt J, Ješina P, Nagy P: Metabolism of sulfur compounds in homocystinurias. Br J Pharmacol 176(4):594–606, 2019.
- Olson KR: A practical look at the chemistry and biology of hydrogen sulfide. *Antioxid Redox Signal* 17(1):32–44, 2012.
- Klingerman CM, Trushin N, Prokopczyk B, Haouzi P: H2S concentrations in the arterial blood during H2S administration in relation to its toxicity and effects on breathing. Am J Physiol Regul Integr Comp Physiol 305(6):R630–R638, 2013.
- Nagy P, Pálinkás Z, Nagy A, Budai B, Tóth I, Vasas A: Chemical aspects of hydrogen sulfide measurements in physiological samples. *Biochim Biophys Acta* 1840:876–891, 2014.
- Ditrói T, Nagy A, Martinelli D, Rosta A, Kožich V, Nagy P: Comprehensive analysis of how experimental parameters affect H2S measurements by the monobromobimane method. *Free Radic Biol Med* 136:146–158, 2019.

Reply to Radermacher et al. on "Serum Hydrogen Sulfide and Outcome Association in Pneumonia by the SARS-CoV-2 Coronavirus"

To the Editor: We read with great interest the comments addressed by Radermacher et al. (1) on our publication

regarding the importance of hydrogen sulfide (H₂S) for the prognosis and outcome of severe infection caused by the novel SARS-CoV-2 (also known as Covid-19) (2). Although serum H₂S levels as high as 249 μ M and 580 μ M have been demonstrated in patients with septic shock (3) and severe asthma (4), we agree that the elevated serum H₂S is an intriguing finding. We tried to deliver some answers that are based on: the performance of the used assay in healthy volunteers and in patients with other types of severe lung infection; and the reproducibility of the data by using another assay.

We measured levels of H₂S in 17 healthy volunteers and in 60 patients with ventilator-associated pneumonia (VAP). VAP was diagnosed according to standard definitions (5) and all patients had microbiological confirmation with one Gram-negative pathogen isolated in counts greater than 10⁵ colony-forming units/mL from the bronchoalveolar lavage by the culture technique already described (6). Isolated pathogens were Acinetobacter baumannii (n=23), Pseudomonas aeruginosa (n = 19), and Klebsiella pneumoniae (n = 18). Blood samples were collected within the first 24 h from diagnosis of VAP and H₂S was measured by the monobromobimane derivatization assay followed by reverse phase HPLC separation (2). Results clearly showed that survivors from Covid-19 had H₂S levels significantly greater than healthy population and patients with VAP (Fig. 1). This elaborates the hypothesis that it is not the assay that leads to false-positive increased H₂S levels, but that H₂S increase may well be an intrinsic characteristic of Covid-19 described for the first time herein. H₂S of healthy was also within reported ranges (7).

To strengthen the finding of increased H_2S in Covid-19 survivors, H_2S was measured in the same samples by a photometric methylene blue assay (8). Despite the lack of specificity of this assay leading to higher measurable levels, the interpretation of the findings was the same (Fig. 2).

We feel that Covid-19 is a new territory of research where modulation of H_2S plays a major role and we wish to thank Rademacher et al. (1) for paving us the way to strengthen our data.

Georgios Renieris Konstantina Katrini Evangelos J. Giamarellos-Bourboulis Department of Internal Medicine National and Kapodistrian University of Athens Medical School, Athens, Greece egiamarel@med.uoa.gr

The authors report no conflicts of interest.