
RESEARCH ARTICLE

Studentized bootstrap model-averaged tail

area intervals

Jiaxu ZengID
1*, David Fletcher2, Peter W. Dillingham2,3, Christopher E. Cornwall4

1 Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand, 2 Department

of Mathematics and Statistics, University of Otago, Dunedin, New Zealand, 3 School of Science and

Technology, University of New England, Armidale, Australia, 4 School of Biological Sciences, Victoria

University of Wellington, Wellington, New Zealand

* jimmy.zeng@otago.ac.nz

Abstract

In many scientific studies, the underlying data-generating process is unknown and multiple

statistical models are considered to describe it. For example, in a factorial experiment we

might consider models involving just main effects, as well as those that include interactions.

Model-averaging is a commonly-used statistical technique to allow for model uncertainty in

parameter estimation. In the frequentist setting, the model-averaged estimate of a parame-

ter is a weighted mean of the estimates from the individual models, with the weights typically

being based on an information criterion, cross-validation, or bootstrapping. One approach

to building a model-averaged confidence interval is to use a Wald interval, based on the

model-averaged estimate and its standard error. This has been the default method in many

application areas, particularly those in the life sciences. The MA-Wald interval, however,

assumes that the studentized model-averaged estimate has a normal distribution, which

can be far from true in practice due to the random, data-driven model weights. Recently, the

model-averaged tail area Wald interval (MATA-Wald) has been proposed as an alternative

to the MA-Wald interval, which only assumes that the studentized estimate from each model

has a N(0, 1) or t-distribution, when that model is true. This alternative to the MA-Wald inter-

val has been shown to have better coverage in simulation studies. However, when we have

a response variable that is skewed, even these relaxed assumptions may not be valid, and

use of these intervals might therefore result in poor coverage. We propose a new interval

(MATA-SBoot) which uses a parametric bootstrap approach to estimate the distribution of

the studentized estimate for each model, when that model is true. This method only requires

that the studentized estimate from each model is approximately pivotal, an assumption that

will often be true in practice, even for skewed data. We illustrate use of this new interval

in the analysis of a three-factor marine global change experiment in which the response

variable is assumed to have a lognormal distribution. We also perform a simulation study,

based on the example, to compare the lower and upper error rates of this interval with those

for existing methods. The results suggest that the MATA-SBoot interval can provide better

error rates than existing intervals when we have skewed data, particularly for the upper error

rate when the sample size is small.
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Introduction

It is well known that calculation of a confidence interval after selection of a best model ignores

model uncertainty and can lead to the interval having poor coverage [1–5]. A simple alterna-

tive is to use an interval based on the full model. In settings where this model provides a good

approximation to the “truth”, this will often lead to error rates close to the required levels.

Even in these settings, a simpler model may provide a narrower interval with good coverage

properties. However, if the data are used to both select a model and to estimate its parameters,

the coverage rate can often be much lower than desired. Model-averaging offers a compromise

between these two types of intervals, in that we might expect it to lead to a narrower interval

than the full model, whilst providing better coverage than an interval based on a single best

model [6, 7].

Recently, progress has been made in assessing the theoretical properties of model-averag-

ing, both in terms of optimal weights and construction of confidence intervals. While these

results are generally limited to simple settings [8] or rely on asymptotics [9], they provide

some insight into the development and understanding of the properties of model-averaged

intervals. To complement this work, simulation studies like the one used in this paper are help-

ful in evaluating the properties of different methods for small sample sizes [4, 7, 10, 11].

Model-averaging is appropriate when interpretation of the parameter of interest, θ, is the

same for all models. A common example of such a parameter is the expected value of the

response variable for a specified combination of predictor variables. Let M be the number of

candidate models, and ŷm be the estimate of θ from model m. In the frequentist setting, the

model-averaged estimate of θ is a weighted mean of the estimates from the individual models,

given by

�y ¼
XM

m¼1

wmŷm; ð1Þ

where wm is the weight for model m, with wm� 0 and
PM

m¼1
wm ¼ 1. There are a number of

different methods for selecting the model weights. For the rest of the paper, we consider AIC

weights, given by

wm / exp ð� AICm=2Þ; ð2Þ

where AICm is the AIC value for model m. In model selection, AIC tends to select larger mod-

els than other information criteria, such as AICc or BIC. It is therefore a natural choice in set-

tings where it is reasonable to assume that the full model is closest to “truth”, as in a designed

experiment. Previous studies of model-averaged confidence intervals, both theoretical and

simulation-based, have also suggested that use of AIC weights is preferable to those based on

AICc or BIC [7, 11–13].

Throughout the paper we will refer to the studentized versions of �y and ŷm as T and Tm

respectively, i.e.

T ¼
�y � y
ffiffiffiffiffiffiffiffiffiffiffi

V̂ ð�yÞ
q and Tm ¼

ŷm � yffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷmÞ

q ðm ¼ 1; . . . ;MÞ: ð3Þ

One approach to calculating a model-averaged confidence interval is to use a Wald interval

based on �y. This involves the assumption that T has a N(0, 1) distribution [6]. This Wald inter-

val has been used in a wide range of application areas [14–24]. We will refer to this interval as

the Model-Averaged Wald Interval (MA-Wald).

Studentized bootstrap model-averaged tail area intervals
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Recently, [11] proposed a model-averaged tail area (MATA-Wald) interval which involves

calculating a weighted average over the models of lower or upper tail areas of the distribution of

Tm when model m is true. This involves assuming that Tm in Eq (3) has a N(0, 1) or t-distribu-

tion when model m is true. In the context of normal linear regression, the t-distribution version

of the MATA-Wald interval has been shown to perform better than the MA-Wald interval [11].

Although use of the MA-Wald or the MATA-Wald interval will often be preferable to one

based on the full model or on a best model [4, 7], they will clearly not perform well if each Tm

is skewed. This might occur when we have a response variable that is skewed, for several rea-

sons. First, the distribution of each ŷm may be non-normal. Second, each ŷm and its estimated

standard error may be positively correlated [25]. Finally, the estimated standard error of each

ŷm may be more variable than assumed. If the response variable is positively skewed these

effects can lead to both T and Tm being negatively skewed, which will cause the upper confi-

dence limit to be too low and the upper error rate to be too high.

To overcome these problems, a studentized-bootstrap approach can be used to estimate
the distribution of Tm when model m is true. This involves the less-stringent requirement

that each Tm is approximately pivotal when model m is true. This will often be a reasonable

assumption, even for skewed data. We therefore extend the MATA-Wald interval using a

parametric studentized bootstrap, and refer to this as the studentized-bootstrap model-aver-

aged tail area (MATA-SBoot) interval.

The use of bootstrapping in model-averaging was discussed by [6], who considered use of a

model-averaged parametric percentile bootstrap (PB) interval. This involves generating bootstrap

samples from a fitted model, typically the full model. For each bootstrap sample, the best model

is selected and this provides an estimate, ŷ�. The PB interval is then given by the appropriate per-

centiles of ŷ�. Use of this interval on real data was considered by [6] and [26], but its coverage

properties are not well known. In the single-model setting, the percentile bootstrap is known to

be first-order accurate, whereas the studentized bootstrap is second-order accurate [27]. We

would therefore expect the MATA-SBoot interval to perform better than the PB interval.

The outline of the paper is as follows. First, we describe the MA-Wald, MATA-Wald,

and PB intervals, and introduce the MATA-SBoot interval. We then demonstrate use of the

MATA-SBoot interval in a real-life setting that involves using a lognormal model to analyse a

three-factor experiment designed to assess the effects of global change on a coralline algae. We

use a simulation study based on this example to compare the new MATA-SBoot interval to

existing methods including the Wald interval from the full model, which we refer to as Full-

Wald, and finish with a discussion and suggestions for further research.

Methods

As in the single-model setting, we might transform the parameter of interest before model aver-

aging, in order to better satisfy the assumptions associated with a particular method. For exam-

ple, in the context of logistic regression we might calculate a model-averaged confidence interval

for a probability π by back-transforming the corresponding interval for logit (π). We return to

this point when we use a log-transformation in both the example and the simulation study.

MA-Wald interval

The MA-Wald interval was proposed by [3], and is given by

�y � z1� a

ffiffiffiffiffiffiffiffiffiffiffi

V̂ ð�yÞ
q

; ð4Þ

Studentized bootstrap model-averaged tail area intervals
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where 100 (1 − 2α)% is the nominal coverage,

V̂ �y
� �
¼
XM

m¼1

wm

(
tvm ;1� a
z1� a

� �2

V̂ ŷm

� �
þ ŷm �

�yÞ
2

�
)

; ð5Þ

VðŷmÞ is the variance of ŷm conditional upon model m being true (estimated in the usual way

after fitting model m), tvm ;1� a is the 100 (1 − α)th percentile of the t-distribution with νm degrees

of freedom, νm is the residual degrees of freedom associated with model m, and z1−α is the 100

(1 − α)th percentile of the N (0, 1) distribution [3]. Use of the ratio tvm ;1� a=z1� a
in Eq (5) is moti-

vated by a desire to allow for differences between models in the uncertainty associated with

V̂ ðŷmÞ.

This interval is based on the assumption that the sampling distribution of �y is approxi-

mately normal [6]. This assumption is unlikely to be satisfied due to the randomness of the

weights, and reliable estimation of the standard error of �y is also difficult [9]. One motivation

for the estimate in Eq (5) is that it can be regarded as a frequentist analogue of the variance of

a model-averaged posterior distribution for θ [3]. As mentioned in the Introduction, T will

often be negatively skewed when the response variable is positively skewed, leading to this

interval having poor coverage.

An alternative Wald interval was proposed by [9]; as this does not have any advantages over

the Wald interval from the full model [8, 28], we do not consider it further.

MATA-Wald interval

The MATA-Wald interval is based on a Wald interval obtained from each model [11]. The t-
version of the 100 (1 − 2α)% MATA-Wald interval [θL, θU] is obtained by solving the equa-

tions

XM

m¼1

wmPrðTnm � tL;mÞ ¼
XM

m¼1

wmPrðTnm � tU;mÞ ¼ a; ð6Þ

where Tnm has a t-distribution with νm degrees of freedom,

tL;m ¼
ŷm � yUffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷmÞ

q ; and tU;m ¼
ŷm � yLffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷmÞ

q :

Use of this interval is based on the assumption that Tm in Eq (3) has a t-distribution with νm
degrees of freedom when model m is true. This assumption will be exact when we are averag-

ing over a set of normal linear models, and may be a reasonable approximation in other set-

tings. In general, for likelihood-based models it is common practice to assume that the sample

size is large enough for Tm to have a N (0, 1) distribution when model m is true. This leads to

the z-version of the MATA-Wald interval, in which each Tnm in Eq (6) is replaced by Z� N (0,

1). Unlike the t-version, this makes no allowance for the uncertainty associated with V̂ ðŷmÞ,

which will clearly be undesirable if the sample size is small. The t-version of the MATA-Wald

interval is therefore likely to be generally more reliable, and will always have a higher coverage

rate than the z-version.

Percentile bootstrap interval

This method involves generating B bootstrap samples from one of the fitted models, and for

each sample selecting the best model according to some criterion. When applying this method

Studentized bootstrap model-averaged tail area intervals
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in the example and the simulation study, we use AIC to select the best model. The best model

for each bootstrap sample provides an estimate ŷ�. The 100 (1 − 2α)% PB interval is then given

by the 100αth and 100 (1 − α)th percentiles of the distribution of ŷ� over all bootstrap samples.

If the models are nested, as in a factorial experiment, it is natural to use the fitted full model

to generate the bootstrap samples, as we expect this to provide a good approximation to the

“truth”. In our simulation study, we therefore generate bootstrap samples in this manner. In

related work, [29] recommended that bootstrapping should generally be from the full model.

MATA-SBoot interval

In the single-model setting, a parametric studentized bootstrap interval is given by

ŷ � t�U
ffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷÞ
q

; ŷ � t�L
ffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷÞ
q� �

;

where t�L and t�U are the 100αth and 100(1 − α)th percentiles of the distribution of

T� ¼
ŷ� � ŷ
ffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷ�Þ
q ; ð7Þ

and ŷ� is the estimate of θ obtained from a bootstrap sample generated from the fitted model.

Suppose [θL, θU] denotes the resulting interval. The limits of this interval satisfy the equations

PrðT� � t�LÞ ¼ PrðT� � t�UÞ ¼ a;

where T� is given by Eq (7),

t�L ¼
ŷ � yUffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷÞ
q and t�U ¼

ŷ � yLffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷÞ
q :

By analogy, in the multi-model setting the MATA-SBoot interval [θL, θU] is obtained by solv-

ing the equations

XM

m¼1

wmPrðT
�

m � t�L;mÞ ¼
XM

m¼1

wmPrðT
�

m � t�U;mÞ ¼ a; ð8Þ

where

T�m ¼
ŷ�m � ŷmffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷ�mÞ
q ; t�L;m ¼

ŷm � yUffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷmÞ

q ; t�U;m ¼
ŷm � yLffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ ðŷmÞ

q ;

and ŷ�m is the estimate of θ obtained from fitting model m to that bootstrap sample. The proba-

bilities in Eq (8) are estimated from the bootstrap distribution of T�m, based on B bootstrap

samples generated from the fitted version of model m.

Use of the bootstrap in this way avoids the need to assume a parametric distribution for Tm.

We need only require that Tm be approximately pivotal when model m is true, an assumption

that will be reasonable in many settings [30, 31].

When Tm has a N (0, 1) or t-distribution, the MATA-SBoot interval will be identical to the

corresponding MATA-Wald interval, as long as B is chosen to be sufficiently large. We would

therefore expect the MATA-SBoot interval to perform at least as well as the two versions of the

MATA-Wald interval.

Studentized bootstrap model-averaged tail area intervals
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A factorial design example

Ocean acidification is the process of increasing absorption of anthropogenically-derived CO2

by surface seawater [32, 33]. This has negative repercussions for calcareous species, altering

growth and calcification rates [34]. Metabolic processes have the potential to modulate the

effects of ocean acidification, e.g. photosynthetic uptake of CO2 by macroalgae could increase

pH back to current levels in large macroalgal forests [35], or at the surface of the macroalga

[36, 37]. This has been shown to alleviate the negative effects of ocean acidification for species

capable of raising seawater pH [38].

In multi-stressor global change experiments the importance or existence of interactions is

generally unknown, so it is not always clear which statistical model should be used to make

predictions about physiological responses. While numerous studies have attempted to

answer this question (e.g. the meta-analysis in [39]), testing for interactions and then using

the selected model to make predictions is precisely the setting that is known to result in poor

error rates. Recently, [40] used the MA-Wald interval in Eq (4) to make predictions in a

global change experiment, the first example we know of model-averaging being used in this

important research area. It is therefore of interest to assess whether there is a better choice of

interval.

In this example we use data originally presented in [36] to illustrate the use of model averag-

ing in an investigation of the effect of assemblages of upright and crustose coralline algae to

modify their local environment within and immediately above their canopies. Several response

variables were measured; our choice of surface hydronium ion concentration ([H3O+], stan-

dardized by bulk concentration) is purely for illustration. In a unidirectional flume, bulk sea-

water pH (ambient pH 8.00, and simulated ocean acidification pH 7.65), irradiance (darkness

and photosynthetically saturating light), and the effect of water velocity (0.015 and 0.040 m s-1)

were tested on hydronium ion gradients using a 23 factorial design with five replicates.

We focus on estimation of the mean hydronium ion concentration for each of the eight

combinations of the factor levels, which we denote as θijk (i, j, k = 1, 2). Thus θijk� E(Yijkl),

where Yijkl is the hydronium ion concentration for replicate l associated with treatment combi-

nation (i, j, k) (l = 1, . . ., r). In the example we have r = 5, while in the simulation study we con-

sider a range of values for r. We assumed the following lognormal model for Yijkl

log ðYijklÞ ¼ mijk þ εijkl; ð9Þ

mijk ¼ mþ ai þ bj þ gk þ abij þ agik þ bgjk þ abgijk; ð10Þ

where μ is the overall effect, {αi, βj, γk} are the main effects, {αβij, αγjk, βγjk} are the two-way

interactions, αβγijk is the three-way interaction, and εijkl� N(0, σ2). In the context of this

study, μijk is proportional to the mean surface pH of the algae for treatment combination

(i, j, k).

We obtained a confidence interval for θijk by back-transformation of the interval for

ηijk� log (θijk) = μijk + σ2/2. The estimate of ηijk from model m is given by

Ẑ ijk;m ¼ m̂ijk;m þ
ŝ2

m

2
; ð11Þ

where m̂ ijk;m is the mean for combination (i, j, k) on the log-scale, and ŝ2
m is the residual mean

square from an analysis of variance on this scale. An unbiased estimate of the variance of Ẑ ijk;m

Studentized bootstrap model-averaged tail area intervals
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is given by

V̂ Ẑ ijk;m

� �
¼
ŝ2

m

r
þ
ðŝ2

mÞ
2

2ðnm þ 2Þ
: ð12Þ

The expressions for Ẑ ijk;m and V̂ ðẐ ijk;mÞ both involve ŝ2
m. When model m is true, these two esti-

mates will therefore be positively correlated. In addition, Ẑ ijk;m will have a non-normal distribu-

tion, and nmV̂ ðẐ ijk;mÞ=VðẐ ijk;mÞ will not have a w2
nm

distribution. These effects will mean that the

assumptions underlying the MA-Wald interval and both versions of the MATA-Wald interval

are invalid. The distribution of both T and Tm will then be negatively skewed, leading to the

corresponding interval having an upper limit that is too low, and consequently an upper error

rate that is too high. All three of the above effects will be more noticeable for smaller values of

r, and for larger values of σ2. For the MA-Wald interval there is the additional issue that the

model weights are estimated, rather than fixed, and �Z ijk ¼
PM

m¼1
wmẐ ijk;m may then have a

non-normal distribution even if each Ẑ ijk;m is close to normal (as they would be if each νm were

large).

Model-averaging was performed using the set of all possible models. As usual, interaction

terms were included only if lower-order terms were also in the model. The AIC weights

showed non-negligible support for several models (Table 1). For each θijk, we calculated the

MA-Wald interval, both versions of the MATA-Wald interval, the percentile bootstrap inter-

val, and the MATA-SBoot interval. We also calculated a Wald interval from the full model

(Full-Wald), which is equivalent to using the MA-Wald interval, or the t-version of the

MATA-Wald interval, with all the weight given to the full model.

Table 1. AIC model weights obtained when modelling hydronium ion concentrations. The main effects of pH, irra-

diance and water velocity are denoted by P, I and V, respectively; PI, IV and PV denote the corresponding two-way

interactions and PIV is the three-way interaction.

Model AIC weight

Null 0.000

P 0.000

I 0.000

V 0.000

P+I 0.028

P+V 0.000

I+V 0.000

P+I+V 0.013

P+I +PI 0.325

P+V+PV 0.000

I+V+IV 0.000

P+I+V+PI 0.150

P+I+V+PV 0.005

P+I+V+IV 0.017

P+I+V+PI+PV 0.057

P+I+V+PI+IV 0.263

P+I+V+PV+IV 0.006

P+I+V+PI+PV+IV 0.100

P+I+V+PI+PV+IV+PIV 0.038

https://doi.org/10.1371/journal.pone.0213715.t001
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For each of the eight combinations of factor levels, the six intervals were broadly similar,

the main difference being that the Full-Wald and the percentile interval were generally wider

(Fig 1). Although the intervals in this example are similar, we would expect the MATA-Wald

and MATA-SBoot intervals to perform quite differently when the sample size is small, as Tm

will then be more skewed. We therefore consider a range of sample sizes in the simulation

study.

Simulations

We carried out a simulation study in order to compare the six types of interval. We considered

the same setting as the example in Section 3, namely a 23 factorial experiment. The data were

generated using the lognormal model in Eqs (9) and (10). As the performance of an interval

will not be influenced by the value of μ, we set μ = 0. We set σ2 = 1 as this corresponds to a log-

normal distribution that is clearly skewed, with a skewness coefficient of 6.2. We return to the

choice of σ2 when discussing the results.

In order to broaden the conclusions of the study, a different set of parameter values was

generated for each simulation run, as in [7]. Thus each main effect and interaction was speci-

fied as having a “magnitude” of 2 (High), 1 (Medium) or 0.1 (Low). The corresponding

parameter value was then selected from a normal distribution with mean zero and standard

deviation equal to this magnitude. The three magnitudes were chosen to be greater than, the

same as, or less than σ2. As we usually expect main effects to be at least as large as two-way

Fig 1. Model-averaged confidence intervals for mean hydronium ion concentration. The intervals are labelled as follows: Full-Wald (long dash-dotted purple

line), MA-Wald (solid black line), t-version of MATA-Wald (dotted green line), z-version of MATA-Wald (long dashed steelblue line), percentile bootstrap (dash-

dotted blue line), and MATA-SBoot (dashed red line). The treatment combination denotes the level of each of three factors: pH (H = 8.00, L = 7.65), irradiance

(D = darkness, B = photosynthetically saturating light), and velocity (S = 0.015 m s-1, F = 0.040 m s-1).

https://doi.org/10.1371/journal.pone.0213715.g001

Studentized bootstrap model-averaged tail area intervals

PLOS ONE | https://doi.org/10.1371/journal.pone.0213715 March 18, 2019 8 / 16

https://doi.org/10.1371/journal.pone.0213715.g001
https://doi.org/10.1371/journal.pone.0213715


interactions, which in turn will often be at least as large as three-way interactions, we chose the

following ten scenarios: LLL, MLL, HLL, MML, HML, MMM, HMM, HHL, HHM, HHH,

where, for example, HML is a scenario in which the main effects, two-way interactions and

three-way interaction have high, medium and low magnitudes respectively.

To assess the performance of each interval for various levels of replication, we considered

r = 2, 5 and 50. The choice r = 2 represents the lowest possible sample size for this type of

study, corresponding to the greatest skewness of T and Tm (for fixed σ2). The choice r = 50 is

unlikely to be used in practice, and was included solely to check for asymptotic convergence

of the methods. We used 105 simulations for each of the ten scenarios, as this allowed us to

achieve binomial standard errors for the lower and upper error rates of approximately 0.3%.

For the bootstrap-based intervals, we used B = 9999. As for the real data, we first calculated a

confidence interval for ηijk and back-transformed it to obtain an interval for θijk� exp (ηijk),
which we denote as ½y

L
ijk; y

U
ijk�. Model-averaging was performed over all 19 possible models.

The performance of each interval was summarised by its mean, over the eight combinations

of factor levels, of the lower and upper error rate. We also calculated the mean lower and

upper relative half-widths for each treatment combination, and averaged these over the eight

combinations, where the relative lower and upper half-width are defined as ðy
L
ijk � yijkÞ=yijk

and ðy
U
ijk � yijkÞ=yijk respectively. All calculations were implemented in R Version 3.4.2 [41],

and the solutions to Eqs (6) and (8) were found using the uniroot function. We also include

example code in Supplementary Information (S1 File) demonstrating calculation of the

MATA-SBoot interval for a single dataset, and note that functions to calculate the MATA-

Wald interval are available in the MATA library of R [11].

Results

The clearest difference between the methods are for the upper confidence limit, with the

MATA-SBoot interval generally having an upper error rate that is closest to the nominal

level (Figs 2 to 4). This improvement in the upper error rate is most marked for r = 2, as we

expected. The MATA-SBoot interval also provided a lower error rate that was close to the

nominal level. Because the MATA-SBoot increases its width to account for skewness, it was

always wider than the MA-Wald and MATA-Wald intervals and usually wider than the PB

interval. Interestingly, for the LLL, MLL, and HLL scenarios, the improvement was achieved

with little increase in the upper half-width relative to other model-averaging techniques, while

substantially outperforming the Wald-Full interval. However, for scenarios with higher magni-

tude effects and few replicates (Fig 2), the increased width from skewness led to substantially

wider upper half-widths for MATA-SBoot intervals relative to the others.

The z-version of the MATA-Wald interval performed worst of all the model-averaging

methods on the upper error rate, but very well on the lower error rate, presumably because

any skewness to the left still allowed the right-hand tail Tm to be similar to that for a N(0, 1)

distribution. The generally superior performance of the t-version over the z-version of the

MATA-Wald interval is due to it making some allowance for the uncertainty associated with

V̂ ðŷmÞ, the difference being largest when r is small. The MA-Wald interval incorporates the

ratio tvm ;1� a=z1� a
as a means of allowing for this uncertainty, which provides another reason for

its performance being similar to that for the t-version of the MATA-Wald interval.

Unlike the model-averaged intervals, the interval widths for Full-Wald do not vary across

the different simulation scenarios. Particularly, they do not take advantage of the smaller

widths possible through model-averaging when weight is placed on reduced models. Conse-

quently, the intervals are wider or equal to the intervals from MA-Wald, MATA-Wald, or PB
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intervals. However, the increased upper error rates of the Full-Wald interval also produce nar-

rower upper half-widths than MATA-SBoot for scenarios with large magnitude effects (Fig 2).

All methods except the PB interval had approximately the same error rates for r = 50 (Fig

4). The PB interval is the only method that does not involve studentization, and suffers from

being unnecessarily wide when r = 50, with the upper and lower error rates both being less

than required, especially for the LLL, MLL, and HLL scenarios.

Discussion

We have focussed on using a bootstrap-based method to construct a model-averaged confi-

dence interval. Bootstrapping can also be used to select model weights [26, 42–44]. For

Fig 2. Error rates and relative half-widths when r = 2. The results obtained using the Full-Wald (down-pointing

purple triangle), the MA-Wald (black square), the t-version of the MATA-Wald interval (green diamond), the z-

version of the MATA-Wald interval (unfilled steelblue diamond), the percentile interval (blue circle), and the

MATA-SBoot interval (up-pointing red triangle). For simplicity, the lower error rates are plotted on the negative axis.

The nominal rate is shown as a dashed line.

https://doi.org/10.1371/journal.pone.0213715.g002
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example, we might choose wm to be the proportion of times over all bootstrap samples that

model m is selected as the best model. This type of weight is implicit in calculation of the PB

interval, as well as in the use of bagging to calculate a model-averaged point estimate, a tech-

nique that has been used widely in machine learning [45, 46]. In our simulation study, when

calculating the PB interval, we found that using AIC to select the best model led to this weight

being very similar to the AIC weight in Eq (2), in agreement with the results of [6].

In our simulation setting, the MATA-SBoot interval provided a consistent improvement

over existing methods when the sample size was small enough for T and each Tm to be skewed.

Our results suggest that this interval has a better error rate than the other methods for small r,
while maintaining good error rates and small relative half-widths for large r. This difference is

most marked for the upper error rate, as T and Tm are both negatively skewed.

Fig 3. Error rates and relative half-widths when r = 5. The results obtained using the Full-Wald (down-pointing

purple triangle), the MA-Wald (black square), the t-version of the MATA-Wald interval (green diamond), the z-

version of the MATA-Wald interval (unfilled steelblue diamond), the percentile interval (blue circle), and the

MATA-SBoot interval (up-pointing red triangle). For simplicity, the lower error rates are plotted on the negative axis.

The nominal rate is shown as a dashed line.

https://doi.org/10.1371/journal.pone.0213715.g003
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When it is reasonable to assume that Tm has a N (0, 1) or t-distribution, the MATA-SBoot

interval is equivalent to the relevant MATA-Wald interval, as long as B is large enough. The

MATA-Wald interval has the advantage of being computational quicker, which might be

important when the number of models is large or some of the models are complex.

We chose to set σ2 = 1 in the simulations, which corresponds to a skewness coefficient of

6.2. If we had used σ2 < 1 there would have been less skewness and the results for the MATA-

Wald and MATA-SBoot intervals would be more similar. Conversely, if had set σ2 > 1, there

would have been more skewness and the benefits of using the MATA-SBoot interval would be

even clearer.

The MATA-SBoot interval will obviously not perform well if the studentized bootstrap itself

is prone to problems, such as when the standard error of ŷm is poorly estimated and/or Tm is

Fig 4. Error rates and relative half-widths when r = 50. The results obtained using the Full-Wald (down-pointing

purple triangle), the MA-Wald (black square), the t-version of the MATA-Wald interval (green diamond), the z-

version of the MATA-Wald interval (unfilled steelblue diamond), the percentile interval (blue circle), and the

MATA-SBoot interval (up-pointing red triangle). For simplicity, the lower error rates are plotted on the negative axis.

The nominal rate is shown as a dashed line.

https://doi.org/10.1371/journal.pone.0213715.g004
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clearly not pivotal. This caveat is similar to that given by [11] for the MATA-Wald interval [8].

Likewise, in general the MATA approach to constructing a model-averaged confidence inter-

val does not guarantee that the coverage will be exactly as desired, even if the distributional

assumptions underlying its use are met [8, 12, 13].

In the simulations the response variable was known to have a lognormal distribution. This

allowed us to use an unbiased estimate of the standard error of each ŷm in both versions of the

MATA-Wald interval and in the MATA-SBoot interval. In some settings, the true distribution

of the response variable may differ from what we assume. We would expect the MATA-SBoot

interval to be more robust than the other methods to such misspecification, as long as Tm is

approximately pivotal.

The parameter of interest in the example and simulation study was the population mean

(for each treatment combination). With skewed data, we might consider estimation of the

population median instead. This would amount to removing the second terms on the right-

hand side of both Eqs (11) and (12), leading to Ẑ ijk;m and V̂ ðẐ ijk;mÞ being uncorrelated. The stu-

dentized version of Ẑ ijk;m would then have a t-distribution with νm degrees of freedom. In this

case, the t-version of the MATA-Wald interval and the MATA-SBoot interval would be identi-

cal, as long as B were chosen to be large enough.

It is difficult to establish theoretical results about the performance of model-averaged confi-

dence intervals, due to the randomness of the model weights. Moreover, model uncertainty will

usually arise when the sample size is relatively small, suggesting that asymptotic theory may not

be that relevant. We have therefore used simulation to assess the potential benefits of our pro-

posed method. We have considered a range of model-scenarios and used a random-effects gen-

erating model in order to make our conclusions more robust. However, as with any simulation

study, the conclusions are strictly limited to a particular setting. It would be helpful to assess the

performance of the MATA-SBoot interval in other settings, in order to broaden our conclusions.

It is important to note that there exists no unique way to assess the performance of the

methods for simulation studies. In our simulation study, we focus on assessing the overall per-

formance of the methods across a number of scenarios. An alternative approach is to compare

the minimum coverage of the methods across all possible parameter values, as suggested in

[47]. It would be helpful to explore this option in future to further assess the performance of

the methods.

For global change studies such as our example, a primary goal is to make predictions under

future climate scenarios with an appropriate measure of uncertainty. Use of the MATA-SBoot

method can sometimes lead to a narrower confidence interval than one from the full model,

whilst maintaining error rates that are generally close to the nominal level, while in other cases

the interval must be larger to account for the underlying skewness. Compared to other model-

averaging techniques, interval widths are increased due to skewness but, again, this is to main-

tain approximately the correct level of uncertainty.

Supporting information

S1 File. R code and data for obtaining MATA-SBoot intervals for the hydronium ion exam-

ple.
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