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Abstract

Clustering time series data is of great significance since it could extract meaningful statistics

and other characteristics. Especially in biomedical engineering, outstanding clustering algo-

rithms for time series may help improve the health level of people. Considering data scale

and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering

algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass

and Online patterns, our algorithms could handle large-scale time series data by splitting it

into a set of chunks which are processed sequentially. Besides, our algorithms select DTW

to measure distance of pair-wise time series and encourage higher clustering accuracy

because DTW could determine an optimal match between any two time series by stretching

or compressing segments of temporal data. Our new algorithms are compared to some

existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series

datasets. The experimental results show that the proposed approaches could yield high

quality clusters and were better than all the competitors in terms of clustering accuracy.

Introduction

Time series can reveal the objective law of development of things, and therefore they are often

deeply studied in such application areas as finance, engineering, environmental science and

biology.

Biomedical time series often convey a large amount of information about public health. For

example, an ECG (Electrocardiography) records much information about the structure of the

heart and the function of its electrical conduction system, and it can be used to measure the

rate and rhythm of heartbeats, the size and position of the heart chambers, the presence of any

damage to the heart’s muscle cells or conduction system, the effects of cardiac drugs, and the

function of implanted pacemakers [1]. From this type of data, data mining can help extract

valuable rule, knowledge or structure and thus becomes a preferred analysis tool. Especially

clustering, one of the most important techniques in data mining, can be explored to extract

information related to biological processes and diseases and has received extensive attention.

Clustering tries to divide data objects into homogeneous groups so that objects in the same

group are as similar as possible and the ones in different groups are as dissimilar as possible.
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So far researchers have proposed a large number of clustering algorithms[2][3]. Fuzzy cluster-

ing, allowing each object belong to more than one cluster, is thought to be more consistent

with human thinking than common crisp clustering.

Fuzzy C-Means (FCM) is the most well-known fuzzy clustering algorithm, and is known as

the fuzzy version of the well-known traditional K-Means clustering. Actually, in fuzzy cluster-

ing, there is an alternative popular algorithm, named Fuzzy C-Medoids (FCMdd). FCM and

FCMdd both try to minimize the same objective function, and finally return a partition matrix

U and a list of cluster centers V. The main difference between FCM and FCMdd just lies in the

formation mechanism of V. FCMdd selects some of the existing true objects as cluster medoids,

while FCM regards some virtual objects, which are weighted average values of objects, as cluster

centers. This subtle difference causes that these two algorithms have different performance

characteristics: FCMdd is more resistant to noise than FCM and can more easily generate clus-

tering results with high precision because noisy objects will impact the centroids of FCM more

easily. In this respect, FCMdd is better than FCM.

Any clustering technique mainly relies on two concepts [3]: a clustering algorithm and a

similarity measure. After discussing the first concept, a clustering algorithm above, we now

focus on the second concept, an optimum similarity measure, which has a significant impact

on clustering results. Unfortunately, there exist so many similarity measures that it is difficult

for us to select an appropriate one [4]. Lack of selection criteria forces us to often choose a sim-

ilarity measure at random, even though we already know its importance.

The Euclidean distance is the most common choice. This measure is only applicable to

small-scale and equal-length time series, which limits the scope of its application. Furthermore,

in time series data, it is inevitable to exist time shifts, which is an intractable issue for Euclidean
distance. Thus it can be seen that Euclidean distance is not the optimal choice for time series

clustering. Therefore, in this work, we select Dynamic Time Warping (DTW) distance as the

similarity measure. In time series analysis, DTW is the most well-known algorithm, which is

used exclusively for measuring similarity between two temporal sequences which may vary in

speed. Taking into account time shifts, this algorithm calculates an optimal match between

two time series and thus can compute the similarity more accurately.

Izakian et al [5] studied DTW based fuzzy clustering for time series data, and proposed

three alternatives. Their work show DTW, using stretching or compressing segments of tem-

poral data, is a desirable choice for fuzzy clustering of time series. However, their study is still

limited in large-scale data processing.

As the continuous development of science and technology, together with constantly

increasing of the scale of time series data, traditional methods expose some shortcomings: (1)

in many cases, time series data is so big that it cannot be loaded into memory at a time, (2) and

what is more, the data may arrive continuously so that there is even no way for us to get all of

the data at a time. Therefore, clustering for large-scale time series data needs an incremental

algorithm, whose objective is, given a sequence of time series, to construct a set of good parti-

tions from the data stream, using a small amount of memory and time. Hore et al [6] proposed

two incremental fuzzy clustering algorithms, Single-Pass FCM(spFCM) and Online FCM

(oFCM). These two algorithms represent two implementation strategies for incremental clus-

tering respectively, Single-Pass strategy and Online strategy. In the former strategy, large data is

processed chunk by chunk, and the previous chunk is represented by its centroids, which will

be integrated with the newly coming chunk for the next round of clustering. In the latter strat-

egy, each chunk is classified individually and represented by its centroids, and then all the cen-

troids generated will be grouped once again. Many studies [7–8] have shown that both of the

strategies are very effective in handling large-scale data.

Incremental fuzzy clustering for time series data
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Note that both spFCM and oFCM use traditional Euclidean distance as the distance func-

tion. When considering DTW as the distance function to group time series data, the cluster

centers of FCM-type clustering algorithms cannot be calculated directly [5], which signifi-

cantly increases the computational difficulty. However, FCMdd needs not to calculate cluster

centers, and thus its computational process will not be affected by different distance measures.

In this respect, FCMdd is also superior to FCM.

Above analysis motivates us to study incremental FCMdd clustering based on DTW dis-

tance for clustering large scale time series. In this paper, two incremental fuzzy clustering algo-

rithms are proposed, Single-Pass FCMdd based on DTW (spFDTW) and Online FCMdd based

on DTW (oFDTW), which implement Single-Pass strategy and Online strategy respectively.

Both of these two algorithms employ DTW distance to measure the similarity between pair-

wise time series. In this way, even if there exist time shifts between two time series, these two

algorithms can easily achieve higher quality clustering results because of more accurate results

of similarity calculation.

The rest of this paper is organized as follows: Section 2 reviews some techniques and algo-

rithms related to clustering time series data. Section 3 presents our incremental clustering

algorithms. Section 4 discusses the experimental results. Finally, we conclude our work.

Literature review

In this section, we will review some well-known techniques that are sufficiently relevant to our

algorithms introduced in the next section, such as incremental clustering, fuzzy clustering and

DTW distance et al.

Incremental clustering

As mentioned above, there are two implementation strategies for incremental clustering, Sin-
gle-Pass strategy and Online strategy. In either case, large data has to be divided into a set of

chunks. In Single-Pass strategy, a clustering algorithm is implemented on each chunk in turn.

As virtual objects, centroids of previous chunk are integrated with true objects of the newly

coming chunk for the next round of clustering. Inevitably, centroids are much more important

than common objects, and therefore should be assigned higher weights. The Online strategy

includes two clustering steps. In the first step, each chunk is classified individually and repre-

sented by its centroids. In the second step, these centroids are assigned different weights and

classified again.

Honda et al [7] extended traditional incremental algorithms into fuzzy co-clustering of co-

occurrence matrices, and applied Single-Pass or Online approaches into such fuzzy clustering

algorithms as categorical multivariate data (FCCM) and fuzzy CoDoK. To handle large data-

sets which cannot fit into memory entirely, Mei et al [8] proposed two incremental clustering

algorithms. One method is a modification of the existing FCM-based incremental clustering,

while the other is incremental clustering, i.e., Single-Pass or Online, with weighted fuzzy co-

clustering. In 2016, we proposed two incremental algorithms based on information bottleneck,

Single-Pass fuzzy c-means (spFCM-IB) and Online fuzzy c-means (oFCM-IB) [9], which modi-

fies conventional algorithms by considering different weights for each centroid and object and

scoring mutual information loss to measure the distance between centroids and objects.

Nowadays, with the increase of data size, incremental clustering has become one of the

most prevalent research topics in data mining. To tackle large-scale data, in both Single-Pass
and Online strategies, a weighted clustering algorithm is necessary. It can assign different

weights to common objects and centroids since their importance and influence power are

different.

Incremental fuzzy clustering for time series data
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FCMdd and weighted FCMdd

Before introducing fuzzy clustering, we list the explanations on the mathematical notations

used in this paper in Table 1.

As mentioned above, FCMdd is one of the representative algorithms of fuzzy clustering.

The objective function minimized by this algorithm is as follows:

JFCMdd ¼
XC

c¼1

XN

i¼1

um
ci dðxi; vcÞ ð1Þ

where xi is the i-th object, d(xi, vc) is the Euclidean distance between xi and vc, and m (m�1) is

the fuzzifier parameter.

In incremental clustering, FCMdd has to become a weighted algorithm, which analyzes

weighted datasets containing medoids and common objects with different significance. The

objective function of weighted FCMdd (WFCMdd) to be minimized is as follows:

JWFCMdd ¼
XC

c¼1

XN

i¼1

wiu
m
ci dðxi; vcÞ ð2Þ

where wi is a positive real value, associating with each object xi. Under the constraint condition

XC

c¼1

uci ¼ 1, the value of uci can be calculated as follows:

uci ¼ ½
XC

l¼1

ð
dðxi; vcÞ

dðxi; vlÞ
Þ

1
m� 1�

� 1
ð3Þ

In FCMdd, it is crucial to select the optimal object as the medoid. The common approach is

to pick out the object that minimizes its distance with all objects in the datasets depending on

their membership to the cluster [10]. However, the time complexity is high. Nasraoui et al [11]

proposed a linearization algorithm, which only considers the q points that maximize the mem-

bership to each cluster as medoid candidates. Thus the medoid vc of the cluster c is defined as

follows:

vc ¼ minx2x

XN

i¼1

wiu
m
ci dðxi; xÞ ð4Þ

where ξ is the set of q medoid candidates.

Different from normal objects, medoids will be assigned higher weights in FCMdd because

they usually preserve much more information. This weighted algorithm is widely used in the

incremental clustering algorithm and will help improve performance of our algorithm in this

paper.

Table 1. Dataset details.

Notation Description

C,N Numbers of clusters, objects

uci Fuzzy object partitioning membership

vc Centroid/Medoid of the c-th cluster

m FCM user-defined parameters

w Weights of centroids/medoids and objects

https://doi.org/10.1371/journal.pone.0197499.t001
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Fuzzy clustering based on DTW distance

It is a popular topic to cluster time series data. Till now, many researchers have proposed a

large variety of algorithms. Li et al. [12] proposed a novel discord discovery algorithm based

on bit representation clustering. After segmenting time series firstly, their algorithm merged

several patterns with similar variation behaviors into a common cluster. Wang et al. [13] pro-

posed a new clustering algorithm named weighted spherical 1-mean with phase shift

(PS-WS1M), which introduced a phase adjustment procedure into the iterative clustering pro-

cess. Besides these clustering algorithms mentioned above, there are also some algorithms

about different distance metrics. Driemel and Sohler [14] studied the problem of clustering

time series under the Fréchet distance. Xu and Wunsch [15] also discussed proximity measure

in their work. Wang et al. [16] found that existing soft subspace clustering algorithms often

utilized only one distance function to evaluate the distance among data items on each feature,

which cannot deal with datasets with complex inner structures. Therefore, they constructed a

composite kernel space and proposed a novel framework of soft subspace clustering by inte-

grating distance metric learning in the CKS.

Although there are many different distance metrics, it is known to all that DTW is a desir-

able choice for measuring similarity between two temporal sequences which may vary in

speed. By stretching or shrinking time series along the time axis, DTW can find the optimal

alignment between two time series. Fig 1 illustrates the principle of DTW. In Fig 1, for exam-

ple, there are two time series, A and B, and each vertical line connects a point in A to its corre-

spondingly similar point in B. The irregular distribution of these vertical lines shows that time

series may be “warped” non-linearly by stretching or shrinking. Therefore, even if one time

series may be faster than the other, or if there were accelerations and decelerations, the similar-

ity between them could be calculated using DTW.

In general, DTW is widely studied in the fields of video, audio etc. The most representative

application of DTW is automatic speech recognition, to cope with different speaking speeds.

Mansour et al [17] built a system for voice recognition using dynamic time wrapping algo-

rithm, by comparing the voice signal of the speaker with pre-stored voice signals in the data-

base. Lee et al [18] proposed a refined DTW by adjusting the warping paths with judicially

injected weights, and subsequent experiments indicate that their method significantly

enhances the recognition rate compared with the DTW and HMM (Hidden Markov Model)

based algorithms, especially under limited data samples.

Indeed, with the exception of video and audio data, any data, which can be turned into a

linear sequence, can be analyzed with DTW. Most commonly, a time series is a sequence of

Fig 1. A warping between two time series.

https://doi.org/10.1371/journal.pone.0197499.g001
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discrete-time data, and thus DTW could naturally be used to analyze time series data. Guan

et al [19] applied a DTW distance-based similarity measure approach and used the entire

yearly NDVI(Normalized Difference Vegetation Index) time series to reduce the inaccuracy of

classification using a single image. Shah et al [20] proposed to use DTW as a distance measure,

rather than the Euclidean distance, in the framework of Learning Time-Series Shapelets for

time series classification, and their extensive experimentation demonstrates statistically signifi-

cant improvement in terms of wins and ranks against 13 baselines over 28 time-series datasets.

These two methods were designed for time series classification. Different from classification,

clustering technique, in particular fuzzy clustering, is an unsupervised learning technique, and

thus has attracted more attention of researchers.

Łuczak [21] focused on a hierarchical clustering of univariate (one-dimensional) time series

data, and constructed a new parametric distance function by combining DTW with Derivative

Dynamic Time Warping. The experimental results demonstrated the effectiveness of the pro-

posed approach for hierarchical clustering of time series data. For time series with cloud noise

and time distortion, Zhang et al [22] proposed an effective time series clustering framework

including similarity measure, prototype calculation, clustering algorithm and cloud noise han-

dling. The core of this framework was DTW distance and its corresponding averaging method,

DTW barycenter averaging (DBA). The experimental results showed that this framework per-

formed better than classic clustering based on ordinary Euclidean methods. The work of Iza-

kian et al’s [5] employed clustering techniques like FCM and FCMdd along with the DTW

distance, and exploited the advantages of both the FCM and FCMdd when clustering time

series. Afterwards Izakian [23] proposed an automated technique for clustering trajectory data

using a Particle Swarm Optimization (PSO) approach, based on DTW distance, and the exper-

imental results showed that the technique was able to find (near) optimal number of clusters as

well as (near) optimal cluster centers during the clustering process.

DTW based incremental fuzzy C medoids clustering

In this paper, we present two incremental FCMdd clustering algorithms based on DTW dis-

tance for clustering time series, spFDTW and oFDTW. The significant difference between

spFDTW and oFDTW lies in the way in which the centroids of each chunk are handled. Simi-

larly to some incremental clustering algorithms [9], the large-scale time series data will be split

into a set of chunks, and each chunk has its own number of objects. In our work, let us suppose

there are M chunks in total, which are available in turn.

In our spFDTW and oFDTW, a weighted fuzzy clustering algorithm based on DTW

(WFCMdd-DTW) is necessary, which is similar to FCMdd. The main difference between

WFCMdd-DTW and FCMdd is that WFCMdd-DTW uses DTW as similarity measure.

WFCMdd-DTW

The objective function of WFCMdd-DTW is:

JWFCMdd� DTW ¼
XC

c¼1

XN

i¼1

wiu
m
ci dtwðxi; vcÞ ð5Þ

where the function dtw(xi, vc) is the DTW distance between time series xi and the medoid vc.

Given two time series a and b, with length S and T respectively, the value of dtw(a, b) is cal-

culated using the DTW algorithm. In this algorithm, each point in a is compared with any

point in b. As a result, the similar shapelets from a and b will be found, although they may

Incremental fuzzy clustering for time series data
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occur in different time periods. The pseudo-code [24] for calculating DTW distance between a
and b is detailed as follows.

According to the process of WFCMdd, we can get the values of uci and vc as:

uci ¼ ½
XC

l¼1

ð
dtwðxi; vcÞ

dtwðxi; vlÞ
Þ

1
m� 1�

� 1
ð6Þ

vc ¼ arg minx

XN

i¼1

wiu
m
ci dtwðxi; xÞ ð7Þ

Algorithm: DTW algorithm

1. Input: a =<a1,. . .,aS>, b =<b1,. . .,bT>

2. Output:

3. cost: a matrix of size S×T containing the cost values. cost(S, T) is the DTW distance

between a and b

4. path: a matrix of size S×T containing a warping path

5. Method:

6. Let δ be a distance between coordinates of sequences

7. cost(1,1) = δ(a1,b1);

8. path(1,1) = (0,0);

9. for i = 2,3,. . .S do

10. cost(i,1) = cost(i-1,1)+δ(ai,b1);

11. end for

12. for j = 2,3,. . .T do

13. cost(1,j) = cost(1,j-1)+δ(a1,bj);

14. end for

15. for i = 2,3,. . .S do

16. for j = 2,3,. . .T do

17. cost(i,j) = min(cost(i-1,j), cost(i,j-1), cost(i-1,j-1))+δ(ai,bj);

18. path(i,j) = min_index((i-1,j), (i,j-1), (i-1,j-1));

19. end for

20. end for

Incremental fuzzy clustering for time series data
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The solution of the constrained optimization problem in Eq (5) can be approximated by

Picard iteration through Eqs (6) and (7).

spFDTW and oFDTW

The spFDTW and oFDTW are both designed by iteratively applying the WFCMdd-DTW

clustering algorithm on data chunks. In this section, we detail these two algorithms

respectively.

The spFDTW is a Single-Pass incremental algorithm. In this algorithm, we implement

WFCMdd-DTW on the previous chunk and generate the corresponding medoids. Compared

with common objects, these medoids are obviously much more important. We therefore

assign higher weights to these medoids, merge them with the common objects of the next

chunk and carry out WFCMdd-DTW once again.

In spFDTW, the weight wc for a medoid vc of the p-th chunk is calculated as follows:

wc ¼
Xjpjþr

i¼1

uciwi ð8Þ

where |p| is the number of objects in the p-th chunk, and r is the number of previous medoids

that are added into current chunk. The value of r is calculated as,

r ¼
0; p ¼ 1

C; p > 1
ð9Þ

(

When we are processing the first chunk (p = 1), the value of r is 0, and the weight of each

time series equals 1. After carrying out WFCMdd-DTW on this chunk, we get C clusters. Each

cluster is represented by its medoid, whose weight is calculated using Eq (8). Now we complete

clustering the first chunk, and merge the C medoids generated from Chunk 1 with common

time series in Chunk 2. It should be noted that the weight of each common time series in

Chunk 2 all equals 1, which shows that the medoids are more important. We implement

WFCMdd-DTW once again on those objects including the C medoids generated from Chunk

1 and common time series in Chunk 2, and get C new clusters and new medoids, which will be

merged into the Chunk 3. Repeat this procedure until the last chunk is processed, and the

spFDTW terminates.

The spFDTW is outlined as follows.

Algorithm: spFDTW algorithm

1. Input: C, p, |p|, m

2. Output: fuzzy partitioning membership

3. Method:

4. for p from the first to the last chunk do

5. if (p = = 1) then

6. perform WFCMdd-DTW on the first chunk;

7. calculate weights of the C medoids;

8. else

Incremental fuzzy clustering for time series data
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Different from spFDTW, oFDTW could be seen as a parallel clustering algorithm. The par-

allelism reflects the treatment of chunks. In oFDTW, WFCMdd-DTW is performed on each

chunk individually. When the medoids of all the chunks are obtained, WFCMdd-DTW is

implemented on all these medoids once again. The weight wc for each centroid vc of the p-th

chunk is calculated as follows.

wc ¼
Xjpj

i¼1

uciwi ð10Þ

The oFDTW is outlined as follows.

As mentioned above, our algorithms are implemented by iteratively applying the

WFCMdd-DTW clustering algorithm on data chunks. Therefore, the complexities of spFDTW

and oFDTW depends on the complexity of WFCMdd-DTW.

Time complexity of the WFCMdd algorithm is O(CN2τ) [25], where τ is the iteration num-

ber. In this paper, we extend WFCMdd into WFCMdd-DTW. And the distance measure

accordingly becomes from Euclidean distance to DTW distance. If we calculate two time series

9. perform WFCMdd-DTW on C medoids of previous chunk and |p| objects of

this chunk;

10. calculate weights of the new C medoids;

11. end if

12. end for

13. re-calculate fuzzy memberships for all time series;

Algorithm: oFDTW algorithm

1. Input: C, p, |p|, m

2. Output: fuzzy partitioning membership

3. Method:

4. for p from the first to the last chunk do

5. perform WFCMdd-DTW on the p-th chunk;

6. add the C medoids of current chunk to the centroid set;

7. calculate weights of the C medoids;

8. end for

9. perform WFCMdd-DTW on the centroid set;

10. re-calculate fuzzy memberships for all time series;

Incremental fuzzy clustering for time series data
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with length K, the time complexity of Euclidean distance is O(K), while the complexity of

DTW is O(K2). Therefore, we conclude that the complexity of WFCMdd(with Euclidean dis-

tance) is O(CKN2), and the complexity of WFCMdd-DTW(with DTW distance) is O(CK2N2).

The spFDTW and oFDTW have the same time complexity with O(CK2N2τM). It is obvious

that adoption of DTW further improve the computational complexity. However, because our

work in this paper concentrates on clustering accuracy, the computational complexity is not

brought into sharp focus. Otherwise, such updated versions of DTW as FastDTW [26] and

SparseDTW [27], whose complexity is also O(K) and the same to Euclidean distance, should be

more highly esteemed. And we think it will be one of our potential research directions in

future.

Experiments

To verify the performances of our algorithms, we carried out abundant experiments. In our

experiments, we compared our algorithms with four incremental clustering algorithms:

spFCM, spFCMdd, oFCM, oFCMdd, and a FCMdd algorithm based on DTW, named

FCMddDTW[5].

Datasets

In our experiments, we select 12 benchmark datasets from the UCR Time Series Classification

Archive [28]. Among the 12 datasets, eight ones are directly related to biomedical engineering,

which can examine clustering performance in the field of biology, and four ones are common

datasets, which can verify the generality of clustering algorithms. These datasets are detailed in

Table 2.

Evaluation criteria

After grouping time series data, we need to validate the quality of final clustering results. There

are numerous evaluation measures to validate the clustering quality, such as Entropy,

Table 2. Dataset details.

Dataset Length Samples Classes Brief

Trace(TR) 275 100 4 It is a synthetic dataset designed to simulate instrumentation failures in a nuclear power plant.

Symbols(SY) 398 995 6 Thirteen people participated in this experiment. They were asked to copy the randomly

appearing symbol as best they could. There were 3 possible symbols, each person contributed

about 30 attempts. The data is the X-Axis motion in drawing the shape.

ECG5000(ECG) 140 4500 5 5,000 heartbeats randomly chosen from a 20-hour long electrocardiogram(ECG) dataset from

Physionet.

ECGFiveDays(ECGFD) 136 861 2 Data is from a 67 year old male. The two classes are simply ECG date.

TwoLeadECG(TLE) 82 1139 2 TwoLeadECG is an ECG dataset taken from physionet by Eamonn Keogh.

ProximalPhalanxTW(PPTW) 80 400 6 A part of Luke Davis’s PhD titled "Predictive Modelling of Bone Ageing".

DistalPhalanxOutlineAgeGroup

(DPOAG)

80 400 3 A part of Luke Davis’s PhD titled "Predictive Modelling of Bone Ageing".

PhalangesOutlinesCorrect(POC) 80 858 2 A part of Luke Davis’s PhD titled "Predictive Modelling of Bone Ageing".

ProximalPhalanxOutlineCorrect

(PPOC)

80 291 2 A part of Luke Davis’s PhD titled "Predictive Modelling of Bone Ageing".

DistalPhalanxOutlineCorrect

(DPOC)

80 600 2 A part of Luke Davis’s PhD titled "Predictive Modelling of Bone Ageing".

Wafer (WF) 152 6164 2 This dataset was formatted by R. Olszewski. Wafer data relates to semi-conductor

microelectronics fabrication.

ItalyPowerDemand(IPD) 24 1029 2 It was derived from twelve monthly electrical power demand time series from Italy.

https://doi.org/10.1371/journal.pone.0197499.t002

Incremental fuzzy clustering for time series data

PLOS ONE | https://doi.org/10.1371/journal.pone.0197499 May 24, 2018 10 / 25

https://doi.org/10.1371/journal.pone.0197499.t002
https://doi.org/10.1371/journal.pone.0197499


F-Measure and Purity. In this paper, we select four evaluation criteria, F-Measure, Entropy, p-

value and Clustering Score(CS).

F-Measure is the weighted harmonic mean of precision and recall. Given cluster j and class

i, the values of Precision and Recall could be calculated as follows.

recallði; jÞ ¼ nij=ni ð11Þ

precisionði; jÞ ¼ nij=nj ð12Þ

where nij is the number of time series of class i in cluster j, ni and nj are number of time series

in class i and cluster j respectively. The final value of F-Measure of clustering results, Fc, is cal-

culated as below.

Fc ¼
X

i

ni

n
�

max Fði; jÞf g ð13Þ

Fði; jÞ ¼
2�precisionði; jÞ�recallði; jÞ
precisionði; jÞ þ recallði; jÞ

ð14Þ

Nowadays, F-Measure has often been used to evaluate clustering quality. In general, the

higher the value of F-Measure, the better the clustering quality.

Entropy is an information theoretic measure, which examines how the documents in all

categories are distributed within each cluster [29]. A lower entropy value depicts better cluster

quality. The expression for Entropy of the whole clustering result is listed as follows:

Ecs ¼
XC

j¼1

njEj

N
ð15Þ

where Ecs is the whole Entropy value, nj is the number of objects in cluster j and Ej is the

Entropy value of cluster j, which is calculated using the following formula:

Ej ¼ �
X

i

pijlogpij ð16Þ

where pij is the probability that one document belonging to class i could be put into cluster j
during the partition.

In statistical hypothesis testing, the p-value is the probability for a given statistical model that,

when the null hypothesis is true, the statistical summary would be the same as or of greater magni-

tude than the actual observed results [30]. The use of p-values in statistical hypothesis testing is

common in many fields of research such as economics, finance, et al. In research of GO (Gene

Ontology) whose objective is to provide controlled vocabularies for the description of the biological

process, molecular function, and cellular component of gene products, the p-value is often used to

calculate the statistical significance of a group of proteins that share a GO term [31]. In the dataset,

given N proteins where M of them have the same annotation, the probability of observing m or

Incremental fuzzy clustering for time series data

PLOS ONE | https://doi.org/10.1371/journal.pone.0197499 May 24, 2018 11 / 25

https://doi.org/10.1371/journal.pone.0197499


more proteins that are annotated with the same GO term out of n proteins is,

p � value ¼
Xn

i¼m

M

i

 !
N � M

n � i

 !

N

n

 ! ð17Þ

A cluster with a smaller p-value is usually more significant than one with a higher p-value.

After getting the p-value of each single cluster, the quality of overall clusters could be measured

by the CS function, which is calculated as follows.

CS ¼

Xns

i¼1
minðpiÞ þ ðnl�cutoff Þ

nsþ nl
ð18Þ

where ns and nl are the number of significant and insignificant clusters, respectively. The cutoff

Table 3. Comparison of the Single-Pass fuzzy clustering algorithms in terms of F-Measure and Entropy. The bold values highlight the best results obtained in each

case.

Datasets F-Measure Entropy

spFCM spFCMdd FCMddDTW spFDTW spFCM spFCMdd FCMddDTW spFDTW

TR 0.5692(0.0028) 0.6466(0) 0.7820(0) 0.8410(0) 0.2950(0.0020) 0.2920(0) 0.1373(0) 0.1281(0)

SY 0.7683(0.0000) 0.8802(0) 0.8332(0) 0.9057(0) 0.1902(0.0000) 0.1683(0) 0.1271(0) 0.1484(0)

ECG 0.7068(0.0132) 0.7505(0) 0.5874(0) 0.7838(0) 0.2373(0.0071) 0.2206(0) 0.1785(0) 0.1904(0)

ECGFD 0.5221(0.0000) 0.5644(0) 0.5116(0) 0.6244(0) 0.3006(0.0000) 0.3003(0) 0.3010(0) 0.2983(0)

TLE 0.5475(0.0000) 0.5752(0) 0.5303(0) 0.7225(0) 0.2999(0.0000) 0.2995(0) 0.3001(0) 0.2530(0)

PPTW 0.6336(0.0351) 0.5795(0) 0.5286(0) 0.6661(0) 0.2740(0.0014) 0.2474(0) 0.2595(0) 0.2487(0)

DPOAG 0.7245(0.0357) 0.7942(0) 0.7776(0) 0.8040(0) 0.2342(0.0038) 0.2386(0) 0.1941(0) 0.2237(0)

POC 0.5156(0.0000) 0.5179(0) 0.6818(0) 0.6276(0) 0.2898(0.0000) 0.2898(0) 0.2894(0) 0.2803(0)

PPOC 0.6063(0.0016) 0.5742(0) 0.6513(0) 0.7036(0) 0.2621(0.0002) 0.2646(0) 0.2338(0) 0.2513(0)

DPOC 0.5336(0.0000) 0.6693(0) 0.5784(0) 0.6825(0) 0.2856(0.0000) 0.2802(0) 0.2827(0) 0.2794(0)

WF 0.6986(0.0000) 0.6989(0) 0.6985(0) 0.6983(0) 0.1485(0.0000) 0.1485(0) 0.1486(0) 0.1486(0)

IPD 0.6123(0.0069) 0.6318(0) 0.6195(0) 0.6086(0) 0.2950(0.0021) 0.2953(0) 0.2988(0) 0.3010(0)

https://doi.org/10.1371/journal.pone.0197499.t003

Table 4. Comparison of theOnline fuzzy clustering algorithms in terms of F-Measure and Entropy. The bold values highlight the best results obtained in each case.

Datasets F-Measure Entropy

oFCM oFCMdd FCMddDTW oFDTW oFCM oFCMdd FCMddDTW oFDTW

TR 0.5634(0.0028) 0.6375(0) 0.7820(0) 0.8199(0) 0.2949(0.0012) 0.3130(0) 0.1373(0) 0.1540(0)

SY 0.8049(0.0029) 0.8151(0) 0.8332(0) 0.7747(0) 0.1721(0.0027) 0.1652(0) 0.1271(0) 0.1662(0)

ECG 0.5852(0.0074) 0.8084(0) 0.5874(0) 0.7518(0) 0.2325(0.0509) 0.1423(0) 0.1785(0) 0.1489(0)

ECGFD 0.5154(0.0000) 0.5099(0) 0.5116(0) 0.6224(0) 0.3008(0.0000) 0.3009(0) 0.3010(0) 0.2989(0)

TLE 0.5334(0.0005) 0.5310(0) 0.5303(0) 0.6621(0) 0.3000(0.0000) 0.3001(0) 0.3001(0) 0.2975(0)

PPTW 0.5642(0.0203) 0.7406(0) 0.5286(0) 0.6325(0) 0.2501(0.0222) 0.2397(0) 0.2595(0) 0.2373(0)

DPOAG 0.6926(0.0003) 0.7934(0) 0.7776(0) 0.8604(0) 0.3244(0.0000) 0.2297(0) 0.1941(0) 0.1664(0)

POC 0.6297(0.0000) 0.6818(0) 0.6818(0) 0.6818(0) 0.2789(0.0000) 0.2894(0) 0.2894(0) 0.2894(0)

PPOC 0.6042(0.0000) 0.6580(0) 0.6513(0) 0.6482(0) 0.2419(0.0000) 0.2305(0) 0.2338(0) 0.2361(0)

DPOC 0.5905(0.0000) 0.6867(0) 0.5784(0) 0.6867(0) 0.2861(0.0000) 0.2855(0) 0.2827(0) 0.2855(0)

WF 0.6989(0.0000) 0.6988(0) 0.6985(0) 0.6983(0) 0.1485(0.0000) 0.1485(0) 0.1486(0) 0.1486(0)

IPD 0.6168(0.0046) 0.6278(0) 0.6195(0) 0.6229(0) 0.2995(0.0005) 0.2982(0) 0.2988(0) 0.2997(0)

https://doi.org/10.1371/journal.pone.0197499.t004
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denotes the α level (0.05), and if a group of proteins are associated with a p-value less than the

cutoff, they are considered significant, and vice versa. The min(pi) is the smallest p-value of the

significant cluster i.

Experimental setting

In our experiments, the value of m is set to 2.3. For spFDTW, oFDTW, spFCMdd and

oFCMdd, the termination condition is that the medoids obtained are the same to the medoids

of previous iteration. It should be noted that we give the convergence analysis in Appendix A

of our work. For both the spFCM and oFCM algorithms, when the number of iterations is

above 50 or |Uiter+1-Uiter|<0.0001, the clustering process terminates, where Uiter stands for the

partition matrix in iteration iter.
Here we discuss how to choose the initial medoids for our algorithms. There are many meth-

ods for choosing initial medoids. A common approach is to randomly pick several objects as

medoids. This approach has the advantages of simplicity and quick run speed. However, it is

not appropriate for WFCMdd-DTW, the core of our algorithms, because WFCMdd-DTW is a

little sensitive to initial medoids. In our experiments, we select the following approach to initial-

ize our algorithms. First the initial approach tries to find the first medoid which minimizes the

sum of its distance with all other objects. Next the initial approach finds the object which has

the longest distance to the first medoid as the second medoid. Then we determine the third

medoid which maximizes the sum of its distance with previous two medoids. According to

above steps, we can find all the initial medoids that are relatively far away from each other.

Fig 2. Random example time series from 4 classes of the TR dataset.

https://doi.org/10.1371/journal.pone.0197499.g002
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It is necessary to note that, since the initial medoids are not randomly picked, clustering

results of such algorithms as FCMddDTW, spFDTW, oFDTW, spFCMdd and oFCMdd, will

be constant, and therefore their standard deviation in terms of F-Measure and Entropy will be

0 (as Table 3 and Table 4).

Experimental results

In order to evaluate the performances of clustering algorithms intuitively, we plot medoids of

two datasets, TR and SY (The first two datasets in Table 2), with 4 and 6 classes respectively. In

Fig 2 and Fig 3, we select randomly and plot three time series from each class of the TR and SY

datasets respectively.

After observing the shapes of example time series, we carried out such clustering algorithms

as spFCM, spFCMdd, spFDTW, oFCM, oFCMdd, oFDTW and FCMddDTW on the 12 data-

sets. In like manner, we graphically represent medoids of these two datasets, TR and SY, as Fig

4 and Fig 5 respectively. On TR, the number of clusters was set to 4. And on SY, the number of

Fig 3. Random example time series from 6 classes of the SY dataset.

https://doi.org/10.1371/journal.pone.0197499.g003
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clusters was set to 6. Let us consider Fig 2 and Fig 4, which show benchmark medoids and

obtained medoids of the TR dataset respectively. In clustering results of spFCM and oFCM as

shown in Fig 4A and Fig 4D, only 2 classes are revealed. The fact is there are 4 benchmark clas-

ses on the TR dataset, which shows that both spFCM and oFCM lose 2 classes. The clustering

results of spFCMdd (Fig 4B) are better, and this algorithm discovers 3 classes. Other algo-

rithms, including FCMddDTW, oFCMdd, spFDTW and oFDTW, reveal all the 4 classes

marked by the TR dataset. Now let us consider the SY dataset, whose benchmark medoids and

obtained medoids are shown as Fig 3 and Fig 5 respectively. Because there are more bench-

mark classes in this dataset, it is cluttered to plot all the classes in a single graph. And thus, in

Fig 5, we provide each cluster with a separate graph. In addition, it should be noted that some

benchmark classes are very similar. For example, in Fig 3, the example time series of the first

and second classes are similar, and so are time series of the fourth and fifth classes. It greatly

Fig 4. Medoids of the TR dataset using (a) spFCM, (b) spFCMdd, (c) spFDTW, (d) oFCM, (e) oFCMdd, (f) oFDTW and (g) FCMddDTW.

https://doi.org/10.1371/journal.pone.0197499.g004
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Fig 5. Medoids of the SY dataset using (a) spFCM, (b) spFCMdd, (c) spFDTW, (d) oFCM, (e) oFCMdd, (f) oFDTW and (g) FCMddDTW.

https://doi.org/10.1371/journal.pone.0197499.g005
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increases the difficulty of clustering. As shown in Fig 5, both spFCM and oFCM reveal 5 clas-

ses. Although time series of the fourth and fifth classes in Fig 3 are very similar, these two algo-

rithms find the two classes precisely. The spFCMdd discovers 4 classes, and the oFCMdd finds

5 classes.

These two algorithms reveal some similar classes, however both lose one class (the third

class in Fig 3), whose shape is obviously different from other classes. The FCMddDTW and

spFDTW discover all the 6 classes of the SY dataset, and therefore have the best clustering

results. The quality of oFDTW is slightly less than spFDTW, because the oFDTW works barely

satisfactory in distinguishing similar classes.

After feeling the clustering results intuitively, we have to quantify clustering results in order

to compare correctly clustering performance of these clustering algorithms.

Table 3 illustrates comparison of spFCM, spFCMdd, FCMddDTW and spFDTW, in terms

of F-Measure and Entropy (with the value of standard deviation). As shown in Table 3,

spFDTW achieves the highest F-Measure values on all the 9 datasets, and the lowest Entropy

values on 7 datasets. The average F-Measure values of these four algorithms are 0.62, 0.66, 0.65

and 0.72 respectively, and the average Entropy values are 0.26, 0.25, 0.23 and 0.23 respectively.

Fig 6. Comparison of the Single-Pass fuzzy clustering algorithms in terms of p-value on two datasets, (a) TR and (b)

SY.

https://doi.org/10.1371/journal.pone.0197499.g006
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Even on POC, WF and IPD, the three datasets where the spFDTW cannot perform the best in

terms of F-Measure, the F-Measure value is near-optimal. In brief, this set of experimental

results show that the spFDTW is better than or comparable to spFCM, spFCMdd and

FCMddDTW in terms of F-Measure and Entropy.

To further compare clustering quality of these three Single-Pass algorithms, we calculated

p-values and CS based on clustering results. Confined to the length of this paper, we just give

the p-value results on TR and SY, as Fig 6A and Fig 6B respectively. In Fig 6A, spFCM,

spFCMdd, FCMddDTW and spFDTW all split the TR dataset into four clusters, which are

sorted according to the p-values calculated. In other words, each Cluster 1, having the lowest

p-value, is the most important and accurate cluster of the corresponding algorithm. Fig 6B

shows the SY dataset in exactly the same way, and the difference lies in the number of final

clusters. It can be seen from Fig 6 that our spFDTW has the Cluster 1 with the lowest p-value,

and other clusters with comparable p-values. Results of this set of experiments show that data

can be grouped into more meaningful clusters, and our algorithm could provide more signifi-

cant clusters.

Fig 7 shows the comparison of three Single-Pass approaches on the 12 datasets in terms of

-Log10(CS). The average -Log10(CS) values of these four algorithms are 5.63, 7.93, 7.53 and

13.31 respectively, which shows clustering score values of our spFDTW are much lower, and

thus this algorithm achieves a significant improvement than spFCM, spHFCM and

FCMddDTW.

After comparing the three Single-Pass approaches, we begin to analyze experimental results

of the three Online algorithms, oFCM, oFCMdd and oFDTW. In Table 4, these three algo-

rithms and the FCMddDTW are compared, in terms of F-Measure and Entropy. As shown in

Table 4, oFDTW achieves the highest F-Measure values on 6 datasets, and the lowest Entropy

values on 6 datasets. There are 6 datasets where the oFDTW cannot perform the best in terms

of F-Measure, SY, ECG, PPTW, PPOC, WF and IPD. On four of these six datasets, the

oFCMdd achieves the highest clustering accuracy, and the FCMddDTW and oFDTW earns

the second and third best accuracy. In terms of Entropy, although there are six datasets where

the oFDTW cannot perform the best, SY, ECG, POC, PPOC, WF and IPD, the Entropy values

of oFDTW are all near-optimal. The average F-Measure values of these four (oFCM, oFCMdd,

Fig 7. Comparison of the Single-Pass fuzzy clustering algorithms in terms of -Log10(CS).

https://doi.org/10.1371/journal.pone.0197499.g007
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FCMddDTW, oFDTW) algorithms on the twelve datasets are 0.62, 0.68, 0.650 and 0.71 respec-

tively, and the average Entropy values are 0.26, 0.25, 0.23 and 0.23 respectively. It shows that

the oFDTW is better than other three algorithms in terms of F-Measure and Entropy on these

datasets.

Another thing to highlight from Table 3 and Table 4 is the comparison between the Single-

Pass mode and the Online mode. As shown in Table 3 and Table 4, the average F-Measure val-

ues of spFDTW and oFDTW are 0.72 and 0.71 respectively, and the average Entropy values

are both 0.23, which shows the spFDTW is comparable to oFDTW in terms of accuracy. On

some datasets, spFDTW are better. And oFDTW can also exhibit better performance on some

datasets.

The comparison between the Euclidean distance and DTW distance can also be provided

based on Tables 3 and 4. Table 3 illustrates the results of spFCM, spFCMdd, FCMddDTW and

spFDTW. Among these four algorithms, spFCM and spFCMdd use the Euclidean distance,

and FCMddDTW and spFDTW employ the DTW distance. The results in Table 3 show that

our spFDTW is the best, FCMddDTW is better than spFCM and slightly worse than

spFCMdd. It tells us that, although FCMddDTW uses the DTW distance that is more suitable

Fig 8. Comparison of the Online fuzzy clustering algorithms in terms of p-value on two datasets, (a) TR and (b) SY.

https://doi.org/10.1371/journal.pone.0197499.g008
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for time series data, its clustering accuracy does not make a significant improvement. Both

spFCM and spFCMdd use traditional Euclidean distance which is considered to be outdated,

however their accuracy is comparable because they employ an incremental mode which

assigns different weights to objects according to their different importance. So we can see that

although DTW is considered more accurate than Euclidean distance in time series data analy-

sis, it might be not decisive in incremental clustering. Besides the distance measure, the

weighted clustering algorithm is also important. The similar conclusion can also be drawn

from the experimental results of oFCM, oFCMdd, FCMddDTW and oFDTW as Table 4. In a

word, in incremental clustering, not only distance measure but also weighted algorithm are

both important. Therefore, the improvements of our spFDTW and oFDTW come from not

only the DTW distance but also the incremental clustering mechanism.

Now we continue to study the experimental results of Online algorithms. Like above work

of the Single-Pass mode, we calculated p-values and CS based on clustering results for the three

Online algorithms and FCMddDTW. Similarly, confined to the length of this paper, we just

give the p-value results on TR and SY, as Fig 8A and Fig 8B respectively. In Fig 8A, four clus-

ters, generated by oFCM, oFCMdd, FCMddDTW and oFDTW algorithms on the TR dataset,

are sorted according to the p-values calculated. Fig 8B shows the clustering results in terms of

p-values on SY dataset. It can be seen from Fig 8 that our oFDTW has the Cluster 1 with the

lowest p-value, and other clusters with comparable p-values. Results of this set of experiments

show that our oFDTW could also provide more significant clusters.

Fig 9 shows the comparison of three Online approaches and FCMddDTW on the 12 data-

sets in terms of–Log10(CS). The average -Log10(CS) values of these four algorithms are 5.03,

4.19, 7.53 and 7.69 respectively, which shows clustering score values of our oFDTW are much

lower, and thus this algorithm achieves a significant improvement than other three algorithms.

Conclusion

Most commonly, a time series is a series of data points listed in time order. Time series data

often contains the natural laws of things, which invests time series analysis great importance.

Nowadays, we usually use such techniques as data mining for analyzing time series data in

order to extract meaningful statistics and other characteristics of the data.

Fig 9. Comparison of theOnline fuzzy clustering algorithms in terms of -Log10(CS).

https://doi.org/10.1371/journal.pone.0197499.g009
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With the scale of time series data constantly expanding, in order to group time series data,

researchers designed some incremental clustering algorithms, such as spFCMdd and oFCMdd.

However, as we all know, for calculating the pair-wise similarity of time series, employing a

DTW distance is a desirable choice. Therefore, in this paper, we propose two incremental clus-

tering algorithms, spFDTW and oFDTW. Coincident with employing the DTW similarity

measure, these two algorithms select FCMdd as the kernel, instead of FCM, which could miti-

gate the impact of noisy data and help to improve clustering accuracy. In order to verify the

effectiveness of our algorithms, we carried out experiments on twelve datasets including gen-

eral datasets and biomedical datasets, and experimental results show that our algorithms out-

perform some existing prominent Single-Pass and Online fuzzy clustering algorithms.

Appendix A

In this section, we will study the convergence of spFDTW and oFDTW. Since these two algo-

rithms both have WFCMdd-DTW as the basic algorithm, we need only to prove the conver-

gence of WFCMdd-DTW.

It is known to all that a monotone bounded function is convergent. There are therefore two

theorems to be proven. The first theorem is that the value of JWFCMdd-DTW in Eq (5) never

increases in the process of WFCMdd-DTW, and the second theorem is that JWFCMdd-DTW is a

bounded function.

Theorem 1

In every iteration of WFCMdd-DTW, the newer value of uci never increases the value of the

objective function JWFCMdd-DTW in Eq (5).

Proof

In the objective function JWFCMdd-DTW in Eq (5), if we consider the parameter uci as a single

variable and other parameters as constants, the function will be rewritten as:

JWFCMdd� DTWðUÞ ¼
XC

c¼1

XN

i¼1

wiu
m
ci dtwðxi; vcÞ ð19Þ

Now, Theorem 1 can be proven by showing that the u
�

(the updated uci given by Eq (6)) is

the local minima of the objective function JWFCMdd-DTW(U) by Lagrange multiplier method.

Let us consider the following Hessian matrix Δ2JWFCMdd-DTW(u
�

) first.

D
2JWFCMdd� DTWðuÞ ¼

@2JðuÞ
@u11@u11

⋯
@2JðuÞ
@u11@uCN

⋮ ⋱ ⋮

@2JðuÞ
@uCN@u11

⋯
@2JðuÞ

@uCN@uCN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

w1mðm � 1Þdtwðx1; v1Þum� 2
11

⋯ 0

⋮ ⋱ ⋮

0 ⋯ wNmðm � 1ÞdtwðxN ; vcÞum� 2
CN

2

6
6
6
4

3

7
7
7
5
ð20Þ

It is obvious that the Hessian matrixΔ2J(u
�

) is positive definite. Moreover, before we deduce
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the value of uci as Eq (6), we let (@JWFCMdd-DTW(uci)/@uci) = 0. Therefore, the updated uci is

indeed a local minima of JWFCMdd, and it never increases the objective function value.

Theorem 2

In every iteration of WFCMdd-DTW, the newer value of vc never increases the value of the

objective function JWFCMdd-DTW in Eq (5).

Proof

Following the method used by Carvalho et al. [25], we prove this theorem in this section. We

consider the parameter vc in Eq (5) as a single variable and other parameters as constants. Let t
be the iteration number. The objective function JWFCMdd-DTW in Eq (5) will be rewritten as:

JWFCMdd� DTWðVÞ ¼
XC

c¼1

XN

i¼1

wiu
m
ci dtwðxi; vcÞ ð21Þ

Now, we need to prove that JWFCMdd-DTW(vt c)�JWFCMdd-DTW(vt+1 c), which means that the

value of JWFCMdd-DTW(V) does not increase at each iteration.

In order to search for the best cluster medoid, the WFCMdd-DTW algorithm starts from

(V(t-1),W(t-1),U(t-1)) and ends with (V(t),W(t-1),U(t-1)), t is the number of iteration, moreover,

W(t-1) = (w1
(t-1),. . .,wc

(t-1)) and U(t-1) = (u1
(t-1),. . .,un

(t-1)), which represent the wi and uci in Eq

(5) respectively, are kept fixed while the cluster medoid vc in Eq (5) is updated. Thus, we can

rewrite the objective function JWFCMdd-DTW in Eq (5) as:

JðV ðtÞÞ ¼ JðvðtÞ1 ; . . .; vðtÞc Þ ¼
XC

c¼1

Jcðv
ðtÞ
c Þ ¼

XC

c¼1

XN

i¼1

ðuðt� 1Þ

ci Þ
mwðt� 1Þ

c dtwðxi; v
ðtÞ
c Þ ð22Þ

Because

JðV ðtÞ;WðtÞ;U ðtÞÞ ¼
XC

c¼1

XN

i¼1
wðtÞc ðu

ðtÞ
ci Þ

mdtwðxi; v
ðtÞ
c Þ ð23Þ

and

JðV ðtþ1Þ;WðtÞ;U ðtÞÞ ¼
XC

c¼1

XN

i¼1
wðtÞc ðu

ðtÞ
ci Þ

mdtwðxi; v
ðtþ1Þ

c Þ ð24Þ

Then we have,

V ðtþ1Þ ¼ arg min
V¼ðv1 ;...vcÞ

XC

c¼1

XN

i¼1

wðtÞc ðu
ðtÞ
ci Þ

mdtwðxi; v
ðtþ1Þ

c Þ ð25Þ

and thus,

JðV ðtÞ;WðtÞ;U ðtÞÞ⩾Jð𝈍ðtþ1Þ;WðtÞ;UðtÞÞ: ð26Þ

Therefore Theorem 2 holds.

Theorem 3

In every iteration of WFCMdd-DTW, the newer value of wi never increases the value of the

objective function JWFCMdd-DTW in Eq (5) and does not change its convergence property.
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Proof

In order to compute the weight parameter, the WFCMdd-DTW starts with (V(t-1),W(t-1),U(t-1))

and ends with (V(t-1),W(t),U(t-1)), moreover, V(t-1) = (v1
(t-1),. . .,vc

(t-1)) and U(t-1) = (u1
(t-1),. . .,

un
(t-1)), which represent the vc and uci in Eq (5) respectively, are kept fixed while the weight

parameter is updated. Thus, we can rewrite the objective function JWFCMdd-DTW in Eq (5) as

JðWðtÞÞ ¼ JðwðtÞ1 ; . . .;wðtÞc Þ ¼
XC

c¼1

JcðwðtÞc Þ ¼
XC

c¼1

XP

j¼1

wðtÞc Jc

¼
XC

c¼1

XN

i¼1

ðuðt� 1Þ

ci Þ
mwðtÞc dtwðxi; vðt� 1Þ

c Þ

ð27Þ

Because

JðV ðtÞ;WðtÞ;U ðtÞÞ ¼
XC

c¼1

XN

i¼1
wðtÞc ðu

ðtÞ
ci Þ

mdtwðxi; v
ðtÞ
c Þ ð28Þ

and

JðV ðtÞ;Wðtþ1Þ;U ðtÞÞ ¼
XC

c¼1

XN

i¼1
wðtþ1Þ

c ðuðtÞci Þ
mdtwðxi; v

ðtÞ
c Þ ð29Þ

Then we have,

Wðtþ1Þ ¼ ðwðtþ1Þ

1 ; . . .;wðtþ1Þ

c Þ ¼ arg min
W¼ðw1 ;...;wcÞ

XC

c¼1

XN

i¼1

wðtþ1Þ

c ðuðtÞci Þ
mdtwðxi; v

ðtÞ
c Þ ð30Þ

and thus,

JðV ðtÞ;WðtÞ;U ðtÞÞ⩾Jð𝈍ðtÞ;Wðtþ1Þ;UðtÞÞ: ð31Þ

Assume that the stationarity of the JWFCMdd-DTW is achieved in the iteration t = T. Then we

have that J(T) = J(T+1) and then J(V(t),W(t),U(t)) = J(V(t+1),W(t+1),U(t+1)). When the membership

degree represented by U(T) and the weight parameter W(T) which are the same to uci and wi in

Eq (5) separately are kept fixed, we can conclude that,

JðV ðtÞ;WðtÞ;U ðtÞÞ ¼ JðV ðtþ1Þ;WðtÞ;U ðtÞÞ: ð32Þ

When the membership degree represented by U(T) and the medoid V(T) which are the same

to uci and vc in Eq (5) separately are kept fixed, we can conclude that,

JðV ðtþ1Þ;WðtÞ;U ðtÞÞ ¼ JðV ðtþ1Þ;Wðtþ1Þ;U ðtÞÞ: ð33Þ

Thus, we have,

JðV ðtÞ;WðtÞ;U ðtÞÞ ¼ JðV ðtþ1Þ;WðtÞ;U ðtÞÞ ¼ JðV ðtþ1Þ;Wðtþ1Þ;U ðtÞÞ: ð34Þ

Therefore the Theorem 3 holds for all t�T.

Theorem 4

The objective function of JWFCMdd-DTW in Eq (5) is bounded.

Proof

Since the minimum value of uci is 0, and dtw(xi, vc)�0, we know that the value of JWFCMdd-DTW

is greater than or equal to 0. In other words, this function is bounded.
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Corollary 1

The WFCMdd-DTW algorithm converges to a local minimum of the optimization, with the

update formulae above.

Proof

Theorems 2–3 indicate that the procedure of membership updating never increases the value

of JWFCMdd-DTW. And Theorem 4 tells us the objective function of JWFCMdd-DTW is bounded.

Therefore, the iteration process should stop somewhere before or when it reaches the limit.
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