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Abstract: In terms of reduced toxicity, the biologically inspired green synthesis of nanoparticles
has emerged as a promising alternative to chemically fabricated nanoparticles. The use of a highly
stable, biocompatible, and environmentally friendly aqueous extract of Cynara cardunculus as a
reducing and capping agent in this study demonstrated the possibility of green manufacturing of
silver nanoparticles (CC-AgNPs). UV–visible spectroscopy validated the development of CC-AgNPs,
indicating the surface plasmon resonance (SPR) λmax band at 438 nm. The band gap of CC-AgNPs
was found to be 2.26 eV. SEM and TEM analysis examined the surface morphology of CC-AgNPs,
and micrographs revealed that the nanoparticles were spherical. The crystallinity, crystallite size, and
phase purity of as-prepared nanoparticles were confirmed using XRD analysis, and it was confirmed
that the CC-AgNPs were a face-centered cubic (fcc) crystalline-structured material. Furthermore,
the role of active functional groups involved in the reduction and surface capping of CC-AgNPs
was revealed using the Fourier transform infrared (FTIR) spectroscopic technique. CC-AgNPs were
mostly spherical and monodispersed, with an average size of 26.89 nm, and were shown to be stable
for a longer period without any noticeable change at room temperature. Further, we checked the anti-
fungal mechanism of CC-AgNPs against C. auris MRL6057. The minimum inhibitory concentrations
(MIC) and minimum fungicidal concentrations (MFC) were 50.0 µg/mL and 100.0 µg/mL respec-
tively. The cell count and viability assay confirmed the fungicidal potential of CC-AgNPs. Further,
the analysis showed that CC-AgNPs could induce apoptosis and G2/M phase cell cycle arrest in
C. auris MRL6057. Our results also suggest that the CC-AgNPs were responsible for the induction of
mitochondrial toxicity. TUNEL assay results revealed that higher concentrations of CC-AgNPs could
cause DNA fragmentation. Therefore, the present study suggested that CC-AgNPs hold the capacity
for antifungal drug development against C. auris infections.

Keywords: green synthesis; polyphenols; cell cycle; Candida auris

1. Introduction

Green nanotechnology is a fast-emerging science with potential applications in the
pharmaceutical, healthcare, biomedical, and drug delivery fields [1–3]. It was reported
that a variety of metallic nanoparticles, including gold and silver nanomaterials, are being
developed for use in a wide range of scientific applications [4]. Because of their excel-
lent antioxidant and antibacterial capabilities, plasmonic silver nanoparticles (AgNPs)
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have recently received a lot of attention [5,6]. The surface plasmon resonance (SPR) of
metal nanoparticles makes them interesting because of their applications in photocatalysis,
sensors, biodevices, drug storage and loading, antimicrobial activity, and spectroscopic
applications [7–11]. The SPR of the metal nanoparticles depends on the shape, size, and
surrounding dielectric medium, as SPR is the resonant oscillation of conduction electrons
under appropriate light illumination [12–14]. Silver nanoparticles are well-known noble
metallic materials with strong antimicrobial and photocatalytic properties because of their
high sensitivity, chemical stability, and better light absorption and optical properties [15–17].

The synthesis of metal nanoparticles involves various physical and chemical routes,
which are quite expensive, require high energy, and have various toxicity issues associ-
ated with these approaches [18], therefore new cost-efficient, non-toxic, and eco-friendly
synthesis techniques were adopted [19]. Bioactive substances, such as plant materials and
microbes, and biowastes, such as vegetable waste, fruit peel trash, eggshell, and agricultural
waste; can be used to synthesize different metal nanoparticles [20]. The restrictions of syn-
thetic approaches are overwhelmed using green chemistry methods, which are economical
and require less time to synthesize nanoparticles. Hence, many researchers performed the
synthesis of nanoparticles via a green chemistry approach [21–23]. The metabolites present
in the plant extract play a significant role in the reduction, nucleation, growth, stability, and
capping of the silver nanoparticles [24]. The reducing capacity of plant extracts depends
on water-soluble phenolic compounds, which have a key function in the reduction of Ag
ions [24]. The method used to prepare metallic nanoparticles, nature of the solvent, mixing
ratio, concentration, pH, temperature of the reaction mixture, and strength of the reducing
agent are all key factors that influence the size, morphology, and stability of the nanopar-
ticles [25–27]. Furthermore, Kim et al. deduced the concentration-dependent inhibitory
cytotoxicity against Escherichia coli and Staphylococcus aureus using silver nanoparticles
within a range of 13.5 nm [28]. Pauksch et al. studied cell proliferation, viability, and
bone-forming cells upon incubation with AgNPs over time and in a dose-dependent man-
ner [29]. Further, emphasis on AgNPs in biomaterials may lead to decreased cytotoxicity
due to the possible reduced chance of AgNP cellular uptake; meanwhile, a window may
open for future AgNP clinical and pharmaceutical applications in real-time medicinal
practice. Along similar lines, the biocompatibility of biogenic AgNPs was investigated by
P. Kumar Panda et al. in zebrafish embryos. However, both computational and experi-
mental analysis was utilized in a concentration-dependent manner, the AgNPs enhanced
oxidative stress accumulation and internalization depending on an intrinsic atomic interac-
tion with the proteins, including sod1, tp53, and apoa1-mttp. In addition, it was ascertained
that the biogenic AgNPs developed from silver grass were significantly biocompatible and
eco-compatible and could be used for biomedical and ecological applications [30]. Silver
nanoparticles, those developed via biogenic essence are proven to be biocompatible, such
as oligodynamic characteristics of such biogenic NPs have been explored for thousands
of years ago. In particular, cups made up of silver were used as a therapeutic agent in the
Roman Empire [31]. It is worth mentioning that based on the inherent microbial inhibition
against fungi and bacteria on the surface of AgNPs, this makes them a comparatively
efficient antimicrobial candidate relative to other biogenic metal nanoparticles [32–34]. The
biocompatibility of AgNPs was further ascertained after the continuous release of small
amounts of silver ions from the surface of AgNPs, which was responsible for the inhibition
of bacterial growth on the surface of nanoparticles, as well as on the metal surface. In
real life medical applications, AgNPs are being used in medical operations, including
impregnated catheters and in wound dressings [35]. Moreover, the AgNPs are being used
as highly antibacterial agents nowadays and show potent efficacy as antimicrobial agents
at concentrations ≤10 µg/g and retain an efficient potency against biofilm formation, as
reported in previous studies [28,36–40]. Keeping the biogenic and biocompatible yield of
polyphenol-capped silver nanoparticles, along with their inherent antimicrobial properties,
in mind, here we aimed to investigate the antifungal activities against C. auris strains.
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Silver nanoparticles synthesized using green chemistry approaches show antioxi-
dant [41], antibacterial, and anti-inflammatory properties [42]. Recently, bloodstream
infections caused by Candida auris have been spreading and widely reported in different
parts of the globe [43]. This species of Candida was initially reported in 2009 in Japan [44]
as an evolving multidrug-resistant (MDR) yeast pathogen and is mainly responsible for
septicemia, resulting in a high rate of mortality. The spread of C. auris is identified as a risk
in healthcare units and leads to outbreaks. Additionally, unlike other species of Candida, this
pathogen can persist and flourish for a long time on both dry and moist surfaces in clinics
and hospitals [45,46]. The MDR property of C. auris was described [47] and the scenario
becomes further complicated by the formation of biofilms [48] and active efflux pumps.
Therefore, there is a need to look for new and efficient antifungal strategies to combat this
evolving yeast pathogen and prevent nosocomial outbreaks. Considering the importance
of silver nanoparticles, the present work deals with the Cynara cardunculus extract assisted
preparation of silver nanoparticles using a simple, nontoxic, and economical approach.
The structural properties of CC-AgNPs were investigated using different spectroscopic
and microscopic techniques to determine the surface morphology, elemental composition,
crystallinity, and optical properties. Further, the present study aimed to investigate the
antifungal activities of CC-AgNPs against C. auris strains.

2. Materials and Methodology
2.1. Materials

Cynara cardunculus, commonly known as artichoke, was collected from a local market
in Jeddah, Saudi Arabia. Silver nitrate (AgNO3, ≥99.0%) and ethanol (CH3CH2OH, 95.0%)
were purchased from Sigma–Aldrich, St. Louis, MO, USA. All the chemicals used in this
study were of analytical grade and were used without additional treatment. Highly pure
double-distilled water (DDW) was utilized for the preparation of silver precursor and
Cynara cardunculus solution.

2.2. Preparation of Cynara cardunculus Extract

The collected Cynara cardunculus were washed several times with distilled water, dried
until the moisture was completely removed, and then ground into a fine powder. The
Cynara cardunculus powder (10 g) was dispersed in an Erlenmeyer flask containing 250 mL
distilled water and further heated at 80 ◦C for 60 min to achieve the completed extraction
of biomolecules. The unfiltered solution was kept at room temperature for 12 h, and after
that, the resulting extract was filtered through Whatman filter paper No. 1 using vacuum
filtration apparatus. The filtered aqueous solution of Cynara cardunculus was stored in
a refrigerator at 4 ◦C for further experimental use. It is recommended that fresh Cynara
cardunculus extract (no more than 5 days after extraction) is used for synthesizing CC-AgNPs.

2.3. Preparation and Physicochemical Characterization of CC-AgNPs

The preparation of the silver nanoparticles was initiated by optimizing the amount of
Cynara cardunculus extract required for the synthesis of CC-AgNPs. After several optimizing
experiments, 14 mL of Cynara cardunculus extract was added to 20 mL of 1.4× 10−4 M silver
nitrate solution under continuous stirring using a magnetic stirrer. The color of the reaction
mixture changed after just 5 min of reaction time and was analyzed using a double-beam
Thermo Scientific Evolution 300 UV–visible spectrophotometer. The Cynara-cardunculus-
mediated CC-AgNPs were purified, and the precipitated pellets were collected by using a
BIOBASE centrifuge at a centrifugation speed of 5000 rpm for 20 min. The acquired pellets
were then dispersed in distilled water and successively washed several times to completely
remove the unbound compounds from the surface of the CC-AgNPs. Furthermore, the
obtained material was subsequently dried at 90 ◦C for 5 h and then calcined at 500 ◦C for
3 h in a muffle furnace to remove all surface impurities and increase the crystallinity.

The successful reduction of the silver metal ions using Cynara cardunculus extract was
initially validated by recording the absorbance of the reaction mixture in the wavelength
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range of 200–800 nm using a double-beam Thermo Scientific Evolution 300 UV–visible spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA, USA). All spectra were recorded
at room temperature, in a quartz cuvette cell (path length 1 cm). A powder X-ray diffrac-
tometer (XRD) (D8 Advance, Bruker, Karlsruhe, Germany) set to 40 kV and 40 mA with
1.54 Å CuKα radiation was used to acquire the XRD pattern of the as-prepared CC-AgNPs
in the scan range of 20–80 θ. Fourier transform infrared spectroscopy (FTIR) analysis of
CC-AgNPs was performed on a Bruker ALPHA II FT-IR (Bruker Optics GmbH & Co.,
Rosenheim, Germany) spectrometer to assess the possible involvement of the functional
groups in the Cynara cardunculus extract in the reduction and stabilization/capping of the
CC-AgNPs. Transmission electron microscopy (TEM) (JOEL, JEM-2100F, Tokyo, Japan;
accelerating voltage of 200 kV) measurements were performed to analyze the morphology
and the particle size distribution of the CC-AgNPs. Scanning electron microscopy (SEM)
(ZEISS-SEM, Oberkochen, Germany) equipped with an energy dispersive spectroscopy
(EDS) was used to investigate the surface morphology and the elemental composition of the
CC-AgNPs. Malvern Zetasizer (Malvern Panalytical Ltd., Enigma Business Park, Malvern,
UK) examined the zeta potential and the particle size distribution of the CC-AgNPs. The
thermal stability of the as-prepared CC-AgNPs was analyzed using thermogravimetric
analysis (TGA) in the temperature range of 30–800 ◦C under a N2 atmosphere with a heat-
ing rate of 10 ◦C/min using a Perkin-Elmer Pyris Diamond thermogravimetric analyzer
(PerkinElmer LAS (UK)Ltd., Llantrisant, UK).

2.4. Antifungal Activity of CC-AgNPs

In the present study, the C. auris clinical strain MRL6057 was used. The strain was
obtained from the National Institute of Communicable Diseases (NICD), South Africa, and
preserved in the department as a glycerol stock. The antifungal action of CC-AgNPs was
evaluated against C. auris MRL6057 by using a broth microdilution assay recommended
in the standard M27 document (fourth ed.) [49]. The concentrations used for the test NPs
and positive control/amphotericin B (AmB; Sigma-Aldrich, St. Louis, MO, USA) were
200–0.19 µg/mL and 16–0.031 µg/mL, respectively. Before reading the MIC values, which
are the minimum concentration of the compound/drug that inhibited the yeast growth, all
the plates were kept at 37 ◦C for 48 h. Later, the minimum fungicidal concentration (MFC)
was estimated by further growing the cells from each well at 37 ◦C for 24 h on Sabouraud
dextrose agar (SDA; Merck, Darmstadt, Germany). Again, the lowest concentration with
less than five colonies on the agar plate was recorded as the MFC.

2.5. Effect on Cell Viability and Count

The candidacidal phenomenon of CC-AgNPs was quantified using the count and
viability kit provided by MuseTM. Briefly, yeast cells were grown for 8–10 h in Sabouraud
dextrose broth (SDB) (Merck (Pty) Ltd., Johannesburg, South Africa) followed by centrifu-
gation (3000 rpm, 5 min) and resuspension in fresh growth media. The yeast cells were
adjusted to a density of 1 × 106 CFU/mL and subjected to various strengths of test NPs
(0.5 MIC, MIC, and 2 MIC) for 4 h. Afterward, the yeast cells were washed and mixed
with a MuseTM kit reagent (20 µL of yeast cells + 380 µL reagent), then incubated for 5 min
at room temperature. The viability and cell count were estimated using a MuseTM cell
analyzer. The experiment included a negative and positive control (H2O2, 10 mM; Merck,
Darmstadt, Germany).

2.6. Effect on Cell Cycle

The impact of NPs on the yeast cell cycle was investigated using a Muse™ cell cycle
kit following the steps given by the manufacturer. Briefly, the cells were propagated for
8–10 h in a fresh medium (SDB) and then centrifuged at 3000 rpm for 4 min. Then, the
cells were re-suspended in a fresh medium and the turbidity was adjusted to 1 × 106

CFU/mL. Later, the cells were subjected to various strengths of CC-AgNPs (0.5 MIC, MIC,
and 2 MIC) for 4 h. In post-incubation, the cells were washed and fixed in chilled 70% ethyl
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alcohol (Sigma Aldrich Co., St. Louis, MO, USA), mixed with cell cycle reagent in equal
proportions, and incubated in the dark for 30 min. The experiment included both negative
and positive control.

2.7. Effect on Mitochondrial Membrane Potential

The impact of test NPs on the mitochondrial membrane potential of C. auris was
measured using a JC-10 assay kit (Abcam, Cambridge, UK). The experiment was done
using the steps given by the manufacturer. The cells (mid-log phase) were subjected to
various concentrations of test NPs (0.5 MIC, MIC, and 2 MIC) for 4 h. They were subjected
to protoplast preparation, as described previously by Lone et al. [50]. Then, 90 µL of
C. auris protoplasts were mixed with 50 µL JC-10 dye and distributed in different wells of
a 96-well microtiter plate (clear bottom-black walled; Thermo Fisher Scientific, Dreieich,
Germany) for 1 h in the dark. After that, 50 µL of buffer-B was added to the plate and
centrifuged for 2 min at 800 rpm. The readings were captured at Ex/Em = 490/530 nm
(X) and 540/590 nm (Y) in microplate readers (Molecular Devices, San Jose, CA, USA).
The variation was measured in terms of the Y/X ratio. A decreased ratio confirmed the
depolarization of the mitochondrial membrane. Moreover, the experiment included both
negative and positive control.

2.8. Effect on DNA Fragmentation

The DNA fragmentation and condensation in C. auris MRL6057 due to CC-AgNPs
were examined using a terminal deoxynucleotidyl transferase dUTP nick-end labeling
(TUNEL) assay. The protocol used the In Situ Cell Death Detection Kit, Fluorescein (Roche
Diagnostics, Mannheim, Germany), and the instructions provided by the manufacturer
were followed. Briefly, C. auris cells were subjected to various concentrations of NPs
(0.5 MIC, MIC, and 2 MIC) for 4 h and were subjected to protoplast preparation. Later,
Triton X-100 (0.25%) was used to permeabilize the protoplasts, followed by incubation
at 37 ◦C for 20 min. Later, the cells were mixed with TUNEL reagent and incubated
at 37 ◦C for 1 h in a dark humidified box. Subsequently, samples were examined with
fluorescence microscopy at Ex/Em = 495/519 nm (Carl Zeiss Microscopy, Jena, Germany).
The experiment included both negative and positive control.

2.9. Haemolytic Activity

The cytotoxic potential of various concentrations of given NPs (0.5MIC, MIC, and
2MIC) was evaluated on horse RBCs (NHLS, Johannesburg, South Africa) and stated as
percent hemolysis. The method was adopted from a method reported elsewhere [50]. One
percent Triton X-100 was considered as the positive control, and sterile PBS solution was
considered the negative control. The calculation for percent hemolysis was as follows:

% Hemolysis =
[(A450 o f treated sample)− (A450 o f negative control)]
[(A450 o f positive control)− (A450 o f negative control)]

× 100 (1)

Experiments were repeated thrice, and a two-way ANOVA test was used for de-
termining the statistical significance of the results. Additionally, p-values ≤ 0.05 were
measured statistically.

3. Results and Discussion

The green and sustainable fabrication of metal nanomaterials using polyphenolic com-
pounds has attracted huge attention because it has more advantages over the chemical route
synthesis of nanomaterials [51,52]. Here, we demonstrated a simple polyphenol-capped
biogenic reduction method to prepare silver nanoparticles using Cynara cardunculus extract
as a reducing and capping/stabilizing agent. The incorporation of Cynara cardunculus
extract in silver nitrate aqueous solution resulted in a gradual color change of the reaction
mixture from pale yellow to brown and finally to a deep brown, which implied the for-
mation of stable CC-AgNPs. The existing water-soluble polyphenolic molecules in Cynara
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cardunculus extract successfully reduced the available silver metal ion (Ag+) to metallic
silver nanoparticles (Ag0) [53]. The bioreduction of metal ions to metallic nanoparticles
takes place through an activation step, which involves the reduction of available silver
metal ions followed by the nucleation and growth steps in which metal nanoparticles of
definite shapes and sizes are formed [54]. Finally, the stabilization step takes place, in
which the Cynara cardunculus extract metabolites similarly play the role of surface-capping
agents to prevent the nanoparticles from agglomerating [54]. The proposed mechanism of
CC-AgNPs formation via Cynara cardunculus extract is depicted in systematic Figure 1.

J. Fungi 2022, 8, x FOR PEER REVIEW 6 of 22 
 

 

3. Results and Discussion 
The green and sustainable fabrication of metal nanomaterials using polyphenolic 

compounds has attracted huge attention because it has more advantages over the chemi-
cal route synthesis of nanomaterials [51,52]. Here, we demonstrated a simple polyphenol-
capped biogenic reduction method to prepare silver nanoparticles using Cynara carduncu-
lus extract as a reducing and capping/stabilizing agent. The incorporation of Cynara car-
dunculus extract in silver nitrate aqueous solution resulted in a gradual color change of 
the reaction mixture from pale yellow to brown and finally to a deep brown, which im-
plied the formation of stable CC-AgNPs. The existing water-soluble polyphenolic mole-
cules in Cynara cardunculus extract successfully reduced the available silver metal ion 
(Ag+) to metallic silver nanoparticles (Ag0) [53]. The bioreduction of metal ions to metallic 
nanoparticles takes place through an activation step, which involves the reduction of 
available silver metal ions followed by the nucleation and growth steps in which metal 
nanoparticles of definite shapes and sizes are formed [54]. Finally, the stabilization step 
takes place, in which the Cynara cardunculus extract metabolites similarly play the role of 
surface-capping agents to prevent the nanoparticles from agglomerating [54]. The pro-
posed mechanism of CC-AgNPs formation via Cynara cardunculus extract is depicted in 
systematic Figure 1. 

 
Figure 1. Schematic diagram showing the possible mechanism after the biosynthesis of CC-AgNPs 
using Cynara cardunculus extract. 

Figure 1. Schematic diagram showing the possible mechanism after the biosynthesis of CC-AgNPs
using Cynara cardunculus extract.

Cynara cardunculus, commonly named the artichoke plant, originated in southern
Europe, and belongs to the family Asteraceae, which includes daisies and sunflowers, and
is mostly cultivated as a horticultural crop in Italy [55–57]. The different parts of this plant
possess the phytochemical composition, including (i) phenolic acid derivatives: mono and
di-caffeoylquinic acid compounds [58,59] and neochlorogenic and chlorogenic acids [60,61];
(ii) flavonoids: luteolin, luteolin-7-O-glycoside, and luteolin-7-O-rutinoside [62]; (iii) sesquiter-
pene glycosides: cynarascolo-side A/B and cynarascoloside C; (iv) sesquiterpene lactones:
cynaropicrin and grossheimin [63]; (v) triterpene saponins, including cynarasaponin E, J,
C, A/H, and F/I; and (vi) the presence of amino and fatty acids was reported by Farag
et al. in Cynara cardunculus extract, mostly concentrated in the roots, including hydroxy-
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octadecatrienoic acid, hydroxy-oxo-octadecatrienoic acid, tyrosyl-l-leucin, and dihydroxy-
octadecatrienoic acid [64].

The UV-visible spectra were obtained as the initial analysis to record the formation of
Cynara-cardunculus-extract-mediated CC-AgNPs. In general, UV-vis spectra were analyzed
to infer valuable information about the shape, size, and distribution of the biosynthesized
nanoparticles established using surface plasmon resonance (SPR) bands [65]. The UV-
vis spectrum is important for deducing the role played by plant extract with inherited
phytochemical bioactive compounds being involved in the biosynthesis of CC-AgNPs.
UV-visible spectroscopy is a useful technique to determine the SPR band of the noble metal
silver nanoparticles (plasmonic) due to the free electron excitation [65]. The plasmonic
nanoparticles are quite distinguished from other magnetic, polymeric, and semiconductor
nanoparticles because of their unique surface plasmon resonance [65]. The position of
the SPR peak generally depends on the shape, state of aggregation, and particle size of
the nanoparticles [65–68]. In this study, the initial physical observation of color change in
colorless silver nitrate solution with the addition of Cynara cardunculus extract confirmed
the biosynthesis of polyphenol capped AgNPs. Meanwhile, with the addition of Cynara
cardunculus extract to colorless silver nitrate solution, the color of the reaction mixture
changed from light yellow to brown within 5 to 10 min of incubation. Furthermore,
the reaction mixture turned dark brown after 30 min of incubation, demonstrating the
reduction of silver metal ions (Ag+) to silver nanoparticles (Ag0). The Cynara cardunculus
extract phytochemicals acted as reducing and stabilizing agents in the biogenic synthesis
of stable CC-AgNPs. The present study involved further exploration using different
AgNO3 concentrations and different volumes of Cynara cardunculus aqueous extract, and
the stability of the as-prepared CC-AgNPs was also investigated by recording the UV-
visible spectra at different times from 30 min to 360 min, as shown in Figure 2a–c. Figure 2a
clearly shows a sharp peak maximum at ca. 438 nm; meanwhile, with an increase in time
and concentration of AgNO3, the increased absorption intensities were predominantly
intensified. The fact of increased intensity with increased concentration of AgNO3 also
emphasized the biogenesis of CC-AgNPs from the Cynara cardunculus extract increases. It
is worth mentioning that the observed increase in the absorption intensity with the increase
in time was due to the reduction of silver ions (Ag+) to elemental silver (Ag0). To determine
the role of increased plant extract on the biosynthesis of CC-AgNPs, different plant extract
concentrations ranging from 2 mL to 14 mL were explored under UV-vis spectra, as depicted
in Figure 2b. The observed data revealed that with an increase in the concentration of
plant extract, an increased absorbance intensity was obtained, with a maximum peak
intensity at ca. 438 nm, further demonstrating the biogenesis of many spherical CC-AgNPs
at higher concentrations of Cynara cardunculus extract. The study was further extended
to establish the role of different time intervals ranging from 30 min–24 h under optimal
reaction conditions, as depicted in Figure 2c. Figure 2d shows the UV-vis spectrum of the
silver nitrate solution, Cynara cardunculus extract, and CC-AgNPs under optimal reaction
conditions. Furthermore, the UV-visible spectra data revealed that the absorbance intensity
of the reaction mixture increased with time, and the solution remained steady after more
than 24 h of incubation, indicating that stable nanoparticle formation in the solution was
successfully completed [69,70]. The optical images of silver nanoparticle formation shown
in Figure 2c,d (inset) also confirmed the formation of CC-AgNPs with an increase in color
intensity with incubation time from 30 min to 24 h. Subsequently, the CC-AgNPs were
centrifuged, washed, dried, and calcined before being used for further studies.
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The FTIR analysis was used to deduce the role of different functional groups present
in the phytochemical composition of Cynara cardunculus extract as reducing/stabilizing
agents in the biogenesis of CC-AgNPs, as depicted in Figure 3a. However, the stan-
dard peaks of CC-AgNPs were compared with Cynara cardunculus extract to analyze the
biosynthesis of CC-AgNPs. Figure 3 reveals the presence of absorption peaks in CC-
AgNPs at 3298.1 cm−1, 2860.8 cm−1, 1616.6 cm−1, 1489.7 cm−1, 1261.1 cm−1, 1218.8 cm−1,
1187.8 cm−1, 1080.6 cm−1, 998.7 cm−1, 632.0 cm−1, and 530.4 cm−1. However, the Cynara
cardunculus extract possessed similar peaks as observed in standard CC-AgNPs, which
demonstrated the biogenesis of CC-AgNPs upon phytochemical reduction. The peak inten-
sity band that appeared at approximately 3300 cm−1, i.e., 3312.2 cm−1 and 3298.1 cm−1,
were attributed to the presence of polyphenolic or polysaccharide –OH stretching vibra-
tions. However, it was reported that the enol forms of such polyphenols or polysaccharides
are reduced to quinone in extract mixture and are usually interpreted as a peak shift of
–OH groups toward a higher frequency ranging between 3400 cm−1 and 3456 cm−1 [71]. A
protruding peak intensity appeared at 2860.8 cm−1, which was assigned to C–H typical
stretching vibrations from the CH2 groups of aliphatic compounds and are believed to have
occurred after the reduction of AgNO3 [72]. The existence of sharp peak intensity in the
range between 2820 cm−1 and 2760 cm−1, i.e., 2790.3 cm−1, in the Cynara cardunculus extract
was attributed to the presence of N-CH3 and C-H stretching vibrations corresponding to
methyl-amino substituted groups [73]. In addition, the appeared peaks at 1619.4 cm−1 and
1616.6 cm−1 lying between 1650 cm−1 and 1600 cm−1 corresponded to stretching vibrations
due to conjugated ketones and aromatic ring stretching (-C=C-C) vibrations. The presence
of peaks between 1550 cm−1 and 1400 cm−1, for example, 1534.8 cm−1 and 1489.7 cm−1,
is believed to be due to the N-O stretching vibration of aromatic nitro compounds. The
existence of an intensity peak in the range between 1410 cm−1 and 1310 cm−1, such as
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the 1388.1 cm−1 peak, in the Cynara cardunculus extract was assigned to –OH bending
in phenolic and tertiary alcoholic groups. Similarly, the peak at 1252.7 cm−1 in Cynara
cardunculus extract and the peak at 1261.1 cm−1 in CC-AgNPs were due to the presence of
C-N stretching vibrations of primary aromatic amines. In addition, the occurrence of sharp
peak intensities at 1083.4 cm−1 and 1080.6 cm−1 were the corresponding C-N stretching
vibration bands of aliphatic amines, in the Cynara cardunculus extract and CC-AgNPs,
respectively. Moreover, the peaks between 1320 cm−1 and 1210 cm−1, viz., 1227.3 cm−1

of the Cynara cardunculus extract and 1218.8 cm−1 of the CC-AgNPs, were attributed to
C-O stretching vibrations. Furthermore, the peaks between 1190 cm−1 and 1130 cm−1,
i.e., 1185.0 cm−1 of the Cynara cardunculus L. extract and 1187.8 cm−1 of the CC-AgNPs,
signified the presence of C-N stretching vibrations of secondary amines. The observed
sharp intensity peak in the range 1055 cm−1–1000 cm−1, i.e., 1007.2 cm−1 of the Cynara
cardunculus extract, was due to the corresponding cyclohexane ring vibrations. The ob-
served peak intensities at relatively lower frequencies between 850 cm−1 to 1000 cm−1,
i.e., 900.0 cm−1 of the Cynara cardunculus extract and 998.7 cm-1 of the CC-AgNPs, were
attributed to the hydrogen-bonded OH out-of-plane bending vibration modes. Meanwhile,
the observed peaks between 660 cm−1 and 630 cm−1, such as 637.6 cm−1 of the Cynara
cardunculus L. extract and 632.0 cm−1 of the CC-AgNPs, were believed to occur due to the
presence of C-S thio-substituted compounds. The important observed peak intensity in both
Cynara cardunculus L. extract and CC-AgNPs at 530.4 cm−1 was caused by the reduction
of Ag+ to Ag0 in the biosynthesis of CC-AgNPs from Cynara cardunculus aqueous extract.
In conclusion, the presence of polyphenolic vibrations, along with other functional group
stretching vibrations, of Cynara cardunculus extract demonstrated their role as reducing and
stabilizing agents in the biosynthesis of CC-AgNPs.
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Figure 3. (a) FTIR spectra and (b) TGA/DTG analysis of biogenic CC-AgNPs. 
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The phytochemicals play essential roles as stabilizing and capping agents in the
biogenesis of nanoparticles. Thus, the weight loss and thermal stability of such were
investigated, which depended upon the adsorption of phytochemicals onto the surface
of biogenic CC-AgNPs. Although the thermogravimetric analysis was operated at a
heating rate of 10 ◦C/min under a nitrogen atmosphere, we inferred the weight loss
in a stepwise manner for biogenic CC-AgNPs, as depicted in Figure 3b. The overall
weight loss in this study of thermal decomposition associated with CC-AgNPs from Cynara
cardunculus extract was approximately 26.64% by weight. This observed weight loss in
the first region between 0–220 ◦C was 1.81% by weight occurred after the loss of the
adsorbed surrounding moisture and volatile residues of phytochemicals onto the surface
of CC-AgNPs. Furthermore, the observed TGA peak at 63 ◦C for the derivative weight
(by %) of −0.025 corresponded to the degradation of volatile phytocompounds onto the
surface of the biosynthesized CC-AgNPs. The second weight loss between 150–300 ◦C
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was 12.6% by weight, which was observed after the thermal degradation of heterocyclic
volatile phytochemical compounds that thermally decomposed onto the adsorbed surface
of CC-AgNPs. The third region of thermal decomposition after 300 ◦C, with the DTG
peak at 320 ◦C for the derivative weight (by %) of −0.093 and the DTG peak at 564 ◦C
for the derivative weight (by %) of −0.071 were attributed to the thermal decomposition
with a weight loss (by % weight) of about 12.23%, which was believed to occur after the
thermal decomposition of phytochemical constituents, including polyphenolic compounds,
flavonoids, and polysaccharides. These phytocompounds have an important appealing role
in the capping and stabilization of the biosynthesized surface morphology of CC-AgNPs.
The overall results of the TGA/DTG demonstrated the thermally stable biosynthesis of
CC-AgNPs from Cynara cardunculus extract.

The as-synthesized CC-AgNPs were subjected to XRD analysis to deduce the crys-
talline nature of the particles. The XRD pattern of the green-synthesized CC-AgNPs from
Cynara cardunculus extract was obtained and is depicted in Figure 4. It is clear from Figure 4
that the diffraction peaks observed at 2θ angles of 38.16◦ (111), 44.40◦ (200), 64.58◦ (220)
and 77.38◦ (311) corresponded to the face-centered cubic (fcc) structure of metallic silver.
Moreover, the obtained XRD results were a good approximation to the JCPDS Card NO.
04-0783 results [74]. However, the presence of a prominent peak at 38.16◦ was due to
the crystalline Ag, showing that the biosynthesized CC-AgNPs were encompassed with
crystalline Ag lattice sites. The average particle size found via XRD analysis was calculated
using the Scherrer equation (d = Kλ/βcosθ), where d is the crystallite size, K represents the
Scherer constant equal to 0.9, λ is the wavelength of the X-ray source (typically 1.5406 Å), β
is the FWHM in radians, and θ is the peak position (Bragg angle), as tabulated in Table 1.
The average crystalline size was found to be 17.26 nm by using the Scherrer calculation;
meanwhile, similar numerical values of crystalline size were found in the SEM analysis,
as discussed in another section in detail. No additional reflection other than Ag-lattices
was observed, demonstrating the purity of the biosynthesized CC-AgNPs from the Cynara
cardunculus extract.
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Table 1. Lattice parameters and crystalline sizes of CC-AgNPs from the XRD patterns.

2θ (◦) FWHM Miller Indices (hkl) dhkl
d-Spacing (Å) Crystal Size d (nm) d (Average)

38.13 0.4353 (111) 2.358 19.30

17.26 nm
44.27 0.6005 (200) 2.044 14.28

64.42 0.5394 (220) 1.445 17.40

77.312 0.5636 (310) 1.233 18.04
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The transmission electron microscopy (TEM) and scanning electron microscopy–
energy-dispersive X-ray spectroscopy (SEM-EDX) analysis of the as-synthesized CC-AgNPs
were used to perform the study of the exterior surface morphology, structural characteri-
zation, and elemental composition, as shown in Figure 5. The TEM analysis of the green-
synthesized CC-AgNPs from Cynara cardunculus aqueous extract showed them to be well
defined with a homogenous distribution of nearly spherical nanoparticles with an average
particle size ranging between 14 to 43 nm. The larger particle sizes were observed due to
the formation of agglomerates of the small particles. The average (23.74 nm), minimum
(9.07 nm), and maximum (59.28 nm) particle sizes of the as-prepared CC-AgNPs were found
from the particle size histogram using ImageJ software, as shown in Figure 5b. During the
SEM analysis, the surface morphology showed agglomeration of spherical CC-AgNPs, as
shown in Figure 5c. Besides the SEM analysis, EDX analysis was performed for the elemen-
tal analysis and purity of the as-prepared CC-AgNPs, as shown in Figure 5d. The observed
intensity ranges emphasized the strong spectral signals corresponding to the silver region
(Ag). The observed sharp intensity signal at 3 KeV was found due to the adsorption of the
metallic silver region and emphasized the presence of biosynthesized nanocrystallites of
CC-AgNPs. The other signals found in the 0–0.5 KeV range were attributed to the presence
of adsorbed oxygen and carbon atoms. The overall results of surface morphology and
elemental analysis indicated that the biosynthesized CC-AgNPs using Cynara cardunculus
aqueous extract were of high purity.
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A zeta potential analysis was undertaken to analyze the stability of the biosynthesized
CC-AgNPs from Cynara cardunculus extract in their colloidal state. The results obtained
using zeta potential analysis are depicted in Figure 6a. Values of zeta = −26.2 mV and
−6.38 mV was observed, showing a negative charge on the surface of the CC-AgNPs,
further emphasizing their stability in the colloidal state and the role of phytochemicals as
surface-capping agents. The observed negative values of the zeta potential were due to
from the absorbed phytochemicals with negative surface charge onto the surface, possibly
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because of the presence of functional groups, such as OH-, CO-, and COO-. However, the
detailed mechanism and possibility of occurrence of such functional groups are discussed
in another section related to characterization using FTIR analysis. In general, the presence
of the negative surface charge on the surface of CC-AgNPs resulted in preventing the
aggregation and stabilizing the CC-AgNPs upon electrostatic repulsion among the negative
charges. Moreover, the size distribution of the as-synthesized CC-AgNPs was analyzed
using dynamic light scattering (DLS) analysis, as shown in Figure 6b. The DLS results of the
CC-AgNPs shown in Figure 6b revealed that the average size of the particles in the optimal
condition was 127 nm with a polydispersity (PDI) of 0.515. The bigger hydrodynamic
diameter shown in the DLS results as compared with the TEM and XRD results was
because of the presence of the capping agents and some agglomerated CC-AgNPs in the
reaction mixture.
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3.1. Anti-Candida Activity of CC-AgNPs

The CC-AgNPs were found to be active against C. auris MRL6057, and the MIC val-
ues were reported as 50.0 µg/mL, whereas the MFC was found to be 100.0 µg/mL. In
comparison, the MIC and MFC values of AmB against C. auris MRL6057 were found
to be 4.0 and 8.0 µg/mL, respectively. According to published MIC breakpoints for
C. auris [75], the clinical strains of C. auris with MIC ≥2 µg/mL are considered resistant to
AmB. Therefore, C. auris MRL6057 was deemed to be resistant to AmB.

C. auris displays high resistance to commonly used drugs [76]. In vitro examinations
demonstrated the reduced susceptibility of ≥90% of C. auris isolates to fluconazole [77].
In comparison, 3–73% and 13–35% of clinical isolates of C. auris were found to be resis-
tant to voriconazole and AmB, respectively [78,79]. Furthermore, in the USA, ≥99% of
these isolates were reported to be less susceptible to fluconazole, around two-thirds were
resistant to AmB, and approximately 4% were found to be resistant to echinocandins class
antifungals [80]. The global emergence of pan-resistant strains of C. auris and their ability
to persist in healthcare settings has redrawn the attention of researchers and healthcare
experts to this pathogenic yeast [79].

Researchers investigated the candidacidal potential of AgNPs against C. albicans,
and AgNPs were found to be potential inhibitors of growth and viability, both alone
and in combination; for instance, a low strength of 1.8 mg/mL AgNPs in combina-
tion to cationic carboxilane inhibited the growth of C. albicans [81]. Additionally, L-3,4-
dihydroxyphenylalanine capped with AgNPs showed fungicidal activity at a concentration
of 31.2–62.5 µg/mL [82]. These findings support our investigation and that AgNPs can be
a potential candidate for drug development against C. auris. Therefore, further research
that analyzed the in-depth mechanism of antifungal action of CC-AgNPs was required.
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3.2. CC-AgNPs Impede Cell Count and Viability in C. auris

A susceptibility assay of C. auris was performed against CC-AgNPs to measure the
growth and viability of these cells (Figure 7). The unexposed cells had 98.5% live cells,
whereas, after exposure to H2O2, the percentage of live cells was 8.4%. Moreover, the
reduction in the number of live cells was dependent on the concentration of the NPs.
Therefore, the percentage of live cells decreased with increasing concentration of NPs,
where 41.6%, 26.6%, and 2.2% live cells were recorded at values of 0.5MIC, MIC, and 2MIC,
respectively. The results confirmed that these NPs entirely stopped the growth and survival
of C. auris, and thus, corroborated the anti-Candida potency of AgNPs.

The antimicrobial activity of AgNPs was well studied by various researchers [81,82].
The current findings were in accord with the results obtained by Wani and co-workers
2013, where they showed the potent anti-Candida effect of metallic NPs [83]. The antifungal
activity of metallic NPs is attributed to their ability to disrupt the membrane porosity
and induce cellular damage, ROS production, damage of nucleic acid, and disruption of
important biological enzymes [84].
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3.3. CC-AgNPs Arrested the Cell Cycle in C. auris

The CC-AgNPs may result in the induction of cellular apoptosis in C. auris, and thus,
the potency of these NPs on the cell cycle was investigated. Consequently, the number of
cells dispersed in various phases of the cell cycle must be different from that present in
the healthy cells, representing cell cycle blockage. Hence, the change in DNA content was
evaluated quantitatively with the help of fluorescence generated using DNA tagged with
PI throughout the cellular growth.

The results are summarized in Table 2, where the unexposed experiment had the
maximum number of cells in the G0/G1 phase, followed by the S phase and G2/M phase,
whereas, the cells of the positive control were mostly accumulated in the S phase, followed
by the G0/G1 and G2/M phase. However, after exposure to the CC-AgNPs, the cell cycle
was blocked at two different phases: the S phase and G2/M phase (Figure 8a,b). At 0.5 MIC
and MIC, the cells were arrested in the S phase of the cell cycle, with the distribution
percentages of 44.5% and 60.2%, respectively. Furthermore, at 2MIC, the cells were arrested
in the G2/M phase (58.7%). Altogether, the present findings discovered that the CC-AgNPs
at a lower concentration arrested the cells in the S phase, whereas, at a higher concentration,
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the G2/M phase is blocked, and therefore, had a conspicuous role in blocking cell cycle
advancement in Candida.

Table 2. Cell cycle in C. auris.

Experiment Phases of Cell Cycle Cell Percentage (%)

Negative control

G0/G1 67

S 26.8

G2/M 6.2

Positive control

G0/G1 23.8

S 66.7

G2/M 9.3

0.5MIC
(25 µg/mL)

G0/G1 48.2

S 44.5

G2/M 7.2

MIC
(50 µg/mL)

G0/G1 33.2

S 60.2

G2/M 6.1

2MIC
(100 µg/mL)

G0/G1 0.6

S 40.3

G2/M 58.7

These findings were in good agreement with previous results where researchers
showed the inhibitory effect of various compounds on the cell cycle of Candida species.
For instance, clioquinol, crambescidin-816, and crambescidin-089 were found to block the
G2/M phase in Candida and Saccharomyces cerevisiae [85–87]. Furthermore, the damaged
cell cycle alters the cellular morphology, which increases the chance of the host’s immune
system recognizing the yeast cells [88]. Thus, CC-AgNPs can impede the cell cycle in
C. auris and boost its identification by the host’s immune system.

3.4. CC-AgNPs Depolarized the Mitochondrial Membrane Potential in C. auris

The mitochondrial membrane potential is one of the primary steps in fungal apoptosis
owing to the mitochondria’s crucial role in cell survival. The results obtained in this study
revealed the potential of the test CC-AgNPs to cause mitochondrial membrane disintegra-
tion in C. auris (Figure 9). Mitochondrial membrane disruption results in pore formation,
which leads to the depolarization and movement of different apoptotic factors. Mitochon-
drial depolarization was also related to the cytochrome c release and was often observed
during early apoptosis. The test CC-AgNPs caused mitochondrial toxicity induction, which
was followed by the loss of membrane potential, oxidative phosphorylation inhibition,
and changes in calcium sequestration [89]. Other studies reported the potential of silver
nanoparticles to depolarize mitochondrial membranes and cause apoptosis in C. albicans,
which was related to an increase in hydroxyl radicals [90]. A study by Zhu and co-workers
reported the impact of iron nanoparticles in causing apoptosis in human umbilical endothe-
lial cells by causing membrane depolarization [90]. These studies further supported our
claims and are congruent with our findings that metal nanoparticles can cause mitochon-
drial membrane depolarization and with our conclusions that metal nanoparticles can cause
mitochondrial membrane depolarization and apoptosis in fungal cells. However, to further
verify these claims, more studies involving other metal nanoparticles, including mono-, bi-,
and/or tri- metallic nanoparticles, are needed to compare their effects in different fungal
cells in terms of causing apoptosis related to mitochondrial membrane depolarization.
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Figure 8. Cell cycle analysis of C. auris. (a) Effect of CC-AgNPs at various concentrations on cell cycle
progression in C. auris. (b) Representative histograms of the C. auris cell cycle at various CC-AgNP
concentrations. Positive controls were cells treated with H2O2 (10 mM) and negative controls were
untreated cells.
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3.5. The CC-AgNPs Elicited DNA Fragmentation in C. auris

The microscopic analysis for the TUNEL assay results revealed that at higher concen-
trations of CC-AgNPs, green solid fluorescence suggested DNA breakage, as observed
for cells treated with 10 mM H2O2 (Figure 10). Therefore, these results demonstrated the
potential of the test NPs to cause DNA fragmentation in C. auris. At a lower concentration
(25 µg/mL), the degree of DNA fragmentation was not much, which was depicted by fewer
TUNEL-positive yeast cells. However, with increasing concentration (50–100 µg/mL),
the degree of DNA damage also increased, which was reflected in the higher number of
TUNEL-positive yeast cells.

DNA fragmentation is one of the significant markers related to morphological changes
to identify the late apoptosis in yeast cells. The DNA fragmentation can be visualized
using a TUNEL assay, which labels the free 3′-OH termini with modified nucleotides
catalyzed by terminal deoxynucleotidyl transferase. The TUNEL assay was observed as
the most dependable method to study late apoptosis [91]. The test nanoparticles’ cell cycle
arrest and DNA fragmentation suggested that CC-AgNPs can damage nucleic acids in
C. auris and other pathogenic yeasts. It was also predicted that these nanoparticles, besides
damaging nucleic acids in C. auris, can also damage antioxidant enzymes and cause lipid
peroxidation in fungal cells. Overall, the results from this study suggested that CC-AgNPs
led to nucleic acid fragmentation and mitochondrial membrane depolarization, which
are the characteristic markers of apoptosis, thus, validating the idea that AgNPs induce
late apoptosis in yeast cells and have dual antifungal action modes, including membrane
disruption. The overall result suggested that CC-AgNPs led to mitochondrial membrane
depolarization and DNA fragmentation, which are crucial apoptosis characteristics.
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The CC-AgNPs in this study showed potent antifungal activity with a dual antifungal
mode of action by causing cell cycle arrest and cellular apoptosis. However, to further
escalate these nanoparticles to the next steps of drug development, it is essential to check
their toxicity on host cells. To this end, the CC-AgNPs were tested for hemolytic activity
against horse blood cells. The results obtained in this study revealed only 3–7% cell
lysis when treated with CC-AgNPs at 1

2 half of MIC and MIC respectively. Figure 11,
thus confirming that CC-AgNPs are safe for in vivo animal experiments. Even at higher
concentrations (2MIC), only 13% hemolysis was observed; however, this concentration is
not considered safe for testing in animal models. Furthermore, our results also reported no
lysis observed in untreated control cells, whereas 100% cell lysis was observed with Triton
X, which served as the positive control.
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4. Conclusions

In this work, chemically stable silver nanoparticles (CC-AgNPs) were prepared via a
phytochemically induced synthesis process using Cynara cardunculus extract as a reducing
and capping agent. The present work was facile, cost-effective, and ecofriendly and
did not require any solvent except water, which made this process highly advantageous.
The formation of CC-AgNPs was confirmed by various microscopic and spectroscopic
techniques before utilizing them for antifungal activities against C. auris. The experimental
conditions for the preparation of CC-AgNPs were optimized via a surface plasmon (SPR)
peak at 438 nm using UV-visible spectroscopy. Furthermore, the CC-AgNPs directly
inhibited the cell cycle and arrested cells in the G2/M phase and could be a potential
lead for antifungal drug development. Our results demonstrated that the as-prepared
silver nanoparticles had good antifungal performance against C. auris and could be further
explored for exceptional and enhanced biomedical applications.
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