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Abstract

Background: Understanding movement patterns is fundamental to population and conservation biology. The way an
animal moves through its environment influences the dynamics of local populations and will determine how susceptible it
is to natural or anthropogenic perturbations. It is of particular interest to understand the patterns of movement for species
which are susceptible to human activities (e.g. fishing), or that exert a large influence on community structure, such as
sharks.

Methodology/Principal Findings: We monitored the patterns of movement of 34 sixgill sharks Hexanchus griseus using two
large-scale acoustic arrays inside and outside Puget Sound, Washington, USA. Sixgill sharks were residents in Puget Sound
for up to at least four years before making large movements out of the estuary. Within Puget Sound, sixgills inhabited sites
for several weeks at a time and returned to the same sites annually. Across four years, sixgills had consistent seasonal
movements in which they moved to the north from winter to spring and moved to the south from summer to fall. Just prior
to leaving Puget Sound, sixgills altered their behavior and moved twice as fast among sites. Nineteen of the thirty-four
sixgills were detected leaving Puget Sound for the outer coast. Three of these sharks returned to Puget Sound.

Conclusions/Significance: For most large marine predators, we have a limited understanding of how they move through
their environment, and this clouds our ability to successfully manage their populations and their communities. With detailed
movement information, such as that being uncovered with acoustic monitoring, we can begin to quantify the spatial and
temporal impacts of large predators within the framework of their ecosystems.

Citation: Andrews KS, Williams GD, Levin PS (2010) Seasonal and Ontogenetic Changes in Movement Patterns of Sixgill Sharks. PLoS ONE 5(9): e12549.
doi:10.1371/journal.pone.0012549

Editor: Yan Ropert-Coudert, Institut Pluridisciplinaire Hubert Curien, France

Received March 24, 2010; Accepted August 9, 2010; Published September 8, 2010

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public
domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: This work was funded through United States Department of Commerce base funds for the Integrated Marine Ecology (IME) team at the Northwest
Fisheries Science Center. Other than members of the IME team, funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kelly.andrews@noaa.gov

Introduction

How animals move through their environment influences the

dynamics of local populations, genetic variability, and the re-

colonization of depauperated habitats. Patterns of movement are

thus fundamental to population dynamics and conservation

biology [1]. Patterns of movement can also affect how susceptible

local populations may be to perturbations such as climate change,

disease, exploitation, pollution, or habitat loss [2–4]. The

magnitude of impact of a predator on community structure is

also clearly influenced by how predators move across space [5].

Indeed, in order to manage populations and the communities

within which they reside, we need to have some understanding of

patterns of movement [6–8].

Movement is generally studied at three different temporal scales:

daily, seasonally, and ontogenetically. Most species have consistent

diel activity patterns, with some species more mobile during the

day (e.g. grizzly bears [9], butterflies [10], and parrotfish [11]),

while others are more mobile during the night (e.g. fruit bats [12],

mountain lions [13], striped skunks [14]). Patterns of movement

also vary seasonally, but the mechanisms underlying seasonal

movements vary among taxa. For example, populations of

wildebeest Connochaetes spp, zebra Equus zebra, and Thompson’s

gazelle Eudorcas thomsoni undergo epic migrations across the African

savanna in search of suitable grazing lands [15]. Similarly, patterns

of carnivore movement, such as the wolf Canis lupus, are influenced

by their seasonally migrating prey (e.g. caribou Rangifer tarandus)

[16]. Although the mechanisms are unknown, white sharks

Carcharodon carcharias show seasonal patterns of movement along

the coast of Australia [17], South Africa [18], and seasonal

inshore/offshore movements in California, USA [19]. Some

species also display seasonal patterns of movement when they

are exposed to thermal stress; for instance, the West Indian

manatee Trichecus manatus moves north along the eastern coastline

of North America in the summer as temperatures warm and then

return to southern waters in the winter when temperatures begin

to decline [20].

Patterns of movement can also vary with ontogeny. In marine

environments, it is common for adult invertebrates and fish to

leave relatively narrow home ranges for distant spawning grounds

[21]. For example, mature Nassau grouper Epinephelus striatus can

migrate .200 km to spawning grounds each winter [22], and

mature female blue crabs Callinectes sapidus migrate from low

salinity inlets of Chesapeake Bay to the mouth of the estuary each
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fall [23,24]. Many marine species are also characterized by life

histories in which young-of-year and juveniles live in habitats that

are relatively protected from predators. For example, young lemon

sharks Negaprion brevirostris in the Bahamas and Florida, USA

restrict their movements to shallow seagrass flats and shoreline

mangroves within the lagoons, effectively reducing their risk to

potential predators [25,26]. In addition, older life-history stages of

many shark species occupy different habitats than juveniles [27,28]

Quantifying movement of marine species, especially those that

are highly mobile or deep dwelling has historically been extremely

difficult; however, technological improvements in satellite and

acoustic telemetry have made it possible for researchers to quantify

the spatial and temporal patterns of movement of such species. Of

particular interest are those species that are vulnerable to human

activities (e.g. fishing) or that exert a large influence on community

structure, such as sharks. Studies investigating diel patterns show

movement patterns that vary by species: many species occupy

deeper waters during the day and move closer to shore or to the

surface at night [29–34], while others do not display this behavior

[35–38]. Seasonal movements by pelagic shark species appear

common [39–41]. For example, salmon sharks Lamna ditropis

display seasonal movements between subarctic foraging grounds in

the summer to subtropical destinations in the spring [42,43].

However, there have been relatively few studies investigating the

patterns of movement of benthic sharks [33,37,44–47] and none of

these were performed long enough to capture seasonal patterns of

movement for individuals. Studies using mark-recapture methods

[48] and acoustic tracking [27] have shown sharks of different life-

history stages use different habitats, but we are unaware of studies

that have monitored the same individual over time and captured

ontogenetic movements from juvenile ‘‘nursery’’ habitat to adult

habitat or potential mating grounds.

In Puget Sound, (Washington state, USA) sixgill sharks

Hexanchus griseus display diel patterns of movement in which they

inhabit deeper waters during the day and shallower waters during

the night [34]. Pilot studies suggest sixgills occupy localized areas

of Puget Sound during the fall with average daily movement

between 0.2 to 3.1 km and maximum displacement from tagging

sites between 8.4 to 29.2 km [47]. In addition, these metrics were

negatively related to size, such that larger sixgills appear to move

less than smaller sixgills. Smaller sixgills, however, were detected

nearly eight times as often as larger sixgills [47]. This potential

discordance between movement and detectability could be due to

larger sharks moving out of the range of the acoustic array used in

previous studies. Using a larger scale array over a longer period of

time could test whether this pattern is real or whether there are

seasonal patterns that obscure this relationship.

In this study, we use two large-scale integrated arrays of passive

acoustic receivers to monitor the broad-scale spatial patterns of

movement of sixgill sharks inside and outside Puget Sound from

2006–2009. Specifically, we address three main questions in this

paper. First, we ask how sedentary sixgill sharks are and if

variability in the degree of sedentariness can be explained by traits

of individual sharks or the time scale over which this question is

asked? Secondly, we ask if sixgill sharks show any seasonal patterns

in either location or rate of movement within Puget Sound? Third,

we ask whether sixgill sharks leave Puget Sound, and if so, is this

related to their size or gender?

Methods

Study location
Puget Sound is a highly urbanized inland estuary of the eastern

North Pacific Ocean in Washington, USA. Relatively shallow sills

isolate the main basin from the other sub-basins within Puget

Sound, which can potentially restrict ocean circulation and the

movement of organisms, sediments and contaminants [49]. Tides,

gravitational forces and seasonal freshwater input drive estuarine

circulation in Puget Sound. Within the main basin, Elliott,

Commencement, and Port Gardner Bays, associated with Seattle,

Tacoma, and Everett, respectively, have depths in excess of

100 m. The average depth of greater Puget Sound is 62.5 m at

mean low tide, while the main channel is ,250 m at its greatest

depth. The main basin is generally stratified in the summer,

because of river discharge and solar heating, and is often well

mixed in the winter [49]. This seasonal pattern is responsible for a

peak in production of phytoplankton and macroalgae during the

summer in Puget Sound [50], which influences the abundance of

consumers and predators in the pelagic and benthic communities

[51].

Study species
The sixgill shark is one of the largest predatory sharks in the

world with total lengths up to 485 cm and is the largest resident

fish in Puget Sound. Sixgill sharks are typically demersal and

found in deep water along the continental shelf and upper slope;

however, they may also move into shallow waters, and juveniles

frequent nearshore waters [34,47,52,53]. In British Columbia,

Canada, the abundance of immature sixgill sharks is greater

during the day in summer months relative to other months of the

year [54].

Sixgill sharks are ovoviparous with litters ranging between 22

and 108 pups [52]. Males appear to mature at approximately

3.1 m total length, while females mature at nearly 4.2 m [53,55].

Little is known, however, about age at maturity or size at age of

individuals. Growth rates of sixgill sharks are relatively unknown,

although captive young-of-year nearly doubled in size during their

first year [53] and one recaptured sub-adult in Puget Sound grew

at a rate of 12 cm/yr [34]. Sixgill sharks feed on a wide variety of

prey including other sharks, rays, pelagic and demersal teleosts,

marine mammals and whale carrion [53,56].

Collecting and tagging sharks
Collection and tagging of sharks during this study was approved

and performed according to regulations provided by the

Washington State Department of Fish & Wildlife Scientific

Collection Permits #07-349, #06-397, and #05-330. We

collected a total of 70 sixgill sharks in Puget Sound between

November 2005 and April 2008 using standard baited longline

methods [34,57]. Of those 70, we tagged 39 with pressure sensor

acoustic transmitters. Twenty-two sharks were collected in Elliott

Bay, ten near Three Tree Point, five at the south end of

Bainbridge Island, and two near Commencement Bay (Fig. 1).

Basic biological information for each shark is described in Table 1.

Upon capture, sharks were brought on board and their gills

irrigated with seawater. We measured, weighed and sexed each

shark, and placed an external Floy� tag through the dorsal fin.

We implanted one Vemco V16P coded acoustic transmitter with

pressure sensor into the midline of the peritoneal cavity via a 3-cm

incision at the anterior end of the pelvic fins. After the incisions

were sutured, sharks were returned to the water. All sharks were

handled the same and time out-of-water was similar for all

individuals (range: 5–10 minutes).

The coded transmitters emit a train of ‘pings’ at 69 kHz

randomly every 40–114 seconds that contains a specific ID code

and a value of the sensor’s depth in the water which allows users to

identify individuals and collect three-dimensional data. The life

span of the transmitters was 1429 days for ID codes 25–33, 78–90,
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and 148–149, 894 days for ID code 190, 561 days for ID code 195,

1039 days for ID codes 198–204, and 207, 952 days for ID codes

1031, 1034, and 1035, and 1904 days for ID codes 4083 and 4084.

The coded transmitters were detected by passive acoustic receivers

deployed in large-scale arrays throughout Puget Sound and the

Georgia Basin.

Integrated acoustic receiver arrays
In this study, we took advantage of two large-scale passive

acoustic monitoring arrays that use Vemco� acoustic receivers:

VR2s, VR2Ws or VR3s. In Puget Sound, a consortium of city,

state, federal, and native tribal agencies has developed an acoustic

array of single receivers located throughout Puget Sound. The

Figure 1. Locations of passive acoustic receivers from two large-scale integrated arrays. The Pacific Ocean Shelf Tracking array occurs as
lines of receivers along the west coast of North America, while the inset shows the location of the primary acoustic receivers used in this study within
Puget Sound, WA.
doi:10.1371/journal.pone.0012549.g001
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data collected by this consortium of researchers are managed by

an online database known as HYDRA – HYdrophone Data

Repository [http://hydra.sounddatamanagement.com/]. Users

upload acoustic receiver data to HYDRA for query by anyone

in the consortium. At present, this database contains more than 12

million detections of known and unknown acoustic transmitters

from a total of 693 receiver deployments. The timing and duration

of receiver deployments varies and is dependent on the goals of

individual researchers. Our research group, however, has

maintained a backbone of 10 receivers that have been deployed

throughout central Puget Sound from December 2005–October

2009 and a second core group of 10 receivers deployed in

Admiralty Inlet and Whidbey Basin from April 2007–May 2009

(Fig. 1). All receivers continuously ‘listened’ for Vemco� acoustic

transmitters throughout the duration of their deployment. The

V16P transmitters used in this study have a power output of

160 dB and an estimated radius of detection with Vemco VR2

receivers of ,800 m [58]. When transmitters are detected, a date/

time stamp and depth-of-transmitter value is stored in memory

and then retrieved upon download of the receiver.

Table 1. Biological data of 39 sixgill sharks tagged with acoustic transmitters from 2005–2008 in Puget Sound, WA, USA.

Shark ID Tagging Date Tagging Location Total length (cm) Weight (kg) Gender

4083 23 Jun 2005 Tacoma 238 . M

4084 23 Jun 2005 Tacoma 200 . F

25 16 Nov 2005 Three Tree Point 182 38 M

26 16 Nov 2005 Three Tree Point 204 60 F

27 16 Nov 2005 Three Tree Point 181 35 M

28 16 Nov 2005 Three Tree Point 176 33 M

29 16 Nov 2005 Three Tree Point 205 39 M

30 16 Nov 2005 Three Tree Point 140 13 F

31 16 Nov 2005 Three Tree Point 109 6 F

32 16 Nov 2005 Three Tree Point 225 72 F

33 16 Nov 2005 Three Tree Point 193 21 F

199 16 Nov 2005 Three Tree Point 168 23 M

190 4 May 2006 Elliott Bay 240 105 F

198 4 May 2006 Elliott Bay 203 53 F

200 4 May 2006 Elliott Bay 237 92 M

201 4 May 2006 Elliott Bay 285 173 M

202 4 May 2006 Elliott Bay 269 144 M

203 4 May 2006 Elliott Bay 203 50 F

204 4 May 2006 Elliott Bay 270 137 M

207 4 May 2006 Elliott Bay 293 115 F

78 21 Jan 2007 Elliott Bay 220 75 F

79 20 Mar 2007 Elliott Bay 276 126 F

81 20 Mar 2007 Elliott Bay 248 90 M

82 20 Mar 2007 Elliott Bay 245 94 M

83 20 Mar 2007 Elliott Bay 233 101 F

80 16 Apr 2007 Elliott Bay 183 33 M

84 16 Apr 2007 Elliott Bay 150 20 M

85 16 Apr 2007 Elliott Bay 202 66 M

86 16 Apr 2007 Elliott Bay 218 65 F

87 14 May 2007 Bainbridge 175 25 F

88 16 May 2007 Elliott Bay 154 17 F

89 12 Jun 2007 Bainbridge 248 83 F

90 28 Aug 2007 Elliott Bay 280 151 F

195 28 Aug 2007 Elliott Bay 250 91 F

1031 10 Oct 2007 Bainbridge 237 68 M

1034 11 Oct 2007 Bainbridge 230 65 M

1035 12 Oct 2007 Bainbridge 261 99 F

148 9 Apr 2008 Elliott Bay 247 91 M

149 9 Apr 2008 Elliott Bay 241 114 F

doi:10.1371/journal.pone.0012549.t001
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In addition to the array in Puget Sound, the Pacific Ocean Shelf

Tracking (POST) Project maintained several ‘‘lines’’ of acoustic

receivers in the Georgia Basin, Puget Sound, and off the coast of

North America from Alaska to California (Fig. 1). Within a line,

receivers are spaced approximately 800 m apart. This spacing

forms a gate across some channels of water (such as the Strait of

Juan de Fuca) or extends from shore towards the continental shelf.

The V16P transmitters used in this study were detected

simultaneously at multiple receivers on these lines, which supports

the likelihood these lines provided nearly 100% detection of our

sharks through these bodies of water [59]. Four of these lines were

deployed for nearly the entire duration of our study (Strait of Juan

de Fuca: April 2006 – end of study; the northern Strait of Georgia,

BC: April 2005 – end of study; Queen Charlotte Strait, BC: April

2006 – end of study; and Lippy Point, BC: June 2006 – end of

study). There were also gates across Howe Sound, BC from April–

July in 2006, 2007 and 2008. Detections of sixgill sharks also

occurred at lines at Point Reyes, CA, which extended 12 km from

the shore and was deployed from July 2008 through the end of our

study, and at Willapa Bay, WA, which extended 35 km from the

shore to the edge of the continental shelf. POST also manages a

database which can be queried by individual researchers for

detections of their transmitters.

For data analysis purposes, we classify the location of receivers

in Puget Sound to a site and a region, while we classify receivers in

the POST array to a single line name. A ‘‘site’’ includes detections

for one receiver, whereas a ‘‘region’’ consists of all receivers within

a 7-km diameter circle, generally located around one of our

‘‘backbone’’ receivers (Fig. 1). We chose 7 km as the diameter of a

region based on the average mean displacement found in sixgill

sharks in Puget Sound during previous work [47].

Data analysis
Prior to analyses, we reduced our dataset in two ways. First, we

used detections from HYDRA only when there were at least three

detections of the transmitter at the same site within a ten-minute

period to eliminate potential false detections. Second, we reduced

our data to unique date-site detections of sharks, such that a shark

is either present or absent at a site on each date. This procedure

standardized the frequency of sampling and helped remove serial

autocorrelation from the dataset [1].

In order to test whether sharks were detected more frequently

based on size, gender or tagging location, we calculated the

‘‘detectability’’ of each shark by dividing the number of days a

shark was detected by the number of days the shark was at liberty

in Puget Sound. We used detectability as the dependent variable in

a linear mixed model (PROC MIXED, [60]) with total length at

capture of shark (TL; cm), gender and the interaction between TL

and gender as fixed effects with tagging location as a random

effect. Interaction terms for all analyses were iteratively removed

from the model if corresponding p-values were .0.25 [61]. We

also performed cluster analysis [62] using detectability to assess

whether patterns exist in the temporal interval of detection. In

other words, we wished to determine if some groups of sharks were

detected on a frequent basis, while other groups of sharks were

detected less frequently. We used Euclidean distance to determine

clusters.

Sedentariness of sharks: We define sedentariness as the

proportion of time that a shark was detected in the same location

as its previous detection. We calculated this metric as follows:

Si~
Ds

Dt

where Si is sedentariness for each shark, Ds is the number of days

each shark was detected in the same site (or region) as its previous

detection, and Dt is the total number of detection days for each

shark (e.g. How often is a shark in the same location?). We then

used this metric as the dependent variable in a linear mixed model

to test whether sedentariness was related to gender, TL at capture

or tagging location. We then expanded this metric to calculate the

proportion of time a shark was detected at the same site at some

lag time in the future (e.g. How often will a shark be in the same

location in 30 days?). We calculated this metric by dividing the

total number of detection days for each shark (Dt) by the number

of days it was detected in the same location at the given lag period.

We calculated these values for both site and region over a range of

lag times between 1 day and 365 days.

Seasonal patterns of movement in Puget Sound: To

investigate seasonal patterns of movement within Puget Sound, we

excluded detections from the POST array for the following

analyses. We calculated the location of each shark detection as the

distance (km) between a shark’s tagging site and the receiver where

the shark was detected on a north/south scale (i.e. negative values

meant movement to the south of tagging site). This allowed us to

standardize movements of sharks independent of their tagging

location. We calculated the mean (6 SE) distance from tagging site

for each shark for each month. Monthly means were used as the

dependent variable in a linear mixed model with month, gender,

TL at capture, and each of the two-way interactions as fixed effects

and shark as a random effect.

In order to test whether the rate at which sharks move

throughout Puget Sound varied over the year, we calculated the

mean (6 SE) rates of movement between detections for each

month during the study period. Monthly means were calculated by

summing the cumulative distance moved each month and dividing

by the time between first and last detection of each month.

Monthly rate of movement for each shark was used as the

dependent variable in a linear mixed model with month, gender,

TL at capture, and each of the two-way interactions as fixed effects

and shark as a random effect.

Ontogenetic shift out of Puget Sound: We queried the

POST database for detections of tagged sixgill sharks. We

calculated distances traveled and rates of movement from Puget

Sound to these lines of receivers. It is important to note that these

‘‘gates’’ across the Straits of Juan de Fuca and Georgia were

deployed for nearly the entire time our sharks were at liberty. The

one break in coverage at Strait of Juan de Fuca (October 2005 to

April 2006) occurred when all sharks tagged at the time were

accounted for inside Puget Sound. There were instances of faulty

receivers that may have created large enough gaps in the lines to

allow a shark to move through undetected, but these were very

infrequent events. Thus, if one of our sixgill sharks migrated

through the Straits of Juan de Fuca or Georgia, there were very

limited periods of time and space it would have escaped detection.

In order to determine if there were ontogenetic shifts in

movement, we needed an estimate of shark size when they left the

Puget Sound region. We thus estimated growth rates predicted

from the growth curves (see below; Fig. 2) to calculate the total

length of each shark when it was last detected in Puget Sound or

when it was first detected outside Puget Sound. Sharks were then

classified by whether they left Puget Sound or stayed in Puget

Sound. This ‘‘status’’ of shark was used as the dependent variable

in a logistic regression (Systat 11.0) with calculated TL of shark as

the predictor variable. We ran this model for each gender

separately. If TL was a significant predictor variable, we calculated

the probability of a shark leaving Puget Sound using the logistic

regression function:

Movement of Sixgill Sharks
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P½ �~exp B0zBiXð Þ= 1zexp B0zBiXð Þð Þ

where [P] is the probability of a shark leaving Puget Sound, B0 is

the constant coefficient, B1 is the variable’s coefficient, and X is a

range of values of TL [63].

Growth curves were estimated for male and female sixgill sharks

following the standard von Bertalanffy growth model

Lt~L? 1{e{K t{t0ð Þ
h i

where Lt is the predicted length (cm) at age t; L‘ is equal to the

mean theoretical maximum total length; K is a growth rate

parameter (per yr); and t0 is the theoretical age (yr) at zero length.

We estimated L‘ for males (350 cm) and females (500 cm) based

on their maximum reported total lengths (350 cm and 485 cm,

respectively; [53]). To solve K, we relied upon the theory that

‘‘there is an intrinsic inverse relationship between L‘ and K…’’

[64]. We used the growth parameter table in FISHBASE [www.

fishbase.org] to collect estimates of L‘ and K for all studies which

reported L‘, K, and t0 for non-captive shark species. This resulted

in 130 studies from 40 different species, across 9 different families

of sharks. We then regressed L‘ and K (r2 = 0.265, t = 26.786,

p,0.001), and used parameters from this regression and our

estimates of L‘ for males and females to solve for K (males: 0.09;

females: 0.07). Finally, we solved for t0 using

t0~tz 1=Kð Þ ln L?{Ltð Þ=L?ð Þ½ �

where Lt is a known length at age (size at birth) [65]. The t0 values

were calculated from an average size at birth of 68 cm TL for both

genders [53]. The calculated growth curves (Fig. 2) are theoretical

and coarse, but they produce values which correspond closely with

the one available growth rate (,12 cm/year) from a recaptured

248-cm female sixgill shark [34], and allow us to roughly estimate

the size of fish leaving the Sound.

In order to test whether sixgills changed their behavior prior to

leaving Puget Sound, we compared the rates of movement of each

shark during the three-month period before they left Puget Sound

with the same three-month period during previous years. We used

a three-month period because it roughly corresponds to the length

of each season. Thus, we compared movements of sharks during

the ‘‘season’’ in which it left Puget Sound to the same ‘‘season’’ as

last year. We calculated each shark’s rate of movement across

these three-month periods and used these values in a paired t-test.

We had enough data on seven sharks to perform this analysis.

Results

There were 625,224 detections of the 39 tagged sharks during

the four years of our study. We reduced the data set to 12,349

unique shark-date-site detections. Three sharks were detected for

3+ years, ten sharks for 2+ years, six for 1+ years, fifteen sharks for

less than one full year, and five sharks were never detected. Cluster

analysis revealed three groups based on their detectability (Fig. 3).

Sharks in the largest group were detected on half of their days at

liberty (n = 20; mean: 0.49; range: 0.35–0.62), the second group of

sharks was detected only 16% of their days at liberty (n = 13;

mean: 0.16; range: 0.08–0.26), while the third group was basically

never detected (n = 6; mean: 0.01; range: 0.0–0.04). Linear mixed

model results with and without this grouping factor did not reveal

any significant differences in the detectability of sharks based on

total length (w/group: F1, 30 = 0.26, p = 0.612; w/o group: F1, 32 =

1.65, p = 0.208), gender (w/group: F1, 30 = 0.05, p = 0.824; w/o

group: F1, 32 = 1.70, p = 0.202), or the interaction between total

length and gender (w/group: F1, 30 = 0.00, p = 0.947; w/o group:

F1, 32 = 1.52, p = 0.227), nor was tagging location significant as a

random effect (estimates were 0 in all runs of the model).

Sedentariness of sharks
Of the 34 sharks detected, sharks were at the same location as

the previous date of detection (sedentariness) 62%63% SE of the

time for site and 71%63% SE of the time for region. There was

no significant differences in sedentariness for TL (site: F1, 27 = 0.18,

p = 0.677; region: F1, 27 = 0.19, p = 0.663), gender (site: F1, 27 =

1.38, p = 0.250; region: F1, 27 = 1.51, p = 0.230), or the interaction

term (site: F1, 27 = 1.55, p = 0.224; region: F1, 27 = 1.72, p = 0.200),

nor was tagging location significant as a random effect (estimates

were 0 for site and region ). Next, we asked how often will a shark

be in the same location in 1, 10, 30, 60…365 days. We detected a

distinct parabolic relationship between sedentariness and lag

period at both spatial scales (Fig. 4; site: r2 = 0.955; region

r2 = 0.951). Sharks inhabit the same region for nearly 30 days

Figure 2. Growth curves of male and female sixgill sharks.
doi:10.1371/journal.pone.0012549.g002

Figure 3. Frequency of detection of sixgill sharks in Puget
Sound, WA, USA. Clusters show sharks detected at three different
scales. The third cluster of six sharks is not circled because it interferes
with the legibility of the x-axis.
doi:10.1371/journal.pone.0012549.g003
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before sedentariness drops below 50%. Sedentariness decreases

until ,180 days, and then increases to 43% by 365 days. Thus,

sharks were more likely to be detected at the same site (or region)

after one full year than they would be after 6 months. We also

grouped sharks by their frequency of detection (50% and 16%),

and saw the same parabolic relationship even for sharks detected

at a much lower frequency (Sharks detected 50% of days at liberty:

site: r2 = 0.927, region r2 = 0.923; Sharks detected 16% of days at

liberty: site: r2 = 0.885; region r2 = 0.848).

Seasonal patterns of movement in Puget Sound
Sixgill sharks showed relatively consistent patterns across all four

years in which they moved northward (increasing values) and were

at their most northern locations in early spring or summer

(depending on year) and then moved southward (decreasing

values) and were at their most southern positions in October of

each year (Fig. 5a). We observed significant differences in the

location of sharks relative to their tagging site between months of

the year (F11, 550 = 4.47, p,0.001), in which sharks were further

north in March, April, and May than in September, October, and

November (Fig. 5b; p,0.05 for all pairwise comparisons). For

sharks tagged at Three Tree Point, directed movement from

summer to fall occurred from the region of Alki to the regions of

Three Tree Point and Robinson Point, respectively (Fig. 1), a

difference of 10–25 km between the seasons. Sharks tagged in

Elliott Bay did not move as far, but still moved from inside Elliott

Bay in the spring and summer to areas in the main channel near

Alki in the fall and winter, a difference of ,7–10 km. Males were

generally further south of their tagging site than females (F1, 550 =

7.50, p = 0.006; 25.5 km and 21.01 km, respectively) and larger

sharks were generally further north of their tagging site than

smaller sharks (F1, 550 = 12.54, p,0.001; distance from tag-

site = 0.089 *TL – 19.022). All interactions were non-significant

(p.0.25 for all interactions except gender*month (F11, 550 = 1.39,

p = 0.176)) and shark was a non-significant random effect

(z = 0.68, p = 0.247).

Mean rates of movement for sixgill sharks in Puget Sound were

more variable over time than what we found for location of sharks

(Fig. 6a). Our analysis found a significant TL*month interaction

(F11, 518 = 2.56, p = 0.003) which was due to one month (June) in

which there was a positive relationship between TL and mean rate

of movement, whereas there was no relationship in all other months.

Without this interaction term, there is a significant difference in the

rate of movement between months (Fig. 6b; F11, 541 = 2.52,

p = 0.004), while TL (F1, 541 = 2.97, p = 0.085) and gender (F1, 541 =

1.05, p = 0.306) were non-significant. However, multiple compar-

ison tests between months did not reveal any significant differences

at a level = 0.05 (March, April, and June were different from

October at a level = 0.07). All other interactions were non-

significant (p.0.25) and removed from the final model.

Ontogenetic shift out of Puget Sound
Nineteen out of the 34 sixgill sharks left Puget Sound and were

detected in the Strait of Juan de Fuca or Strait of Georgia. These

large-scale movements occurred mostly during the spring (11

sharks) compared to winter (5 sharks), summer (2 sharks) or fall (1

shark). Sixteen of the sharks moved through the Strait of Juan de

Fuca at some point, while only three migrated exclusively to and/

or through the Strait of Georgia (Table 2). Most sharks were

detected for short periods (1–2 hours) in the Straits of Juan de

Fuca and Georgia, while three sharks (# 79, 83, & 203) moved in

Figure 4. Sedentariness of sixgill sharks within Puget Sound,
WA, USA. Sedentariness is the proportion of days a shark is detected
at the same site (or region) at various lags of time from any point in the
monitoring data. The parabolic relationship shows an annual pattern in
which sixgills are sedentary within a site (or region) for weeks at a time,
move slowly away to a second core area after six months, and then
return to the original core area at the same time each year.
doi:10.1371/journal.pone.0012549.g004

Figure 5. Mean distance from tagging location (km) of sixgill
sharks in Puget Sound, WA, USA. Values were calculated across all
sharks for A) each month from 2006 to 2009, and for B) each month
across all years.
doi:10.1371/journal.pone.0012549.g005

Movement of Sixgill Sharks

PLoS ONE | www.plosone.org 7 September 2010 | Volume 5 | Issue 9 | e12549



and out of detection range for 2–3 months. Four sharks (# 27, 89,

149, & 202) were detected at a second line on the outer coast as far

south as Point Reyes, CA (.1500 km from its tagging location)

and as far north as Queen Charlotte Strait, BC, Canada

(.530 km from its tagging location).

In addition to sharks leaving Puget Sound and moving through

the Straits of Juan de Fuca and Georgia, three sharks migrated back

into Puget Sound at various time intervals (Table 2). Sharks # 32 &

79 came back to Puget Sound for short periods of time, while # 149

came back and stayed in Puget Sound for 8 months. We have the

greatest details of behavior outside of Puget Sound on shark # 32

(Fig. 7), which was tagged in November 2005, left Puget Sound in

April 2006, was detected 144 km away in the Strait of Juan de Fuca

in May 2006 and then again in June 2006, moved to the Howe

Sound, British Columbia region by June 2006 and remained in this

general area until July 2007 before migrating back into Puget Sound

in November 2007 for 2 months. This shark then left Puget Sound a

second time and was detected in the Strait of Juan de Fuca for the

second time at the end of December 2007.

Using the calculated final TL of a shark, we could predict

whether females left Puget Sound and moved through the Strait of

Juan de Fuca or Strait of Georgia better than by chance alone

(x2 = 6.95, df = 1, p = 0.008; rho-squared = 0.27), and calculated

TL was a significant predictor of females leaving Puget Sound

(Wald statistic = 2.04, p = 0.042). The odds ratio for female

calculated TL was 1.045 (95% CI = 1.090 to 1.002) which

suggested that for every 1-cm increase in TL of female sixgills,

the probability of leaving Puget Sound increased by 4.5% (Fig. 8).

Thus, we would be correct 50% of the time if we predicted that a

235-cm sixgill shark would leave Puget Sound this year. Although

males also left Puget Sound and were detected in the Strait of Juan

de Fuca and the Strait of Georgia, we could not predict whether

males would leave Puget Sound based solely on calculated TL

(x2 = 1.12, df = 1, p = 0.289; Wald statistic = 1.01, p = 0.315).

We also detected a change in behavior of sharks prior to and

during these large-scale moves out of Puget Sound. First, sharks

moved more than twice as fast inside Puget Sound during the

three-month period prior to each shark leaving Puget Sound

(mean 6 SD = 155637 body lengths/hour) than during the same

three-month period in the previous year when they did not leave

(mean 6 SD = 67632 body lengths/hour) (paired t-test:

t = 26.03, df = 6, p,0.001). Second, the rates of movement from

Puget Sound to POST locations and the rates of movement

between POST locations (Table 2) were generally higher than the

rates of movement we observed within Puget Sound (Fig. 6a).

Discussion

In this study, we were able to blend information from two large-

scale passive acoustic arrays in order to monitor the movements of

34 sixgill sharks for nearly four years within Puget Sound and

across more than 2000 km of the North American Pacific coast.

Using these data, we found that individual sub-adult sixgill sharks

displayed two distinct behavioral syndromes: 1) residency in Puget

Sound, and 2) ontogenetic shifts to coastal waters.

Residency in Puget Sound
Sixgill sharks were monitored for up to 1414 days inside Puget

Sound waters after being tagged with acoustic transmitters. While

resident in the Sound, sixgills were relocated at the same site as

their previous detection more than 60% of the time and were

relocated within the same region more than 70% of the time.

Moreover, the parabolic relationship between sedentariness and

the time between detections suggests an annual pattern in which

sixgills are sedentary at specific locations for weeks at a time, move

slowly away to a second core area after about six months, and then

return to the original core area at the same time each year. This

behavior supports a hypothesis that juvenile sixgills have a high

degree of site fidelity, as seen with juveniles of other shark species

[27,66,67]. This behavior also suggests that populations of sixgill

sharks may be susceptible to localized human impacts such as

fishing or pollution. Thus, restricted movement can exacerbate

such life history traits as long generation times, long life spans, slow

growth and low fecundity that are well known to make sharks

vulnerable to anthropogenic threats [68]. The exploitation of

shark species has been implicated in numerous studies explaining

sharp declines in shark populations all over the world [e.g.

69,70,71]. We have little quantitative information on the size of

sixgill populations in Puget Sound making the assessment of the

risk from exploitation difficult; however, it is likely that sixgills are

similar to other sharks with low productivity life-histories and

could not withstand high levels of exploitation.

Seasonally, sixgills made consistent movements to the north from

winter to spring and movements to the south from summer to fall.

Sharks tagged at Three Tree Point spent most of their summers near

Alki and then moved south to the Robinson Point region in the

winter. Sharks tagged in Elliott Bay spent most of their summers

Figure 6. Mean rate of movement (km/day) of sixgill sharks in
Puget Sound, WA, USA. Values were calculated across all sharks for A)
each month from 2006 to 2009, and for B) each month across all years.
doi:10.1371/journal.pone.0012549.g006
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inside Elliott Bay and then moved out into the main channel near

Alki during the winter. In general, these similar north/south

seasonal movements kept tagging groups separated during the year,

although sixgills from different tagging groups have been tracked

simultaneously at the same place (southern end of Bainbridge

Island) during the summer [34]. The mechanisms responsible for

the shift in habitat between spring and fall are unknown, but

animals tend to move to forage, to escape predation, for

thermoregulation advantages, or for reproductive or social

interactions [e.g. 2,15,20,23,72]. Sixgills are the largest resident

fish in Puget Sound and we have collected and actively tracked small

(,200 cm) and large (.250 cm) sixgills in the same location at the

same time, so it is unlikely that individuals are shifting habitats to

reduce predation risk or that sixgills are segregated by size in any

way to avoid predation from larger sixgills. Sixgills do move into

shallower water in the spring [34], coinciding with seasonal

movements, but they are still in waters deeper than 100 m and

the temperature of Puget Sound is relatively constant at depths

below 100 meters [34,73]; thus, thermoregulation seems an unlikely

mechanism as well. The relatively small magnitude of seasonal

movement does not suggest they are related to reproductive or

mating behavior, and we did not observe interactions between

gender and month in any of our analyses that would suggest there

were differences in behavior between males and females at different

times of the year. Thus, it seems most plausible that sixgills are

following some seasonal shift in prey resources.

Table 2. Detections of sixgill sharks outside Puget Sound by POST* acoustic receiver lines.

Shark ID Destination* Dates of detection at destination Duration* Distance* RoM*

25 SOG 8 Jun 2008 1 hr 261 7

27 JDF 23 May 2008 0.5 hr 118 2

Pt. Reyes, CA 20 Oct 2008 7 hrs 1267 8

28 JDF 8 May 2008 1 hr 109 2

32 JDF 14 May, 11 Jun, 16 Jun 2006 1–2 hrs each 144 3

Howe Sound 30 Jun 2006–27 Aug 2006 Daily 72 5

SSOG 13 Oct 2006 5 hrs . .

Howe Sound 26 Mar 2007–23 July 2007 Daily . .

Puget Sound 1 Nov 2007–27 Dec 2007 Daily 199 2

JDF 30 Dec 2007 2 hrs 126 35

79 SOG 1 Apr 2008–22 May 2008 Sporadic 235 19

Howe Sound 13 Jun 2008–14 Jun 2008 Daily 83 4

Puget Sound 22 Jun 2008–27 Jun 2008 Daily 178 22

JDF 30 Jun 2008 0.5 hr 105 33

81 JDF 20 Apr 2007 0.5 hr 147 18

83 JDF 8 Apr 2008–22 Jun 2008 Sporadic 118 10

86 JDF 22 Apr 2009 1 hr 126 26

89 JDF 14 Nov, 22 Nov, 3 Dec 2007 1 hr 118 2

Lippy Point 15 Dec, 28 Dec 2007 1 hr 397 34

90 JDF 17 May 2008 1 hr 118 2

148 JDF 24 Feb 2009 0.5 hr 129 5

149 JDF 2 Jul, 15 July 2008 1 hr each 105 12

Puget Sound 19 Jul 2008–4 Mar 2009 Daily 105 24

JDF 9 Mar 2009 1 hr 126 26

Willapa Bay 17 Mar 2009 0.5 hr 293 35

190 JDF 28 Mar 2007 3 hrs 120 2

195 SOG 16 May, 7 Jul 2008 1–2 hrs each 261 13

JDF 25 Aug 2008 1 hr 156 3

202 SOG 8 Jul 2006 1 hr 285 5

QCS 19 Jul 2006 0.5 hr 246 22

203 JDF 28 Feb 2007–3 May 2007 Sporadic 166 5

SOG 13 Dec 2007 1 hr 156 1

1031 SOG 18 Mar 2008 1 hr 274 16

1035 JDF 21 Jun 2008 1 hr 105 2

4083 JDF 28 Mar 2008 1 hr 118 6

*POST: Pacific Ocean Shelf Tracking; Destination: POST line where sixgill was detected after leaving Puget Sound; Duration: amount of time spent at each destination;
Distance: distance (km) moved from previous location; RoM: rate of movement from last Puget Sound detection or the previous POST location (km/day). SOG: Strait of
Georgia; JDF: Strait of Juan de Fuca; QCS: Queen Charlotte Strait; SSOG: Southern Strait of Georgia. See Fig. 1 for location of POST lines.
doi:10.1371/journal.pone.0012549.t002
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In Puget Sound, much of the food web is driven by the seasonal

production of phytoplankton and macroalgae which begin to

bloom in the spring [50,51] and the diets of benthic fishes vary

seasonally [74]. In fact, one-third of the benthic fishes in Puget

Sound switch prey guilds between summer, fall, and winter;

converging on abundant prey populations in the summer and

diverging to more niche-specific prey in the winter [74]. Diet of

sixgills in Puget Sound is unknown, but it is reasonable to expect

sixgills to move towards and forage on seasonally abundant prey

resources similar to other benthic fishes in Puget Sound [74] or

similar to other large predators in other systems [e.g. 75,76,77].

Ontogenetic shift to coastal waters
After residing in Puget Sound for up to four years after tagging,

sixgills left and generally migrated through the Strait of Juan de

Fuca for the outer coast. Prior to leaving Puget Sound, we

observed a marked change in the behavior of sixgills: rates of

movement were twice as fast during the three months prior to

leaving compared to the same three months in previous years.

However, this change may not represent an actual increase in the

speed sixgills are moving, but may instead be the result of making

more directed moves between sites. During 24-hour active

tracking sessions [Levin et al. unpublished data], sixgills occupied

small areas (,3 km2) and had highly tortuous paths. Thus, as

sixgills age, movement may become more directed. Regardless of

the mechanism, this was a definitive change in behavior leading up

to their exodus from Puget Sound.

Movement of sixgills out of Puget Sound was explained by the

shark’s total length for females but not males. As females reached

sizes .235 cm they had a greater probability (50%) of leaving.

Most sixgills left Puget Sound during the spring and were detected

moving through the Strait of Juan de Fuca or Strait of Georgia.

Figure 7. Movement of a female sixgill shark (#32) from 2005 to 2007.
doi:10.1371/journal.pone.0012549.g007
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Some moved between the two straits and a few were detected on

the outer coast as far north as the Queen Charlotte Islands, BC,

Canada and as far south as Point Reyes, CA, USA. Interestingly,

three sharks returned to Puget Sound after being away for days or

years. These sixgills were all females. Indeed, one individual (# 32)

returned to Puget Sound after being away for nearly two years.

This movement may be related to reproductive cycles or mating

behavior. It is thought that sixgills have two-year gestation periods,

similar to another Puget Sound shark species, the spiny dogfish

Squalus acanthias [78]. However, according to our calculations of

growth, this female was ,262 cm when it returned to Puget

Sound in November 2007 (225 cm in November 2005). This is

well below the size-at-maturity estimate for females at ,420 cm

[55]. Our growth calculations may be too coarse and this

particular shark may have grown faster and been much closer to

size-at-maturity; but, it seems likely these sharks returned to Puget

Sound for reasons other than reproduction (e.g. following prey

resources).

Conclusions
We monitored the patterns of movement of sixgill sharks for

nearly four years and found consistent patterns of movement while

they were residents and a distinct change in behavior as they left

Puget Sound. For most large marine predators, we have a limited

understanding of how they move through their environment, and

this clouds our ability to successfully manage their populations and

their communities. With detailed movement information, we can

begin to quantify the spatial and temporal impacts of and on large

predators within the framework of their ecosystems.
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