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Cellular cholesterol homeostasis is important for normal b-cell
function. Disruption of cholesterol transport by decreased function
of the ATP-binding cassette (ABC) transporter ABCA1 results
in impaired insulin secretion. Mice lacking b-cell ABCA1 have
increased islet expression of ABCG1, another cholesterol trans-
porter implicated in b-cell function. To determine whether ABCA1
and ABCG1 have complementary roles in b-cells, mice lacking
ABCG1 and b-cell ABCA1 were generated and glucose tolerance,
islet sterol levels, and b-cell function were assessed. Lack of both
ABCG1 and b-cell ABCA1 resulted in increased fasting glucose
levels and a greater impairment in glucose tolerance compared
with either ABCG1 deletion or loss of ABCA1 in b-cells alone. In
addition, glucose-stimulated insulin secretion was decreased and
sterol accumulation increased in islets lacking both transporters
compared with those isolated from knockout mice with each gene
alone. Combined deficiency of ABCA1 and ABCG1 also resulted
in significant islet inflammation as indicated by increased ex-
pression of interleukin-1b and macrophage infiltration. Thus,
lack of both ABCA1 and ABCG1 induces greater defects in b-cell
function than deficiency of either transporter individually. These
data suggest that ABCA1 and ABCG1 each make complimen-
tary and important contributions to b-cell function by maintain-
ing islet cholesterol homeostasis in vivo. Diabetes 61:659–
664, 2012

T
ype 2 diabetes is characterized by both progres-
sive b-cell dysfunction and loss of b-cell mass.
Recently, abnormalities of cholesterol metabo-
lism have emerged as a potential contributor to

b-cell dysfunction (1,2). In humans, low levels of HDL,
which is the predominant acceptor of cellular cholesterol,
is a risk factor for the development of type 2 diabetes (3)
and is associated with b-cell dysfunction (4). Although
multiple mechanisms may explain the protective proper-
ties of HDL on b-cell dysfunction, enhancement of cellular

cholesterol efflux seems to play a crucial role. Cholesterol
accumulation in islets compromises b-cell function and
reduces insulin secretion in mice (5–8). In vitro data indi-
cate that HDL-mediated increase in insulin secretion is
dependent on the ATP-binding cassette (ABC) transporters
ABCA1 and ABCG1 (9). We previously demonstrated that
ABCA1 plays a critical role in b-cell cholesterol homeo-
stasis and b-cell function in mice (5). Deletion of ABCA1
specifically in b-cells leads to markedly impaired glucose
tolerance, defective insulin secretion, and cholesterol ac-
cumulation in islets (5). Islets lacking b-cell ABCA1 have
increased expression of the related cholesterol transporter
ABCG1, perhaps as a compensatory mechanism to main-
tain islet cholesterol homeostasis.

ABCG1 promotes cholesterol efflux to HDL and acts
sequentially with ABCA1 to remove cellular cholesterol
(10). Mice with deletion of ABCG1 also have impaired
glucose-induced insulin secretion (11). ABCA1 and ABCG1
have complementary roles in macrophage function (12,13).
In addition to massive lipid accumulation, loss of both
ABCA1 and ABCG1 in macrophages leads to increased ex-
pression of proinflammatory cytokines and enhanced sus-
ceptibility to apoptosis (13). However, the relative importance
of ABCA1 and ABCG1 in islets is thus far unknown.

In this study, we examined whether ABCA1 and ABCG1
have a complimentary role in mediating cholesterol efflux
in b-cells. To determine whether loss of both cholesterol
transporters induces an exacerbated phenotype compared
with loss of either transporter alone, we assessed choles-
terol accumulation, glucose tolerance, insulin secretion,
and islet inflammation in mice with b-cells deficient in both
ABCA1 and ABCG1.

RESEARCH DESIGN AND METHODS

Animals. ABCA1fl/fl;Rip-Cre mice (5) and ABCG12/2 mice (Deltagen, San
Mateo, CA), both on pure C57Bl/6 backgrounds, were crossed to generate F1
heterozygotes. Heterozygote F1 animals were crossbred to obtain the fol-
lowing mice: ABCA1fl/fl;ABCG1+/+ (designated in text as “control”), ABCA1fl/fl;
Rip-Cre;ABCG1+/+ (ABCA12P/2P), ABCA1fl/fl;ABCG12/2 (ABCG12/2), and
ABCA1fl/fl;Rip-Cre;ABCG12/2 (ABCA12P/2P;ABCG12/2) mice. We have previ-
ously reported that under our experimental conditions, mice with floxed
ABCA1 alleles (ABCA1fl/fl) or mice transgenic for the RIP-Cre transgene do not
have altered glucose homeostasis compared with ABCA1+/+ mice (5). All mice
were 3–4 months of age. All studies were approved by the University of British
Columbia Animal Care Committee.
Physiological and metabolic studies. Intraperitoneal glucose tolerance tests
(GTTs) were performed on 4 h–fasted mice injected with 2 g/kg glucose as
previously described (5). Insulin secretion during static incubation and peri-
fusion were performed on hand-picked islets isolated after intraductal colla-
genase injection (5,7). Plasma cholesterol was determined by enzymatic
assay (Thermo Electron Corporation). Islet cholesterol, desmosterol, lathosterol,
cholestanol, campesterol, and sitosterol were determined by gas-liquid
chromatography-mass spectrometry (14).
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FIG. 1. Loss of b-cell ABCA1 and ABCG1 exacerbates glucose intolerance and b-cell dysfunction. A: Body weight of 3-month-old mice (n = 8–12 per
group). B: Fasted plasma glucose levels (n = 10–14 per group). C: Plasma glucose levels during intraperitoneal GTT (n = 5–9). Values represent
mean 6 SEM. D: Area under curve of GTT. E: Plasma glucose levels during intraperitoneal insulin tolerance test (n = 5–9). Values represent
mean 6 SEM. F: Insulin secretion from isolated islets during static incubation. Islets were cultured overnight and then stimulated for 1 h in the
conditions indicated. Values represent pooled data from three separate experiments, each consisting of pooled islets from two mice per genotype.
G: Insulin release during islet perifusion experiments (n = 3 per group). Values represent mean 6 SEM. H: Area under the curve of insulin release
during islet perifusion experiments.

aP < 0.05 versus control;
bP < 0.05 versus ABCA1

2P/2P
;
cP < 0.05 versus ABCG1

2/2
.
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Quantitative PCR. Real-time PCR for C/EBP homologous protein (CHOP),
interleukin-1b (IL-1b), and F4/80 was performed as previously described (5).
Primer sequences are available upon request.
b-Cell mass and immunofluorescence. b-Cell mass was determined from
five evenly spaced, paraffin-embedded pancreatic sections as previously de-
scribed (5). Macrophage staining was performed with antibodies to F4/80
(Cedarlane) and insulin (DAKO) and quantified using ImagePro software
(MediaCybernetics). All islets in three sections from different areas of the
pancreas were analyzed.
Statistical analysis. Differences between groups were calculated by Kruskal-
Wallis test with Conover post-test (for four groups) with a P value of 0.05
considered significant.

RESULTS

Loss of b-cell ABCA1 and ABCG1 exacerbates glucose
intolerance and b-cell dysfunction. In order to deter-
mine the effects of combined deficiency of ABCA1 and
ABCG1 on b-cell function, we crossed mice with b-cell–
specific ABCA1 deficiency (ABCA1-P/-P) with globally de-
ficient ABCG1 (ABCG12/2) mice to generate ABCA12P/2P;
ABCG12/2 double knockout animals. Double knockout
mice showed no changes in body weight (Fig. 1A), but had
increased fasting glucose levels (Fig. 1B) compared with
single knockout mice, which had similar fasting glucose
levels as control animals. Lack of ABCA1 specifically in
b-cells resulted in glucose intolerance (Fig. 1C and D), as
previously reported (5). Although deletion of ABCG1 alone
had no significant effect on glucose tolerance, combined
deletion of ABCG1 and ABCA1 greatly exacerbated glucose
intolerance compared with either ABCG12/2 or ABCA12P/2P

mice alone. Insulin sensitivity was similar in all groups
(Fig. 1E).

As reported previously (5), islets lacking b-cell ABCA1
showed decreased glucose-induced insulin secretion during
static incubation (Fig. 1F), as well as perifusion experiments
(Fig. 1G and H). Both first and second-phase, glucose-
stimulated insulin secretion were reduced. Glucose-
stimulated insulin secretion was significantly but less
markedly decreased in ABCG12/2 mice (Fig. 1F). Notably,
islets lacking both ABCA1 and ABCG1 had an even greater
reduction in glucose-stimulated insulin secretion compared
with islets from mice lacking either transporter (Fig. 1F, G,
and H).
Loss of b-cell ABCA1 and ABCG1 exacerbates islet
sterol accumulation. As loss of both ABCA1 and ABCG1
leads to massive sterol accumulation in several tissues (15),
we measured sterol levels in isolated islets. In agreement
with our previous findings (5), loss of b-cell ABCA1 resulted
in significant islet cholesterol accumulation (Table 1). Al-
though ABCG1 deletion alone had no effect on cholesterol
accumulation, combined loss of both transporters resulted
in increased islet cholesterol levels compared with control,
ABCA12P/2P, and ABCG12/2 islets (Table 1). Other sterols,

such as desmosterol, cholestanol, campesterol, and sitos-
terol, were also increased in islets lacking both trans-
porters (Table 1). Importantly, plasma cholesterol levels
were similar in all groups (control mice, 2.26 6 0.08 mmol/L;
ABCA12P/2P mice, 2.37 6 0.07 mmol/L; ABCG12/2 mice,
2.36 6 0.12 mmol/L; ABCA12P/2P;ABCG12/2 mice, 2.19 6
0.23 mmol/L).
Increased CHOP expression, but no differences in
b-cell mass, in islets lacking ABCA1 and ABCG1.
Cholesterol accumulation in macrophages leads to activa-
tion of the unfolded protein response and CHOP-induced
apoptosis (16). CHOP is an unfolded protein response–
induced transcription factor that links endoplasmic retic-
ulum stress to b-cell dysfunction and apoptosis in animal
models of type 2 diabetes (17). We found that b-cell–specific
deletion of ABCA1 caused a significant increase in CHOP
expression in isolated islets, whereas ABCG1 deficiency
had no effect (Fig. 2A). Lack of both transporters led to
a further increase in CHOP expression (Fig. 2A), but this
was not associated with any change in b-cell mass at the
time point studied (Fig. 2B).
Loss of both b-cell ABCA1 and ABCG1 leads to
macrophage infiltration and increased IL-1b expression.
Islet inflammation is emerging as an important contributor
to type 2 diabetes (18). Recent studies have shown that
both ABCA1 and ABCG1 modulate inflammation (19). Thus,
we examined mRNA levels of IL-1b, a proinflammatory
cytokine that plays a central role in modulating islet che-
mokine release and impairs islet function (18). IL-1b
mRNA was significantly increased in islets lacking both
ABCA1 and ABCG1, but not in islets lacking either ABCA1
or ABCG1 alone (Fig. 3A). To assess islet macrophage in-
filtration, we analyzed expression of the macrophage marker
F4/80 in islets. Both ABCA12P/2P and ABCA12P/2P;
ABCG12/2 islets were found to have increased mRNA
levels of the macrophage marker F4/80 (Fig. 3B). In sup-
port of these data, increased numbers of F4/80-positive
cells were observed, by immunostaining, to be present
in islets of ABCA12P/2P and ABCA12P/2P;ABCG12/2 mice
(Fig. 3C).

DISCUSSION

b-Cell cholesterol homeostasis is an emerging factor that
has been shown to influence b-cell function and insulin
secretion (1,2). Islet cholesterol accumulation due to im-
paired cholesterol efflux or hypercholesterolemia leads to
decreased insulin secretion (5–8). The current study shows
that two major cellular cholesterol efflux transporters,
ABCA1 and ABCG1, play complementary roles in mediat-
ing cholesterol efflux from b-cells and protecting against
islet sterol accumulation and resultant impairment of insu-
lin secretion and islet inflammation.

TABLE 1
Islet sterol levels are increased in ABCA1-P/-P;ABCG12/2 mice

Control ABCA12P/2P ABCG12/2 ABCA12P/2P;ABCG12/2

Cholesterol (mg/mg protein) 33.2 6 3.5 52.8 6 2.9a,c 38.3 6 5.3 118.8 6 4.8a,b,c

Lathosterol (ng/mg protein) 18 6 4 8 6 3 15 6 4 10 6 2
Desmosterol (ng/mg protein) 249 6 50 268 6 48 151 6 44 466 6 36a,b,c

Cholestanol (ng/mg protein) 463 6 47 636 6 36a,c 481 6 55 1,760 6 200a,b,c

Campesterol (ng/mg protein) 400 6 43 543 6 76 478 6 78 1,876 6 325a,b,c

Sitosterol (ng/mg protein) 428 6 71 520 6 30 536 6 72 990 6 253a,b,c

Data are mean 6 SEM. aP , 0.05 versus control. bP , 0.05 versus ABCA12P/2P. cP , 0.05 versus ABCG12/2 (n = 4–6 in each group).
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The dramatic sterol accumulation in islets lacking both
ABCA1 and ABCG1 confirmed the important role of these
transporters in lipid metabolism in b-cells. Importantly, the
degree of sterol accumulation, as well as glucose intolerance
in mice deficient for both transporters, was more than
additive, indicating that these two transporters have a
synergistic effect on islet sterol homeostasis. Islets lacking
ABCA1 and ABCG1 not only accumulate cholesterol, the
cholesterol metabolite cholestanol, and the cholesterol
precursor desmosterol, but also plant sterols such as
campesterol and sitosterol, underlining the importance of
these transporters in sterol efflux. Previously, it was sug-
gested that ABCG1 does not mediate cholesterol efflux in
b-cells (11), as ABCG1 deficiency did not impact choles-
terol levels or cholesterol efflux in b-cells. Cholesterol
levels in insulin vesicles was decreased in ABCG1 knock-
down b-cells, which led to the suggestion that ABCG1 in
b-cells primarily regulates subcellular cholesterol distri-
bution (11). Although we similarly observed that ABCG1
deficiency alone does not result in islet cholesterol accu-
mulation, a role for ABCG1 in b-cell cholesterol export was
unmasked in the absence of b-cell ABCA1.

In the current study, we used b-cell–specific ABCA1-
deficient mice crossed with the global ABCG12/2 mice to

FIG. 2. Increased CHOP expression, but normal b-cell mass in ABCA1
2P/2P

and ABCA1
2P/2P

;ABCG1
2/2

islets. A: Relative CHOP mRNA levels
in isolated islets (n = 5–7 per group). B: b-Cell mass (n = 4–8 per
group).

aP< 0.05 versus control;
bP< 0.05 versus ABCA1

2P/2P
;
cP< 0.05

versus ABCG1
2/2

.

FIG. 3. Loss of b-cell ABCA1 and ABCG1 results in islet inflammation.
A: Relative IL-1b mRNA levels in isolated islets (n = 5–7 per group).
B: Relative mRNA levels of the macrophage marker F4/80 in isolated
islets (n = 5–7 per group). C: Number of F4/80-positive cells per insulin-
positive area in pancreas isolated from control, ABCA1

2P/2P
,

ABCG1
2/2

, and ABCA1
2P/2P

;ABCG1
2/2

mice (n = 4–6 per group).
aP <

0.05 versus control;
bP < 0.05 versus ABCA1

2P/2P
;
cP < 0.05 versus

ABCG1
2/2

.
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determine whether ABCA1 and ABCG1 have complemen-
tary roles in b-cells. We chose not to use mice with global
ABCA1 deficiency that have very low plasma cholesterol
levels (20), as we previously showed that b-cells lacking
ABCA1 are susceptible to dysfunction in vivo only in the
presence of sufficient levels of plasma cholesterol (5). An
obvious limitation of the current study is that the loss of
ABCG1 is not b-cell specific and we can therefore not
exclude effects of ABCG1 deficiency in other cell types
mediating the phenotype reported here.

Absence of both ABCA1 and ABCG1 in b-cells resulted
in no overt alteration in b-cell mass in 4-month-old mice. In
contrast, glucose-stimulated insulin secretion was further
impaired in islets lacking both transporters, indicating that
impaired b-cell function and not b-cell loss resulted in the
hyperglycemia in the double knockout mice. It remains to
be determined whether b-cell mass will be diminished in
older mice, since we did notice a marked increase in ex-
pression of the endoplasmic reticulum stress–related ap-
optosis factor CHOP in islets lacking both ABCA1 and
ABCG1. In keeping with our previous findings (5), b-cell
dysfunction was characterized by loss of both glucose- and
KCl-stimulated insulin secretion, consistent with a defect
in granule exocytosis associated with cholesterol accu-
mulation (21).

Loss of both ABCA1 and ABCG1 resulted in increased
IL-1b expression and increased macrophage infiltration in
islets. Islet inflammation has been reported in type 2 di-
abetes (22). Elevated glucose and free fatty acids increase
expression of proinflammatory cytokines in islets (22). Our
results suggest that decreased activity of ABCA1 and
ABCG1 in b-cells could also lead to islet inflammation.
Loss of both transporters in macrophages results in an
exaggerated cytokine response to toll-like receptor (TLR)
stimuli (19). Although the precise mechanism is unknown,
recent data suggest that macrophages lacking ABCA1 ex-
hibit increased trafficking of TLRs to lipid rafts, which
leads to enhanced signaling (23). The IL-1 receptor, which
appears to be critical for inflammatory responses in b-cells
(18), also depends on lipid rafts for signaling (24). There-
fore, lack of both ABCA1 and ABCG1 in b-cells could po-
tentially lead to enhanced TLR or IL-1 receptor signaling,
resulting in islet inflammation. Furthermore, cholesterol
accumulation could lead to the formation of cholesterol
crystals, which have been shown to induce inflammation
by stimulating the NLRP3 inflammasome in macrophages
(25). Our data provide an important link between islet
cholesterol accumulation and islet inflammation, which
both potentially contribute to increased islet dysfunction
in the absence of ABCA1 and ABCG1.

In summary, our data show that ABCA1 and ABCG1
have complementary roles in protecting against islet cho-
lesterol accumulation, inflammation and impaired insulin
secretion. These data add further support to the concept
that regulation of b-cell cholesterol homeostasis is essential
for normal islet function, and suggest that upregulating the
activity of ABCA1 and ABCG1 could be a promising ap-
proach to decrease islet cholesterol accumulation, decrease
islet inflammation, and improve b-cell function in type 2
diabetes.
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