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Abstract
Assessing the importance of different taxa for inferring evolutionary history is a criti-
cal, but underutilized, aspect of systematics. Quantifying the importance of all taxa 
within a dataset provides an empirical measurement that can establish a ranking of 
extant taxa for ecological study and/or quantify the relative importance of newly an-
nounced or redescribed specimens to enable the disentangling of novelty and infer-
ential influence. Here, we illustrate the use of taxon influence indices through analysis 
of both molecular and morphological datasets, introducing a modified Bayesian ap-
proach to the taxon influence index that accounts for model and topological uncer-
tainty. Quantification of taxon influence using the Bayesian approach produced clear 
rankings for both dataset types. Bayesian taxon rankings differed from maximum 
likelihood (ML)- derived rankings from a mitogenomic dataset, and the highest rank-
ing taxa exhibited the largest interquartile range in influence estimate, suggesting 
variance in the estimate must be taken into account when the ranking of taxa is the 
feature of interest. Application of the Bayesian taxon influence index to a recent 
morphological analysis of the Tully Monster (Tullimonstrum) reveals that it exhibits 
consistently low inferential importance across two recent treatments of the taxon 
with alternative character codings. These results lend support to the idea that taxon 
influence indices may be robust to character coding and therefore effective for mor-
phological analyses. These results underscore a need for the development of ap-
proaches to, and application of, taxon influence analyses both for the purpose of 
establishing robust rankings for future inquiry and for explicitly quantifying the im-
portance of individual taxa. Quantifying the importance of individual taxa refocuses 
debates in morphological studies from questions of character choice/significance 
and taxon sampling to explicitly analytical techniques, and guides discussion of the 
context of new discoveries.
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1  | INTRODUC TION

A fundamental question in systematics centers on understanding 
the importance of different taxa for understanding phylogenetic re-
lationships. However, quantifying taxon importance has hinged on 
varying definitions of the term across many biological disciplines. In 
conservation biology and ecology, clades have traditionally been as-
signed values for “phylogenetic diversity [PD]” (Faith, 1992a,b) and 
taxa have been assigned estimates of “originality/evolutionary dis-
tinctiveness [ED]” (Pavoine, Ollier, & Dufour, 2005; Redding et al., 
2008; and sources therein), both defined using combinations of 
character change reconstruction or branch lengths, and node count-
ing across clades or between taxa of interest. Computational biology 
has built upon these definitions of importance and has cast impor-
tance in combinatorial terms employing PD and ED as measures in a 
constrained optimization problem (the “Noah’s Ark Problem (NAP),” 
a subset of the knapsack problem) to solve for the amount of unique 
evolutionary history that can be preserved in a subset of taxa given 
assumptions on an amount of funding, and the relationship of fund-
ing allocated to probability of survival (Billionnet, 2013; Hartmann & 
Steel, 2006; Nee & May, 1997; Weitzman, 1998).

In contrast to fixed- tree approaches, in systematics, importance 
has been phrased in inferential terms, using sets of trees and either 
quartets or triplets (e.g., leaf and phylogenetic stability indices [Pol 
& Escapa, 2009; and sources therein]) or pruning to assess a taxon’s 
effect on phylogenetic resolution (“wildcard” taxa [Nixon & Wheeler, 
1992], “problematic” and “critical” taxa [Siddall, 1995], and later 
“rogue” and “unstable” taxa [Aberer, Krompass, & Stamatakis, 2013; 
Goloboff & Szumik, 2015]). Taxon importance measures emphasiz-
ing instability of taxa have been utilized predominantly to increase 
node support values by identifying and removing some subset of 
taxa from analyses, using various pipelines and optimality criteria 
(e.g., Aberer et al., 2013; Goloboff & Szumik, 2015).

An alternative approach, suggested by Mariadassou, Bar- Hen, 
and Kishino (2012), is instead a total- taxa approach that assigns a 
value called taxon influence to all taxa within a dataset based on a 
leave- one- out taxon jackknifing and reinference procedure. This ap-
proach provides a relative measure to generate ranked lists of a full 
set of taxa, rather than acting as a cutoff method, like rogue taxon 
analysis, or on subtrees, like leaf or taxon stability indices. Because 
a taxon influence value is derived from independent reanalysis of 
the nearly complete original data compared to the full original data, 
it is a phylogenetic inference- based reframing of a distinctiveness 
measure that is derived from a full analysis rather than partitioning 
of a single analysis. Additionally, the generality of taxon influence 
methods makes them applicable to many underassessed species, 
for which character data, either DNA or morphology, may be the 
only thing known (Mace, Gittleman, & Purvis, 2003). Furthermore, 
unlike ED/PD measures, taxon influence analyses do not require 
time- calibrated phylogenies, which frequently necessitate a degree 
of knowledge of the fossil and/or biogeographic record unavailable 
for many groups of interest. Given this broad applicability and min-
imal assumptions, taxon influence approaches stand to potentially 

bridge the gap between definitions of importance in conservation 
and systematics by generating minimal- assumption taxon rankings 
based on whole tree inference, which may subsequently guide the 
acquisition of data for clades of interest that lack the kind of infor-
mation necessary for NAP approaches. Furthermore, such rank lists 
may be useful to track changes in character data as more analyses 
at phylogenomic (Bragg, Potter, Bi, & Moritz, 2016; Faircloth et al., 
2012) and phenomic (e.g., Copes, Lucas, Thostenson, Hoekstra, & 
Boyer, 2016; Goswami, 2015; O’Leary & Kaufman, 2011) scales in-
crease in size.

Similarly, because taxon influence values are estimated for all 
taxa in a dataset, the relative position of a taxon of interest in the 
ranking of taxa may be useful for explicitly quantifying hypotheses 
of taxon importance implicit in many announcements of newly dis-
covered or redescribed taxa. For example, in publications of new 
taxa based on phenomic data generated by tomographic methods, it 
remains a standard procedure to place these specimens using a par-
simony analysis and to present character optimizations and contex-
tualization of the new taxon based on its inferred position relative 
to other known groups on either an optimal or consensus topology 
(e.g., Giles, Friedman, & Brazeau, 2015; McCoy et al., 2016; Van Roy, 
Daley, & Briggs, 2015; Zhu et al., 2013). Such announcements are 
effectively verbal hypotheses of taxon importance. Despite this fact, 
existing inferential methods are insufficient for testing these hy-
potheses, because taxon importance is a relative measure that must 
account for both the importance of the other taxa and the effects of 
the characters used to infer the phylogeny.

However, two problems exist with current taxon influence imple-
mentations. First, existing implementations are based on maximum 
likelihood, which infers a single optimized tree topology. Influence 
values for a taxon derived from trees estimated using ML are there-
fore based on a comparison of only two topologies that are assumed 
to be fixed estimates. These estimates thus critically neglect un-
certainty—a value as important as the tree itself (Huelsenbeck & 
Rannala, 2004)—an omission which stands to significantly affect the 
inferred influence values and rankings generated by the taxon influ-
ence procedure.

Second, existing taxon influence procedures discussed in 
Mariadassou et al. (2012) utilize either the Robinson- Foulds metric 
(RF; Robinson and Foulds, 1981) or branch score difference (BSD; 
Kuhner and Felsenstein, 1994) to quantify differences between 
trees. Both values are derived from the computational literature 
and are agnostic to the issue of influential taxa. For example, the RF 
metric can produce maximal values for trivial rearrangements of a 
single taxon pair (Böcker, Canzar, & Klau, 2013; Lin, Rajan, & Moret, 
2012), making it likely susceptible to the effects of rogue taxon be-
havior. The BSD, although accounting for both branch length and 
topological differences, is based on the RF metric and likely inherits 
this problem. Additionally, the interaction of differences in topology 
and branch lengths in the BSD may counteract one another in cases 
where short branch lengths and topological differences occur simul-
taneously (Kuhner & Felsenstein, 1994). A tree distance specific to 
questions of taxon influence remains an outstanding problem.
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To address these issues and to demonstrate the utility of 
taxon influence analysis for both robust ranking and taxon rank 
placement, we apply a modified version of the original taxon in-
fluence index (TII) approach of Mariadassou et al. (2012) to three 
published datasets: a complete mitogenomic dataset of reptiles 
(Jonniaux & Kumazawa, 2008), here referred to as JK2008, and 
two recently published datasets debating the placement of the un-
usual fossil taxon Tullimonstrum in a phylogenetic context (McCoy 
et al., 2016; Sallan et al., 2017). We account for tree uncertainty 
using a Bayesian approach to TII calculation discussed, but not im-
plemented, by Mariadassou et al. (2012), and also present a novel 
tree distance to circumvent problems with the RF metric and BSD 
invoked in the original publication.

2  | METHODS

2.1 | Phylogenetic analyses

Bayesian phylogenetic analyses were conducted in MrBayes v.3.2.6 
(Ronquist et al., 2012). The JK2008 dataset was analyzed using the 
same model parameterization (GTR + I + Γ) as in Mariadassou et al. 
(2012). Analysis was run using a single chain of 10 million genera-
tions, with a 20% burn-in. The Tullimonstrum datasets were analyzed 
using the Mkv + Γ model (Lewis, 2001) with six discrete classes, using 
a single chain of 20 million generations, with a 50% burn-in. In both 
cases, the number of generations required to reach a sufficient topo-
logical ESS was determined by calculation of approximate ESS values 
in the R package rwty (Warren, Geneva, & Lanfear, 2017). Because 
the TII approach is a single taxon- pruning procedure, all jackknifed 
analyses were assigned the parent number of generations.

2.2 | Taxon influence measurement

The taxon influence index (TII), the expected distance between pairs 
of trees in the posterior distribution, was calculated according to 
Mariadassou et al. (2012):

where T* is the posterior distribution of trees from analysis using 
all taxa, T′ is a posterior distribution of trees in which a focal taxon 
is dropped before analysis, T′i is a phylogenetic tree from a poste-
rior T′ for which taxon i was dropped before analysis, T*i is a tree 
from the posterior T* in which taxon i was dropped a posteriori 
for comparison with T′i, wi is the posterior probability of a tree 
i, and d(●,●) is a topological distance between the two trees. The 
original calculation from Mariadassou et al. (2012) was modified 
in two ways.

First, because comparisons between posterior distributions of 
trees based on pairwise distances between elements necessitate 
(

n

2

)

 summations, where n is the number of unique postburn- in to-
pologies, to fully compare the high- dimensional posterior, variance 
in the TII value due to a finite approximation with a smaller number 

of sums was estimated by resampling. For each iteration, a number 
of trees equal to min(|T*|,|T′|) were sampled without replacement 
from each posterior according to their posterior probabilities (wi), 
and this sample was used to calculate the TII for each of 100 iter-
ations. The estimated TII value for each taxon was the median of 
these resampled values.

Second, given the potential issues with both the RF metric and 
BSD regarding influential taxa, informative distances between trees 
were defined as the ratio of the distance between the trees to the 
size of the shared tree. This new criterion was satisfied by a value 
referred to here as the SPR excess, an SPR distance—the minimum 
number of subtree- pruning and regrafting rearrangements required 
to turn one tree into another (e.g., Goloboff, 2008)—scaled by the 
number of taxa in the maximum agreement subtree (MAST, (Gordon, 
1979; Finden & Gordon, 1985; Valiente, 2009), and see Ge, Wang, 
and Kim, 2005 for an example of the implications of deviation in tree 
shapes between a difference and similarity measure in the context 
of molecular data).

Finally, for comparison to TII estimates, a rogue taxon analysis 
(Aberer, Pattengale, & Stamatakis, 2010; Aberer et al., 2013) using 
the Mkv + Γ model was conducted in raxml v8.2.9 (Stamatakis, 
2014). To standardize the comparison to a fixed set of trees, the 
postburn- in distribution of trees from the Bayesian analysis, rather 
than a collection of bootstrap trees, was used. All TII calculations 
were conducted using scripts written by the authors (Supplementary 
Information) in the R environment (R Core Team 2016) using the 
ape (Paradis, Claude, & Strimmer, 2004), phangorn (Schliep, 2011), 
stringr (Wickham, 2015), and gespeR (Schmich et al., 2015) pack-
ages. Differences in taxon influence- based rankings between the 
two Tullimonstrum datasets, and differences in rank by proportion 
of missing data, were calculated for this dataset using rank- biased 
overlap (Webber, Moffat, & Zobel, 2010), for which significance was 
assessed using a permutation procedure against the null hypothesis 
of dissimilar rankings.

3  | RESULTS

3.1 | Phylogenetic trees

Phylogenetic analysis of the Jonniaux and Kumaza (JK2008) 
 dataset demonstrated convergence in the postburn- in tree topol-
ogy (approxESST > 500) and ESS > 200 for all model parameters. 
The 50% majority- rule consensus tree (Figure 1) revealed high 
clade support values throughout most of the tree, with low sup-
port  values in the same locations as those inferred for bootstrap 
values by Mariadassou et al. (2012) for this dataset. The 50% 
majority- rule consensus topology inferred under the Bayesian 
analysis was identical to that inferred by Mariadassou et al. (2012) 
under maximum likelihood, with the exception of the procedural 
collapse of the consensus tree for regions where clade sup-
port values were under 50%. There were 36 unique trees in the 
 postburn- in posterior distribution. The 99% credibility interval 
contained ten of these trees.
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Phylogenetic analysis of the Tullimonstrum dataset demon-
strated convergence in the postburn- in tree topology (approxESST 
~ 291), and ESS > 200 for all model parameters. The postburn- in 
posterior distribution contained 9877 unique trees. The 50% 
majority- rule consensus tree (Figure 2) differed significantly from 
the parsimony analysis of McCoy et al. (2016) in several ways. First, 
Metaspriggina was recovered as sister to the remaining ingroup 
taxa, with high support (1.0). Second, Tunicata was recovered as 
diverging before Cephalochordata, with high support (1.0). Third, 
the locations of the polytomies within the tree were shifted. A 
clade of Haikuichthys + Myllokunmingia was recovered as sister to 
the remaining taxa, with low support (0.54). In the remaining taxa, 
Euconodonta, Gilpichthys, a clade of Myxinoidea + Myxinikela (sup-
port 0.71), and the remaining taxa were recovered in a central poly-
tomy. Within the remaining taxa, Mayomyzon, Tullimonstrum, a clade 
of Priscomyzon, Pipiscius, Petromyzontida, and Mesomyzon (support 

0.7) were recovered in a polytomy with the remaining taxa. The 
remaining taxa exhibited the same phylogenetic structure as in 
McCoy et al. (2016).

3.2 | Taxon influence values

TII analysis of the JK2008 dataset produced mostly well- separated 
median values, with a small number of downwardly directed out-
liers, an apparent negative relationship between taxon influence 
and the interquartile range of the TII estimate, and no apparent 
relationship between TII estimate and the skewness of the distribu-
tion (Figure 3).

The medians of the three highest ranking taxa (Pelomedusa sub-
rufa, Sceloporus occidentalis, and Plestiodon egregius) were well sep-
arated both from each other and from the other taxa. These taxa 
differed from those ranked highest by Mariadassou et al. (2012) 

F IGURE  1 Results of Bayesian analysis of the JK2008 dataset (50% majority- rule consensus tree), with clade credibility values displayed 
at nodes. The topology was the same as that recovered by Mariadassou et al. (2012) after accounting for clade collapse procedures

0.3

Caiman_crocodylus

Pelomedusa_subrufa

Coleonyx_variegatus

Oncorhynchus_mykiss

Latimeria_chalumnae

Alligator_mississippiensis

Varanus_komodoensis

Bos_taurus

Sphenodon_punctatus

Lepidophyma_flavimaculatum

Geocalamus_acutus

Takydromus_tachydromoides

Typhlonectes_natans

Gallus_gallus

Crossostoma_lacustre

Gekko_gecko

Shinisaurus_crocodilurus

Ornithorhynchus_anatinus

Xenopus_laevis

Abronia_graminea

Gekko_vittatus

Vidua_chalybeata

Plestiodon_egregius

Cordylus_warreni

Protopterus_dolloi

Chelonia_mydas

Sceloporus_occidentalis

Teratoscincus_keyserlingii

1

1

1

1

1

1

1

0.99
1

1

1

1

1

1

1

1

1

1

1

1

0.53

1

1

1

0.51



4488  |     DENTON aND GOOLSBY

under maximum likelihood using the BSD (Shinisaurus crocodilus, 
Coleonyx variegatus, and Sceloporus occidentalis). Four of the eight 
ingroup taxa identified as influential by Mariadassou et al. (2012) 
were recovered in the top of the Bayesian ranking (Geocalamus 
acutus, Sceloporus occidentalis, Coleonyx variegatus, and Pelomedusa 
subrufa).

TII analysis of the Tullimonstrum datasets produced well- 
separated values (Figure 4a,b, lower), with a small number of ex-
treme and directionally biased outliers that comprised no more than 
10% of each taxon’s TII estimates (Figure 4a,b, upper). Both analyses 
placed Tullimonstrum in the lower quartile of taxon influence (me-
dian TIIMcCoy = 3.38e−05; median TIISallan = 3.07e−05) for all 27 in-
group taxa. Estimated TII values were lower in the Sallan et al. (2017) 
dataset than in the McCoy et al. (2016) dataset, and rankings exhib-
ited several differences in the middle and tail of the list. However, 
the null hypothesis of dissimilarity in the rankings was rejected 
(rbo = 0.932, p < .0001). Rogue taxon analysis did not identify any 
taxa to be pruned. The ranking of taxa based on proportion of miss-
ing values (“?”; Figure 5) was unrelated to the estimated TII- based 
ranks (rbo = 0.189; p = .829).

4  | DISCUSSION

Inference of well- separated TII values for two contrasting data 
types—molecular data and morphological data—and for differing de-
grees of phylogenetic signal suggests the Bayesian- based approach 
presented here is robust and applicable for ranking taxa with differ-
ent data properties. Additionally, the stability in rank location of a 
focal taxon (Tullimonstrum) using our approach suggests the method 
may be beneficial for contextualizing hypotheses of the importance 
of individual taxa using analytical rank results.

4.1 | Molecular dataset

The difference in taxon ranks between the present analysis and the 
original ML analysis underscores the important distinction between 
the two methods. Although the two approaches exhibited some 
overlap in highly ranked taxa (Figure 3; Mariadassou et al., 2012; 
Figures 4 and 5), the interquartile ranges around the median TII es-
timates in the present analysis reveal that TII- based taxon rankings 
are likely to be significantly influenced by topological uncertainty. 

F IGURE  2 Results of Bayesian analysis of the McCoy et al. Tullimonstrum dataset (50% majority- rule consensus tree), with clade 
credibility values displayed at nodes. Differences in topology between this analysis and the results of McCoy et al. are described in the text
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F IGURE  3 Results of taxon influence analysis of the JK2008 dataset. Rankings exhibited well- separated medians and non- normally 
distributed estimate distributions, with an apparent relationship between interquartile range and median value and downward- directed 
outliers
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This implication is supported by the apparent disconnect between 
the strongly peaked posterior distribution, suggesting strong phy-
logenetic signal, and the variably wide and skewed shapes of the TII 
distributions for each taxon in the JK2008 dataset. The importance 
of the shape of TII distributions is further underscored by the over-
lap in interquartile range of the three highest ranking taxa with the 
medians of those taxa identified as highest rank by Mariadassou 
et al. (2012).

Alternatively, such distributions may reflect an analytical ar-
tifact, such as model choice. Mariadassou et al. (2012) observed 
some differences among TII estimates and rankings when different 
models were employed on an amino acid dataset. Although there 
was an apparent relationship between TII median and interquartile 
range (Figure 3), it is currently unclear whether this variation is itself 
a feature of taxa that may reflect some degree of rogue behavior, 
or whether it is a computational artifact that may change with the 
number of TII sampling replicates, or with MCMC search intensity 
or model choice. We presented 100 iterations as a starting value for 
resampling the TII estimates, but more may be necessary for cer-
tain datasets. However, given the potential of Bayesian methods for 
obviating model selection through procedures like reversible- jump 
MCMC (Ronquist et al., 2012), which is not applicable in commonly 
used maximum likelihood phylogenetic inference programs, model 
choice may not affect Bayesian TII estimates and rankings as strongly.

4.2 | Morphological dataset

The ranking of Tullimonstrum using methods like taxon influence is 
significant because it reframes the debate in the recent literature 

on the taxon (Clements et al., 2016; McCoy et al., 2016; Sallan 
et al., 2017) from a conceptual one of character choice/significance 
and taxon sampling to an explicitly analytical one of the inferen-
tial importance of the taxon relative to other taxa. Specifically, 
based on the present results (Figures 4 and 5), we conclude that, 
relative to the selected taxa and characters, Tullimonstrum does 
not have a significant effect on our inference of the shape of evo-
lutionary history; it is not inferentially important relative to the 
dataset. The hypothesis that Tullimonstrum is important, implied in 
the original paper (McCoy et al., 2016), is by this measure rejected, 
a conclusion that is further supported by the robustness of the 
Tullimonstrum rank position to differences in the coding of eight 
disputed character states between the McCoy et al. and Sallan 
et al. datasets.

This conclusion stands in contrast to the intuitive idea of impor-
tance as suggested by the many apparently unique features in the 
taxon, notably the proboscis and eyestalks, and its placement within 
lampreys in parsimony analysis (McCoy et al., 2016). This unexpected 
outcome reveals that a distinction must be made between novelty 
and inference when contextualizing new taxonomic discoveries or 
redescriptions. Taxon influence analysis makes this distinction pos-
sible by explicitly quantifying one element (inferential importance).

Additionally, given that the taxon influence measure accounts for 
taxon and character sampling, the low rank inferred for Tullimonstrum 
may be an artifact of sampling design incurred by adding new taxa 
to existing character matrices (see, for example, [Davis, Finarelli, & 
Coates, 2012; Zhu et al., 2013; Giles et al., 2015] and [McCoy et al., 
2016; Morris & Caron, 2014; Sansom, Freedman, Gabbott, Aldridge, 
& Purnell, 2010]). Future work may utilize taxon influence mea-
sures to address the idea of refinability in morphological character 
datasets.

4.3 | Methodological implications and 
future directions

The bounds around the resampling results (Figures 3 and 4) suggest 
that the finite sum approximation utilized in this study generates 
reproducible rankings of taxon influence and may thus be an effec-
tive approximation for calculating taxon influence based on the SPR 
excess distance measure, from posterior distributions of trees for 
which the probabilities were calculated using the standard approach. 
The causes for the existence of directional outliers in the studied 
datasets (Figures 3 and 4) is currently unclear, but may be an artifact 
of either the number of finite sums, or of an interaction between the 
probabilities of trees and the SPR distances between them.

Although we have focused on several standard parametric 
models for nucleotide substitution and morphological character 
transformation, other posterior distributions of trees are possi-
ble. It may be useful to, for example, explore the distribution of 
parsimony- score- ranked trees under the Bayesian approach using 
the TS97/no common mechanism model (Tuffley & Steel, 1997), for 
comparison with the results of parametric models, or as a heuristic 
for larger datasets. It may also prove worthwhile to calculate tree 

F IGURE  5 Scatterplot of inferred taxon influence values versus 
the proportion of missing data in the taxon for the McCoy et al. 
dataset. There was no significant relationship between influence 
value and proportion of missing data (R2 = .02; p = .19). Ranking 
based on the proportion of missing data was unrelated to the  
TII- based ranking (rbo = 0.189; p = .829)
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posteriors using information- theoretic measures (Larget, 2013; 
Lewis et al., 2016) and nonuniform tree priors, which may reveal a 
more universal metric for taxon influence assessment. Finally, al-
though our method assesses the influence of individual taxa using 
a leave- one- out jackknifing approach as an intuitive method for 
generating ranked lists of taxa based on what is essentially the 
“main effect” of each taxon, the contributions of higher- order “in-
teraction” effects, such as pairwise-  or clade- based influence, have 
yet to be addressed by the taxon influence approach. Approaches 
for estimating clade stability have been discussed by several au-
thors, including Pol and Escapa (2009), for reduced positional con-
gruence, and Gatesy (2000), for linked branch support. In these 
cases, analyses were conducted on complete- taxon datasets and 
sets of most parsimonious trees, rather than via a taxon jackknifing 
approach. The theory for, and effect of, pairwise or higher- order 
interactions on taxon influence values is currently unclear. Future 
work expanding the taxon influence method through a leave- k- out 
approach may be beneficial, although direct interpretation of the 
results of complex multi- taxon interaction may be difficult.
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