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Abstract
Uremic toxins are linked to chronic kidney disease (CKD)-related systemic diseases. β2-Microglobulin (β2-m), a water-solu-
ble, middle-sized molecule, is associated with mortality and dialysis-related amyloidosis (DRA). DRA occurs in long-term 
dialysis patients, with β2-m amyloid deposited mainly in osteoarticular tissues. We investigated a model of β2-m amyloid 
fibril extension at neutral pH in the presence of trifluoroethanol or sodium dodecyl sulfate. Using this model, some biologi-
cal molecules, including glycosaminoglycans and lysophospholipids, were found to be chaperones for β2-m amyloid fibril 
extension. Several protein-bound solutes, such as indoxyl sulfate (IS) and p-cresyl sulfate, are independent risk factors for 
cardiovascular disease in CKD patients, especially those undergoing dialysis. We investigated kidney injury-induced accel-
eration of atherosclerosis in association with macrophage phenotypic change to a proinflammatory state as well as increased 
IS deposition in lesions in an animal model. IS directly induced macrophage inflammation and impaired cholesterol efflux to 
high-density lipoprotein (HDL) in vitro. In addition, a clinical study showed that HDL isolated from CKD patients induced 
proinflammatory reactions and impaired cholesterol efflux to macrophages. These findings suggest that protein-bound solutes, 
including IS, will induce dysfunction of both macrophages and HDL in atherosclerotic lesions. To remove uremic toxins 
efficiently, we demonstrated the potential efficacy of oral charcoal adsorbent and hexadecyl-immobilized cellulose beads 
in hemodialysis patients. These findings suggest that uremic toxins induce various CKD-related systemic disorders, and 
further therapeutic strategies will be needed to reduce uremic toxins enough and improve life expectancy in CKD patients.
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Uremic toxins and systemic disease 
in chronic kidney disease patients

Advanced chronic kidney disease (CKD) induces various 
systemic diseases including cardiovascular disease (CVD), 
osteoarticular disorders, infections, malignant disease, and 

others. The frequency and severity are enhanced with the 
progression of CKD, especially end-stage kidney disease 
with dialysis treatment [1]. CKD-related systemic disease 
not only worsens survival, but also impairs activities of daily 
living (ADL) and quality of life (QOL). Thus, greater under-
standing of the mechanism of these disorders and investiga-
tion of therapeutic strategies is necessary. An accumulation 
of uremic toxins is a CKD-specific factor in the development 
of CKD-related systemic disease. Despite recent progress 
in dialysis treatment and the preservation of kidney func-
tion [2], survival and ADL/QOL in CKD patients have not 
improved enough.

My collaborators and I have studied the pathophysiol-
ogy of uremic toxin-related systemic disorders, especially 
dialysis-related amyloidosis (DRA) and atherosclerosis, with 
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a focus on β2-microglobulin (β2-m) and indoxyl sulfate (IS), 
respectively, and tried to identify therapeutic strategies to 
improve survival and ADL/QOL in CKD patients.

Progressive kidney disease induces uremic syndrome, 
with the retention of various solutes that are normally 
excreted by the kidney. Solutes with biological toxicity, 
direct or indirect, are called “uremic toxins.”

Requirements for a uremic toxin are include the follow-
ing [3–5]:

1.	 The toxin is a unique chemical entity.
2.	 Quantitative analysis of the toxin in biological fluids is 

possible.
3.	 The levels of the toxin in biological fluids increase with 

deterioration of kidney function.
4.	 A positive relationship between toxin level in biological 

fluids and manifestations of uremic syndrome is present.
5.	 Administration of the toxin at a concentration seen in 

patients with kidney disease shows toxic effects related 
to uremic syndrome, both in vivo and in vitro.

A literature search identified 88 uremic toxins in 621 arti-
cles. These were classified into groups according to molecu-
lar weight and protein-bound properties, and were water-sol-
uble low molecular weight, middle sized, and protein-bound 
molecules [3].

β2‑Microglobulin and dialysis‑related 
amyloidosis

A representative, water-soluble middle sized molecule, β2-m 
(11.8 kDa), is associated with survival in dialysis patients 
[6–8]. For example, the randomized Hemodialysis (HEMO) 
Study showed that predialysis serum β2-m levels were asso-
ciated with all-cause mortality [8], as well as mortality 
owing to infections in dialysis patients [9]. In CKD-related 
osteoarticular disorders, β2-m is a precursor protein for DRA 
[10]. β2-m-related amyloid fibrils are formed and deposited 
primarily in osteoarticular joint tissues, resulting in various 
osteoarticular disorders, such as carpal tunnel syndrome, 
destructive spondyloarthropathy, and bone cysts in dialysis 
patients [11]. Accumulation of β2-m and the interactions 
between β2-m and other biological molecules are thought 
to be needed for amyloid fibril formation in vivo [12, 13]. 
The β2-m-related amyloid fibril formation and extension 
occurs according to a nucleation-dependent polymerization 
model [12, 14]. This model consists of a nucleation phase 
and an extension phase. Nucleus formation requires a series 
of monomer association steps, which represent the rate-
limiting step in amyloid fibril formation. Once the nucleus 
(n-mer) has been formed, further addition of monomers 
becomes thermodynamically favorable, resulting in the rapid 

extension of amyloid fibrils according to a first-order kinetic 
model [12, 14]. In the mechanism of amyloidogenesis of 
natively folded proteins as well as β2-m, partial unfolding is 
believed to be a prerequisite to assembly into amyloid fibrils, 
both in vitro and in vivo. In this process, conformational 
change of β2-m with biological molecules is necessary [12, 
15]. The extension of β2-m-related amyloid fibrils, as well 
as the formation of the fibrils from β2-m, is greatly depend-
ent on the pH of the reaction mixture, with the optimum 
pH being around 2.0–3.0 [15, 16]. On the other hand, the 
fibrils readily depolymerize into monomeric β2-m at pH 7.5 
[17]. Thus, to observe the extension of β2-m-related amyloid 
fibrils at neutral pH, we need to unfold the compact struc-
ture of β2-m monomer to an amyloidogenic conformer, and 
stabilize the extended fibrils by adding other factors. We 
investigated the effect of low concentrations of 2,2,2-trif-
luoroethanol (TFE) and sodium dodecyl sulfate (SDS) on 
the extension of β2-m-related amyloid fibrils at neutral pH 
in vitro [18, 19]. TFE at concentrations of up to 20% (v/v) or 
SDS at a critical micelle concentration caused amyloid fibril 
extension by inducing a subtle change in the tertiary struc-
ture of β2-m, and stabilizing the fibrils at neutral pH. TFE-
induced amyloid fibril extension at neutral pH was enhanced 
by several kinds of glycosaminoglycans, especially heparin 
[18]. In these reactions, glycosaminoglycans bound directly 
to the amyloid fibrils. In another study, depolymerization 
of amyloid fibrils at pH 7.5 was inhibited dose-dependently 
by the presence of apolipoprotein E, some glycosaminogly-
cans, or proteoglycans [17, 20]. The results suggested that 
those biological molecules could enhance the deposition 
of β2-m-related amyloid fibrils in vivo, possibly by bind-
ing directly to the surface of the fibrils and stabilizing the 
conformation of β2-m in the fibrils [12]. Using an in vitro 
β2-m amyloid fibril formation model, other studies showed 
that several other biological molecules including lysophos-
pholipids [21] and various non-esterified fatty acids [22] are 
enhancing-factor candidates for β2-m-related amyloid fibril 
deposition in vivo. Thus, deposition of β2-m-related amyloid 
requires β2-m conformational change and stabilization of 
amyloid fibrils with some biological molecules (Fig. 1). In 
contrast, recent findings showed that extracellular chaper-
ones including α2-macroglobulin may inhibit amyloid fibril 
formation by capturing unfolded and misfolded β2-m [23]. 
Further clinical studies will be needed to verify the in vivo 
roles of these molecules in DRA. The β2-m-related amyloid 
fibrils deposited in tissues induce cellular interactions that 
are associated with DRA symptoms, such as carpal tunnel 
syndrome and destructive spondyloarthropathy. When syno-
vial fibroblast cells were reacted with extended β2-m-related 
amyloid fibrils in vitro, cellular survival were impaired by 
disrupting endosomal/lysosomal membranes [24]. This reac-
tion may be associated with the development of carpal tun-
nel syndrome in CKD patients. Macrophages in spine lesions 
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are thought to be activated by deposited amyloid fibrils, and 
activated macrophages may accelerate destruction of spine 
with long-term dialysis treatment [25].

Indoxyl sulfate and atherosclerosis

CKD is one of the strongest risk factors for CVD owing to 
progressive atherosclerosis as well as vascular calcification. 
Accumulation of protein-bound uremic toxins is associated 
with cardiovascular mortality in CKD patients [26–28]. 
Serum levels of IS increase with the progression of CKD, 
particularly in patients undergoing dialysis. Production of 
indole, precursor of IS, by intestinal flora is enhanced with 
kidney disease setting, animal models suggested that use 
of Lubiprostone modulated kidney damage-induced pertur-
bation of microbiota and reduced IS production [29, 30]. 
IS was associated with increased cardiovascular mortality, 
aortic calcification, and pulse wave velocity in CKD patients 
[28]. Indole acetic acid (IAA) showed trends similar to IS, 

and multivariate analysis showed that IAA, but not IS or 
p-cresyl sulfate, remained a significant predictor of mor-
tality and cardiovascular events [26]. In animal models, 
subtotal nephrectomy accelerated atherosclerosis as well as 
plaque formation in apolipoprotein E knockout mice [31]. 
In atherosclerotic lesions, renal injury induced macrophage 
phenotypic change, with an increase in proinflammatory 
M1 as well as a decrease in anti-inflammatory M2 [32, 33]. 
Our research suggested that kidney injury-induced accel-
eration of atherosclerosis is associated with IS [31], the 
renin-angiotensin-aldosterone system [32], and peroxisome 
proliferator-activated receptor-γ [33]. These clinical and 
basic studies suggested that protein-bound uremic toxins, 
especially IS, act as major CKD-specific factors in CKD-
induced acceleration of atherosclerosis. When macrophages 
differentiated from THP-1 cells were exposed to IS in vitro, 
IS decreased cell viability but promoted macrophage 
inflammatory cytokine production as well as reactive oxy-
gen species production [34]. In this process, IS-inducing 
inflammation in macrophages results from accelerating aryl 

Fig. 1   Pathogenesis of 
dialysis-related amyloidosis. 
β2-Microglobulin (β2-m), a 
water-soluble, middle sized 
uremic toxin, increases with the 
deterioration of kidney function. 
Some biological molecules, 
such as glycosaminoglycans 
and proteoglycans, change 
the conformation of β2-m and 
stabilize and extend the amyloid 
fibrils. In contrast, extracel-
lular chaperones including 
α2-macroglobulin may inhibit 
amyloid fibril formation by cap-
turing unfolded and misfolded 
β2-m
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hydrocarbon receptor-NF-κΒ/MAPK cascades, but not the 
NLRP3 inflammasome [35]. These reactions may restrict 
mature IL-1β production, which may explain sustained 
chronic inflammation in CKD patients. IS also reduced 
macrophage cholesterol efflux and decreased ATP-binding 
cassette transporter G1 expression [34]. Thus, direct inter-
actions of IS with macrophages induces macrophage foam 
cell formation, which leads to atherosclerosis acceleration 
in patients with CKD (Fig. 2). We also found that HDL from 
CKD patients but not from non-CKD subjects impaired mac-
rophage cholesterol efflux [36]. Although HDL is known 
to have anti-inflammatory activity, uremic HDL enhanced 
macrophage inflammation as well as migration [36]. These 
results suggest that uremic toxins may induce functional 
abnormalities in macrophages and HDL that enhance mac-
rophage foam cell formation in atherosclerotic lesions in 
CKD patients (Fig. 2) [37]. IS or uremic HDL also induced 
functional abnormalities of not only macrophages but other 
atherosclerosis-associated cells including endothelial cells 
[38, 39]. Thus, systemic removal of uremic toxins will be 
effective to prevent CKD-induced disorders.

Strategies to remove uremic toxins

To prevent CKD-related systemic disease including CVD, 
preservation of kidney function, including treatment for 
glomerulonephritis and diabetic nephropathy, is essential 
to avoid accumulation of uremic toxins. In advanced CKD, 

especially end-stage kidney disease, removal of uremic 
toxins with medication and blood purification therapy 
will be another option for the prevention of CKD-related 
systemic disease. An oral charcoal adsorbent (AST-120) 
reduces serum levels of IS [40, 41] and can be used in 
advanced CKD patients for the preservation of kidney 
function while some large interventional clinical stud-
ies did not show clear effect on it [42–46]. Reduction of 
uremic toxins with AST-120 may be associated with bet-
ter outcomes in CKD-related systemic disease. In fact, 
kidney damage-induced acceleration of atherosclerosis 
was modulated with administration of AST-120, with less 
aortic deposition of IS and aortic expression of inflamma-
tory cytokines [31]. Another study showed that AST-120 
modulated CKD-induced cardiac damage, with decreased 
serum/urine levels of IS and oxidative stress markers, 
such as 8-hydroxy-2′-deoxyguanosine and acrolein, in a 
rat model [47]. IS strongly bound to high molecular weight 
protein and is difficult to remove with conventional dialy-
sis treatment. A clinical study showed that IS in serum is 
97.7% protein-bound and is only reduced by 31.8% with 
standard hemodialysis [4]. Recent findings showed that a 
longer hemodialysis treatment session [48], use of large-
pore, super-flux cellulose triacetate membranes [49], and 
hemodiafiltration [50] increased the removal of protein-
bound uremic toxins; however, these changes are thought 
to be insufficient to prevent CKD-related complications. 
Additional therapy with conventional dialysis is needed 
to adequately remove protein-bound uremic toxins. For 
example, when anuric patients undergoing maintenance 
hemodialysis used AST-120 6 g/day for 2 weeks, serum 
IS, p-cresyl sulfate, and phenyl sulfate levels in the predi-
alysis session decreased significantly [51], as did oxidative 
stress markers including oxidized albumin and 8-isopros-
tane [51]. The Lixelle® column contains porous hexadecyl-
immobilized cellulose beads and was developed for direct 
hemoperfusion of blood β2-m with hydrophobic inter-
actions [52, 53]. Recent research found that hexadecyl-
immobilized cellulose beads adsorbed protein-unbound 
free IS, p-cresyl sulfate, phenyl sulfate, and IAA to some 
degree [54]. These interventions are problematic in clini-
cal use, and further clinical investigation will be necessary 
to adequately reduce uremic toxins. Methods for reduction 
include targeting of intestinal flora that produce uremic 
toxins, removal of circulating uremic toxins, and others 
(Fig. 3). Treatments at each stage will decrease uremic 
toxins and prevent CKD-related systemic disorders. In 
addition, adequate removal of protein-bound uremic tox-
ins should be recommended when the interventions can 
improve survival and ADL/QOL in CKD patients.

Fig. 2   Indoxyl sulfate induces macrophage foam cell formation in 
atherosclerotic lesions. Indoxyl sulfate, a protein-bound uremic toxin, 
reacts directly with macrophages and induces production of inflam-
matory cytokines as well as impairment of cholesterol efflux to high-
density lipoprotein, leading to macrophage foam cell formation. 
ABCG1 ATP-binding cassette transporter G1, CKD chronic kidney 
disease, FC free cholesterol, LDL low-density lipoprotein, HDL high-
density lipoprotein
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Conclusion

Uremic toxins and CKD-related diseases, focused on β2-
m-related amyloidosis and IS-induced acceleration of ath-
erosclerosis, were reviewed, based on current knowledge 
and future perspectives. Accumulation of uremic toxins 
can induce various systemic disorders, and each uremic 
toxin has unique characteristics, such as conformational 
change and protein-binding properties in the disease set-
ting. Further studies will be needed to identify the char-
acteristics of each uremic toxin in greater detail and to 
develop therapeutic strategies for improved survival and 
ADL/QOL in CKD patients.
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