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Currently our limited understanding of crop rhizosphere community assembly hinders

attempts to manipulate it beneficially. Variation in root communities has been attributed

to plant host effects, soil type, and plant condition, but it is hard to disentangle the relative

importance of soil and host without experimental manipulation. To examine the effects

of soil origin and host plant on root associated bacterial communities we experimentally

manipulated four crop species in split-plot mesocosms and surveyed variation in bacterial

diversity by Illumina amplicon sequencing. Overall, plant species had a greater impact

than soil type on community composition. While plant species associated with different

Operational Taxonomic Units (OTUs) in different soils, plants tended to recruit bacteria

from similar, higher order, taxonomic groups in different soils. However, the effect of soil

on root-associated communities varied between crop species: Onion had a relatively

invariant bacterial community while other species (maize and pea) had a more variable

community structure. Dynamic communities could result from environment specific

recruitment, differential bacterial colonization or reflect broader symbiont host range;

while invariant community assembly implies tighter evolutionary or ecological interactions

between plants and root-associated bacteria. Irrespective of mechanism, it appears both

communities and community assembly rules vary between crop species.

Keywords: rhizobacteria, 16s r RNA gene sequencing, community structure, host colonization, PGPR (Plant

Growth Promoting Rhizobacteria)

INTRODUCTION

Plants coexist with complex microbial communities both in above-ground organs (the
phyllosphere) and below-ground (the rhizosphere), the rhizosphere including both the inside of
the root tissue and the soil immediately adjacent to and under the influence of the root system.
Hiltner, as early as 1901, predicted that the resistance of plants toward pathogens is dependent
on the composition of a “plant microflora” and that root exudates of different plants could
support development of different microbial communities (Hartmann et al., 2007). The signaling
interactions and host association patterns between model plants and some of their specialized
pathogens and mutualists are well-documented (Philippot et al., 2013). Moreover, a wide range of
physiological benefits for plants may result from the association with bacteria; benefits that include
nutrient acquisition, enhanced stress tolerance, host immune regulation, and protection against
soil borne pathogens and phytophagous insects (Pineda et al., 2010; Berendsen et al., 2012; Mendes
et al., 2013; Turner et al., 2013a; Bakker et al., 2014; Cook et al., 2015). Microbiome effects on
host immunity are thought to be particularly crucial. Despite their importance, we are at an early
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stage of understanding the factors that shape the composition
of plant microbial communities. If we understood rhizosphere
community assembly then this process would potentially bemore
predictable or controllable (Ho et al., 2013; Krause et al., 2014);
improving our ability to selectively promote species with direct
benefits for crop growth or to selectively inhibit pathogens.

Root-associated microorganisms are mainly recruited from
the surrounding soil. Unsurprisingly, these communities are
strongly influenced by the composition of the reservoir of
soil microbes (Bulgarelli et al., 2012; Lundberg et al., 2012;
Schlaeppi et al., 2014). In tree rhizospheres, in particular,
fungal community composition is more influenced by soil rather
than plant species (Bonito et al., 2014). However, plant taxa
can significantly influence the formation of root-inhabiting
bacterial assemblages when different cultivars, species or distinct
genotypes of plants are grown in the same soil (Manter et al.,
2010; Bouffaud et al., 2014; Ofek et al., 2014). Plant specific
rhizodeposits are one mechanism shaping bacterial community
shifts from soil to host-adapted communities, with reduced
diversity and increased abundance of select core taxa (Bulgarelli
et al., 2012; Lundberg et al., 2012). Plants may also modulate
their rhizosphere microbiome so that different plant species
promote or enrich a particular set of microbes (Haichar et al.,
2008; Turner et al., 2013b; Ofek-Lalzar et al., 2014). Plant
evolutionary history appears to be important here: with an
increase in the phylogenetic distance between plant species,
differences in microbial assemblages also increase (Wieland et al.,
2001; Bouffaud et al., 2014). Not only different plant species, but
also different genotypes of the same species, may differ in their
rhizosphere microbiome (Inceoglu et al., 2011; Weinert et al.,
2011; Peiffer et al., 2013).

Initial studies to characterize plant-associated communities
relied on cultivation-based methods. Although culture-
dependent studies can make important conclusions about
specific, readily isolated microbes (Bakker et al., 2013), they are
biased in the taxa they identify and drastically limit community
diversity estimates. Recent consensus emerging from next
generation sequencing studies is that four major bacterial phyla
(Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes)
make up the vast majority of members of root associated bacterial
communities (Hacquard et al., 2015).

As a consequence of this repeatedly observed broad scale
structure, bacterial community assembly in the rhizosphere has
been viewed as a deterministic and tightly controlled process
(Bulgarelli et al., 2013; Haney and Ausubel, 2015). However,
experimental approaches designed to test the many factors at
play in community assembly are scarce, and community assembly
models are still largely untested. Understanding the factors that
shape or limit community assembly in the rhizosphere may be
of applied importance. First, altered communities of rhizosphere
bacteria have a role in plant invasiveness (Coats and Rumpho,
2014; Gundale et al., 2014). Second, despite being a rapidly
developing industry, the application of rhizobacteria as plant
growth promoters (PGPR) can have variable effects in the field
(du Jardin, 2015). One of the possible causes of these variable
results is that we do not fully appreciate whether community
assembly patterns (local adaptation or prior occupation of

host niches) are likely to determine if applied PGPR have an
opportunity to interact with hosts at all.

Currently both hosts and soils are implicated as key
determinants of rhizosphere bacterial communities, yet few
studies have explicitly tested their relative importance in shaping
whole bacterial communities or fully controlled for the effects
of sampling site. The aim of this study was to compare
the effects of soil and plant host on bacterial community
assembly in the rhizosphere. We used a replicated split plot,
glasshouse mesocosm design, with two soil treatments, and four
taxonomically distinct host treatments. These generated bacterial
samples from two soil types and roots of different hosts grown
under controlled conditions, which were characterized using
an in-depth next generation metagenomic amplicon sequencing
approach. We then compared bacterial diversity and community
composition across species and soils to assess their effect on the
rhizosphere microbiota.

MATERIALS AND METHODS

Soil Sampling
Grassland and woodland soils were used in these experiments
because they represented qualitatively different soil
environments, characterized by different associated vegetation
communities–namely a mesotrophic grassland and mixed
deciduous oak/birch woodland (Crawley, 2005). Woodland soil
samples from Silwood Park; Nash’s Copse (Lat: 51◦ 24′ 49.8024′′

Long:−0◦ 38′ 48.357′′) and grassland soil samples from Nash’s
Field (Lat: 51◦ 24′ 44.5400′′ Long: −0◦ 38′ 41.357′′) were taken
on the 9th of April 2013. Three trenches 0.3 m2 by 1m long were
dug at 10m intervals in two parallel transects 250m apart, to
remove approximately 40 L of soil and vegetation per trench,
giving 120 L in total per soil treatment. Soil screening and
decanting soil into pots occurred the following day. Detailed site
descriptions and methods for soil screening and pot mesocosm
set up are supplied inData Sheet 1.

Glasshouse Culture Regime and Sampling
Four varieties of organic untreated seed were supplied by Moles
Seed (UK) Ltd: Allium fistulosum L. var Ishikura (onion); Pisum
sativum L. var Twinkle (pea); Solanum lycopersicum L. var
MicroTom (tomato); Zea mays L. var Minipop (sweet corn).
Seeds were surface sterilized and incubated at 24◦C in 30mL
sterile water for 2 days before sowing. In addition seed surface
sterilization checking plates were set up to validate this process
Data Sheet 1. Twenty onion, six pea, ten tomato, and six sweet
corn seeds were sown in each pot at approximately 2 cm depth
and spacing. Single species monocultures were grown as nested
host treatments in a quarter of a 7.5 L terracotta pot. Pots were
imbedded in wet sand in 13 L buckets, in order to minimize
water stress, and divided into quarters by plastic dividers (Correx,
Cricklade, Wiltshire, UK).

Mesocosms were cultured for between 60 and 86 days in
total. The glasshouse simulated 16 h light cycles from 06:00 to
22:00 with 400W full spectrum lights suspended 1.5m above
the growing plants, and at 1.5m spacing along the benches.
Artificial lighting cut out when ambient light exceeded 450 lux
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for more than 5min. The initial 14 days of culture, during
seed germination and establishment, used direct surface watering
with sterile water. Further irrigation used 500ml tap water
applied indirectly to sand every 1–2 days and occasional direct
sterile surface watering. Pots were randomly moved within the
glasshouse every 10–12 days. Heating and passive cooling via
ceiling vents maintained the temperature between 20 and 27◦C.

Pots, from both soil treatments, were randomly sampled in
pairs between 2/6/13 and 3/7/13. After sampling the following
host traits were measured: %germination, fresh aboveground
biomass, dry aboveground biomass, fresh belowground biomass,
Pea nodulation frequency. Dry belowground biomass was not
recorded as within a pot whole rootstocks from all the surviving
individuals were washed thoroughly, pooled by host, and
destructively sampled for bacterial extraction.

Soil Moisture and Nutrient Profiling
In order to test for differences in soil characteristics between soil
treatments we quantified available and total nutrients. Specifically
we assessed available free nitrogen (nitrate/nitrite and ammonia)
available phosphate, total N & P, C:N, and soil moisture. Detailed
methods can be found in the Supplementary Material.

Bacterial Cell Enrichment
Bacterial sampling methods from whole rootstocks followed
protocols established to reduce the presence of plastid DNA
(Ikeda et al., 2009, 2010). Soil was removed by shaking and
washing the rootstock in an excess volume of sterile H2O.
Rootstocks were weighed and homogenized in 120ml of pre-
chilled bacterial cell enrichment (BCE) buffer (1L H2O, 50ml 1M
Tris, 10ml Triton X100, 2ml β-mercaptoethanol) using a blender
at high speed for 3min. The homogenate was filtered through
a layer of sterilized Miracloth and centrifuged at 1,800 rpm for
5min at 10◦C. The supernatant was further centrifuged at 4,000
rpm for 20min and the pellet re-suspended in 5ml of BCE
buffer. Samples were filtered into one 15ml falcon tube through
4 layers of sterilized Kimwipe. Filtrates were then centrifuged at
4,000 rpm for 10min at 10◦C. The supernatant discarded and
the pellet re-suspended in 10ml of 50mM Tris–HCl (pH 7.5).
The filtration and spin was repeated and the pellet resuspended
in 6ml of 50mM Tris–HCl. This bacterial cell suspension was
over-laid on 5ml of 50% (w/v) Iodixanol-Tris–HCl solution and
centrifuged at 4,000 rpm for 40min at 10◦C. Approximately
0.5ml bacterial cell fraction was collected with a sterile glass
capillary dropper and diluted with an equal volume of sterile
water and centrifuged at 10,000 rpm for 1min. The pellet was
then resuspended in 350 µl sterile water and an aliquot of 20
µl immediately plated onto L-Broth agar plates prior to storing
at−80◦C.

DNA Extraction and Sequencing
Library Preparation
Bacterial pellets were resuspended in 200 µl TE buffer (Tris-
HCl, 10mM; EDTA, 1mM; pH 7.0) for 30min. The DNA
was extracted with N-acetyl-N-trimethyl ammonium bromide
(CTAB)/NaCl. DNA was precipitated overnight at −20◦C with
70% ethanol before purification by phenol/chloroform/isoamyl

25:24:1 and chloroform/isoamyl 24:1 cleaning. The final DNA
precipitate was dried and resuspended in 35 µl TE buffer
and stored frozen (−20◦C), after the protocol recommended
by the DOE Joint Genome Institute (JGI) for isolation of
genomic DNA from bacteria (http://my.jgi.doe.gov/general/
protocols.html).DNA extracts were quality checked using agarose
gel electrophoresis and quantified using a spectrophotometer
(Nanodrop ND-1000; NanoDrop Tech. Inc). Samples containing
a sufficient yield of high mass and purity DNA were selected,
at approximately 50 ng of DNA template per sample. The V4
variable region of the 16S rRNA gene was amplified using primers
F515 (5′-NNNNNNNNGTGTGCCAGCMGCCGCGGTAA−3′)
and R806 (5′-GGACTACHVGGGTWTCTAAT−3′) (Caporaso
et al., 2011), including a unique 12 bp index sequence in each
of 24 reverse primers to allow samples to be multiplexed on a
single sequencing run. Primers also included sequencing adapters
to allow the products to be directly sequenced on Illumina
platforms, and were supplied in the NEXTflex 16S V4 Amplicon
Sequencing Kit (Bioo Scientific)

PCR conditions consisted of an initial 98◦C for 2min
denaturation followed by 30 cycles of 98◦C for 45 s, 50◦C for
60 s, and 72◦C for 90 s, and a final extension of 72◦C for 10min.
PCR clean-up used a bead based clean-up and size selection step
(Agencourt XP Ampure beads). The quality of the final products
was quantified by gel electrophoresis and Qubit fluorometer
(Life Technologies). The samples were diluted to 1 ng/µl and
pooled in a 4 nM library and sequenced using the 250 bp paired-
end protocol on an Illumina MiSeq.To prevent potentially low
diversity reads causing focusing errors 10% PhiX was spiked in
the pooled library.

NGS Data Processing
Raw Illumina fastq files were de-multiplexed, paired, quality
filtered, and analyzed using QIIME v1.8.0. (Caporaso et al.,
2010). Sequences were excluded if a quality score phred <33
was detected in 75% or more bases, if reads contained one
or more ambiguous base call, or if reads were < 190 bp.
Operational taxonomic units (OTUs) were defined and classified
taxonomically using QIIME’s uclust-based open-reference OTU-
picking workflow, with thresholds of 97% pairwise identity,
and 97% similarity (Edgar, 2010). Reference-based OTU picking
was performed using a representative subset of the Greengenes
bacterial 16S rRNA database 13_8 release (DeSantis et al., 2006;
McDonald et al., 2012). Bacterial 16S rRNA gene sequences
were aligned using PyNAST (Caporaso et al., 2010) against
a template alignment of the Greengenes core set filtered at
97% similarity. From this alignment, chimeric sequences were
identified and removed using ChimeraSlayer (Haas et al.,
2011) and a phylogenetic tree was generated from the filtered
alignment using FastTree v2.1.3 (Price et al., 2010). Sequences
failing alignment or identified as chimeric were removed before
downstream analysis. Also removed were low coverage samples
with <11950 reads.

Data Analyses
Effects of soil origin and host species on plant growth were tested
using two-way ANOVAs in R version 3.2.4 (R Development Core
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Team, 2008). Normality and heteroscedasticity were checked
graphically with quantile-quantile plots. Differences between
means in ANOVAs were checked a posteriori with the Tukey
HSD test. Host trait data distribution was slightly right-skewed so
data were log-transformed to meet the assumptions of analyses.

Alpha-diversity (within-sample species richness) and beta-
diversity (between-sample community dissimilarity) estimates
were calculated within Phyloseq version 1.12.2 (McMurdie
and Holmes, 2013) using weighted UniFrac (Lozupone and
Knight, 2005) and Bray-Curtis distance between samples.
OTU accumulation curves used iNEXT (Hsieh et al., 2016).
Alpha-diversity estimates based on Shannon’s index were
presented here, this method is pragmatically applied to microbial
communities as it accounts for both abundance and evenness
of the species present (Hill et al., 2003; Morris et al., 2014;
Kim et al., 2017), other alpha-diversity indices were explored
and gave qualitatively similar results between hosts. Non-metric
multi-dimensional scaling (NMDS) ordinations of community
structure were computed from the resulting distance matrices
and plotted in R using ggplot2 version 1.0.1 (Wickham, 2010) to
visualize sample relationships as clusters.

Six factors: Soil type, Host genus, Sequencing run, Soil
sub-site, Pot replicate, and Library size were plotted and tested
for significant structuring effects on root associated bacterial
community diversity. ANOSIM and ADONIS functions were
implemented in R via VEGAN version 2.0-10 (Oksanen et al.,
2008) and permutational MANOVA with 999 permutations
used to test significant differences between sample groups
based distance matrices. Differential expression analysis
implemented in R used DeSeq2 version 1.8.0 (Love et al.,
2014) to model (bacterial diversity ∼ soil∗host∗replicate) and
test, by multiple contrasts, which taxa differed significantly
between sample groups. Data can be accessed from the NCBI
(SDR) under the BioProject ID: PRJNA517105, accessions
SAMN10819603 - SAMN10819674. Details of analysis can be
found (Supplementary Material 2).

RESULTS

Soil Treatments: Composition of the
Different Soils
The abiotic characterization revealed higher nutrient and
moisture content in woodland than grassland soils, and higher
variance in woodland soils (Table 1). Mean soil moisture [F(1, 4)
= 6.7, p = 0.06] and nitrogen content [F(1, 4) = 4.7, p = 0.09]
differed significantly between soil types. Nitrogen assays showed
consistently higher N content in woodland soils, irrespective of
method (r2 = 0.94).

Host Treatments: Variation in Host Growth
The four hosts have distinct growth patterns that showed little
variability between the two soil treatments (Figure 1). The most
striking difference was that all Pisum plants showed root nodules
when grown in grassland soil (n = 46 plants) but never in
woodland soil (n = 56). Across all host plants fresh shoot mass
varied most between soils: Allium and Solanum plants increased
fresh shoot mass in grassland soils [F(2, 37) = 38.8, p < 0.0001]

and [F(2, 37) = 7.3, p = 0.01, Figure 1A] respectively. Root mass
also showed limited variability between soils, although Zea plants
had increased root mass on woodland soils [F(2, 37) = 9.1, p
= 0.004, Figure 1B]. Solanum were the only plants to show a
response to soil type in terms of mean shoot dry mass, being
higher on grassland soil [F(2, 37) = 5.14, p < 0.05, Figure 1C).
Root shoot ratios were also relatively consistent for distinct crop
plants, regardless of soil type, except for Solanum where soil type
was an influence [F(2, 37) = 9.1, p < 0.005, Figure 1D].

On the whole fewer plants established in the woodland soil
compared to the grassland soil (Supplementary Table 1). This
difference is significant for Solanum and Zea plants that showed
a 16 and 12.6% decrease in establishment (p < 0.001 and p =

0.025 respectively).

Root Associated Bacterial Communities
We sequenced the V4 region of the 16S rRNA gene of the
root associated microbial communities from 72 plant rootstocks.
Of these five samples fell below the minimum sequencing
depth cut off. Of the 67 remaining samples 32 were from
plants grown in a grassland soil comprising Allium n = 5,
Pisum n = 6, Solanum n = 10, and Zea n = 11. From the
woodland soil we sequenced 35 plants comprising Allium n =

7, Pisum n = 7, Solanum n = 9, and Zea n = 12. Detailed
information on sample quality control and normalization are
provided Data Sheet 1. Neither soil type nor its interaction with
plant species had a strong impact on alpha diversity (Figure 2).
There was, however, significant variation in Shannon diversity
associated with host genus [ANOVA: F(3, 63) = 8.18, p≤ 0.0001).
A post-hoc Tukey test showed mean observed OTUs in Zea root
bacterial communities (1003 ± S.E. 52) was significantly higher
than in Solanum (828 ±S.E. 44, p < 0.05), Pisum (706 ±S.E.
41, p < 0.001), and Allium (690 ±S.E. 63, p < 0.001) but that
Allium, Pisum, and Solanum communities had similar species
richness (p > 0.3).

Beta diversity describes the compositional heterogeneity
between samples. Difference in total bacterial species
composition showed a robust effect of plant species, but
also a significant effect of soil. Experimental replicate had no
significant effect on community structure. The phylogenetically
naïve analysis of beta diversity (Bray Curtis dissimilarity) showed
significant clustering and differences in the community structure
between soils, plant species and a significant plant soil interaction
(ANOSIM: R plant = 0.32, F = 9.3, p = 0.001; R soil = 0.32, F =

5.8, p = 0.001; R plant : soil = 0.48, F = 1.8, p = 0.001, Figure 3).
However, when taking into account pairwise phylogenetic
distance between OTUs in the community structure analysis
(NMDS with Weighted UniFrac), plant species had much
stronger effect than soil and there was a reduced interaction
between the two (ANOSIM: R plant = 0.39, F = 8.5, p = 0.001;
R soil = 0.07, F = 1.8, p = 0.001; R plant : soil = 0.417, F = 1.5,
p = 0.033, respectively, Figure 3). These analyses reveal that
specific bacteria tend to be associated with different host species.
The effects of soil are more complex: within crop species plants
associate with different OTUs in different soil types, but these
OTUs tend to be drawn from phylogenetically similar groups.
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TABLE 1 | Soil nutrient and moisture content (means ± S.E.M).

Soil type Total.N† Total.P† Ex.Am† Ex.Nit† Ex.P†

Grassland 3,385 ± 374 380 ± 20 10.1 ± 0.51 0.1 ± 0.06 1.8 ± 0.17

Woodland 8,028 ± 2,268 570 ± 122 33.9 ± 15.7 1.1 ± 0.78 8.8 ± 6.1

Soil type N‡ C‡ C:N‡ Moisture Content2

Grassland 0.27 ± 0.12 0.2 ± 0.01 13.5 ± 0.25 0.075 ± 0.002

Woodland 11.7 ± 4.5 0.7 ± 0.2 15.7 ± 1.26 0.727 ± 0.252

†
values in µg/g dry weight; ‡values in % total mass; 2, values as fraction dry weight.

FIGURE 1 | Variation in plant growth between soil types. The first three panels show boxplots of log–transformed masses; (A) Shoot fresh mass, (B) Root fresh mass,

and (C) Shoot dry mass. Panel (D) shows a scatterplot of the root vs. shoot masses. Colors correspond to host genera and shapes to soil types. The boxplots show

a mean as a thick horizontal bar, the body of the box is the lower and upper quartiles (25 and 75%), the whiskers show the 5–95% range and outliers are black points.

Relative Abundance of Taxa Across Soils
and Hosts
A total of 8,210 unique OTUs clustered at 97% similarity
were analyzed within the rarefied data set. A taxonomic
summary, showing the average abundance of bacterial families in
samples organized by soil and host, illustrates the compositional
differences between root associated bacterial communities
(Figure S5). Although there is between sample variance,

the general patterns are clear. Six dominant phyla overall
account for 99.4% of the OTUs found: Proteobacteria 83.5%,

Actinobacteria 7%, Verrucomicrobia 3.6%, Planctomycetes 2.8%,

Bacteroidetes 1.3%, Firmicutes 1.2%. Phylum level patterns

emerged in response to soil and crop species. Pisum plants
in both soils had consistently the highest relative abundance
of Proteobacteria in grassland (mean 94%, range 82–99%) and
woodland, (mean 96% range 94–98%) than other host soil
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combinations (mean 80%, range 6–99%). Proteobacteria had
a decreased average relative abundance in woodland grown
Solanum (mean 68%, range 51–80%) compared to other host
soil combinations (mean 86%, range 6–99%). Actinobacteria also
showed a general trend toward increased relative abundance
in Allium and Solanum plants as opposed to Pisum or Zea
(12 and 2%). The greatest variation in relative abundance
within sample group originated from two Zea samples,
these samples had notably decreased Proteobacteria (typically

FIGURE 2 | Variation in root associated bacterial community alpha diversity.

The observed diversity is shown at a normalized library size of 10k reads.

Colors indicate host plants, while Grassland and Woodland indicate the two

soil treaments.

9%) but increased Verrucomicrobia (typically 73%) relative
abundance, respectively.

Family level compositional shifts are summarized in
Figure 4. Within Proteobacteria the most common families
were Rhizobiaceae (average = 44%, range 5–83%), and
Pseudomonadaceae (average = 32%, range = 2–81%) with
substantial variation at the family level between crop species
and soil combinations. A close examination of OTU relative
abundances by families shows patterns of repeated differences
in community composition between plant taxa. In Allium,
particularly those cultured in woodland soil, Burkholderiaceae,
and Enterobacteriacae are prevalent, making up 33%, and 22% of
the communities. In Pisum, Zea and Solanum, Burkholderiaceae
and Enterobacteriacae are far less abundant, making up 9
and 5% of the community overall. Pisum plants grown in
woodland soil are peculiar in their enrichment of OTUs
from the Acetobacteraceae (average = 17%, range = 9–41%)
and Xanthomonadaceae (average = 21%, range = 2–59%),
while these families make up only 1 and 4%, respectively, of
communities associated with other plants. Pseudomonadaceae
present increased relative abundances in Zea (average = 14%
range = 1–48%) compared to all others (average = 4% range
= 0–37%). Otherwise there are clear soil plant interactions:
Pseudomonadaceae are much more abundant in both grassland
grown Allium (13%) and Solanum (7%) than their woodland
counterparts (2% for both; Figure 4).

Differentially Abundant OTUs
To determine those taxa strongly enriched or depleted by
a treatment, we applied an analysis based on models of

FIGURE 3 | Phylogenetically naïve and phylogenetically informed analyses of the impact of plant and soil on community structure. Compositions were compared

based on a rarefied OTU table, with OTUs defined at 97% sequence similarity threshold. Non-metric multidimensional scaling analysis was performed based on

pair-wise between-sample, normalized Bray–Curtis (A) and weighted UniFrac distances (B). The stress value indicates the degree of fit between the original distances

in the matrix and the reproduced distances within the ordination plot. Each point represents a single sample. Note that the hosts (colors) are more obviously clustered

than the soils (shapes). Legend key as in Figure 1D.
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FIGURE 4 | Average taxonomic composition of bacterial communities associated with plant roots. Compositional differences were observed between host genus and

soil type across taxonomic ranks. Data shown here are average composition by host and soil at the Family rank. Multiple replicates are summarized with the height of

each bar representing the mean proportional abundance of those taxa in the normalized samples. For a more detailed breakdown of compositional changes by rank

see Figure S4.

differential expression (Paulson et al., 2013). Taxa associations
were considered significant if normalized abundances were
log-2-fold increased or decreased between the base mean of
any given contrast. Mean log-2-fold changes in abundance
by family and contrast are presented in Table ST2. Only 479
OTUs (approximately 6% of total) were significantly differentially
abundant (adjusted p< 0.00001) in pair-wise comparisons across
soils or plants, and of these Proteobacteria account for 71%
differentially abundant taxa, Planctomycetes 11%, Actinobacteria
9%, Verrucomicrobia 5%, and Bacteriodetes 2%. Between soil
types, 156 OTUs are differentially abundant, whereas between
plants 231 OTUs differ, with 59 interacting with soil and host.
OTUs over-represented in grassland relative to woodland soil
sit within the Planctomycetes (n = 40; average LFC = 4.8),
Verrucomicrobia (n = 17, average LFC = 4.9), while under-
represented taxa are from Acidobacteria (n = 4; average LFC
= −4), Actinobacteria (n = 16; average LFC = −4.3), β-
Proteobacteria (n = 29; average LFC = −4.5; Figure 5). Soil did
not have a similar effect on all crop species. In particular, very
few OTUs varied significantly between soils for Allium. Pisum
communities were enriched in four sub-phyla in woodland soils
but for relatively fewOTUs (Figure 5). Soil also had an important
effect on Solanum and Zea communities, both in enrichment
of particular clades or in changing the representation of OTUs
within sub-phyla.

Patterns of association vary substantially depending on
taxonomic level. Exploration of family level associations
showed frequent plant bacteria associations in γ-Proteobacteria
(Enterobacteriaceae, Pseudomonadaceae, Xanthomonadaceae,
Figure 5). Notably, Moraxellaceae is relatively rare in Pisum
compared to other hosts (Figure 5). However, occasionally we
see evidence for plants consistently associating with particular

groups of OTUs within family. Zea and Solanum for example,
associate with distinct sets of OTUs within the Enterobacteriacae,
while Pisum, Solanum, and Zea associate with distinct OTUs
within the Rhizobiaceae (Figure 5B).

DISCUSSION

Distinct bacterial communities are typically associated with
roots of different agricultural crop species in the field (Wieland
et al., 2001; Marschner et al., 2004; Haichar et al., 2008).
However, crop species effects are difficult to identify because
distinct communities may be the consequence of differences
in local site or soils. In other words, site and plant effects
are commonly confounded in studies of crop microbiomes.
Here, we have shown that root bacterial communities vary
significantly between hosts, even after controlling for soil
type and growth conditions. A handful of studies have
tried to separate the relative importance of soil type and
host plant on bacterial rhizosphere communities (Bonito
et al., 2014; Ofek-Lalzar et al., 2014; Pii et al., 2016).
However, these studies were often done with low taxonomic
resolution. For example, analyzing community effects at the
phylogenetic level of Order or Class often masks taxonomically
important variation (Beckers et al., 2016). In other cases,
low sample size (n = 2–10) or insufficient number of reads
per sample has meant that complex experiments were not
fully characterized. This study uses in depth sequencing of
experimental communities and confirms that both plant and soil
are important, but that the interaction between the two can vary
with host species.

Host specificity in root associated microbial communities
is thought to derive from the existence of plant-microbe
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FIGURE 5 | OTUs colored by Order and organized in panels summarizing the main contrasts. Each point represents an OTU that was significantly (P-value adjusted

for multiple testing p < 0.0001) differentially represented between treatment groups. Red dashed lines mark the threshold of change in normalized abundance

required to constitute a differentially abundant OTU, i.e., 2 ± log-2-fold change. (A) shows within host shifts in OTUs between soil types grassland compared to

woodland. Here each point represents an OTU that was significantly differentially represented between soil types within a host genus. (B) shows taxa driving the

differences between hosts when soil type is ignored. Each contrast is made for the host genus on the LHS compared to the RHS in each sub plot.

co-adaptation, involving a shared evolutionary history of
interactions between plants and microbiota (Knack et al., 2015).
In fungi, for example, host specificity is ancient and well-
known (Becker and Marin, 2009; Morris et al., 2015). In
plants, genetic variation for regulating bacterial associations
in the rhizosphere is becoming better characterized (Schlaeppi
et al., 2014; Panke-Buisse et al., 2015; Wintermans et al., 2016)

and can have marked consequences for fitness; for instance
via bacterially-mediated increases in shoot fresh weight and
changed root architecture (Callaway et al., 2007; van der
Heijden et al., 2008; Haney et al., 2015). Plant communities
are thought to play a substantial role in both soil formation
and the emergence of distinct microbial communities in soil
(Bever et al., 2012; Schweitzer et al., 2014; Terhorst et al.,
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2014). But in order to make the switch to more intimate
association with roots or the rhizosphere, a substantial suite
of metabolic, secondary metabolite and secretory genes are
required (Roumet et al., 2016; Roux and Bergelson, 2016).
These are likely to be costly, and therefore might impose
constraints on host range (Bakker et al., 2013). Conversely,
while plants can accrue benefits from their microbiota, they are
also subject to attack from host-specific pathogens, a selection
pressure that is likely to drive the ability to discriminate
or control host associated assemblages (Kinkel et al., 2011;
Oldroyd, 2013; Wu et al., 2015). High levels of discrimination,
however, are likely to be constrained by the pool of available
partners and balanced by the cost of discrimination or
elevated immunity (Steidinger and Bever, 2014).

The variation in the functional role provided by rhizobacteria
and the balancing constraints of costly discrimination are likely
to lead to between species variation in the way plants structure
microbial communities. Bulgarelli et al. (2013) propose a two-
step selection model of community assembly; initially host
driven root exudates drive metabolic selection of microbes in
the rhizosphere, then host genotype dependent fine tuning
controls selection of suitable endophytes at the root surface.
This model reflects the observed shifts in abundance and
attrition in diversity within these niches (Edwards et al.,
2015). In this model the magnitude of selection in the
rhizosphere is likely to vary in different plant species and
as a function of the host genotype. This assumes that hosts
may be more or less selective in acquiring rhizobacteria and
implies that rules of community assembly may vary between
plant species.

In this study, the way in which rhizosphere communities
either do or do not vary with soil types suggests that some
hosts may indeed be more discriminating. For example, Allium
has a relatively invariant community make-up irrespective of
soil, only two OTUs (from a total 692 OTUs) are significantly
differentially abundant in these different environments. Pisum
also possessed a relatively fixed community structure with 18
OTUs (out of 706) varying in relative abundance between
soils (Figure 5), although when variation did occur OTUs
were enriched from distinct phylogenetic groups (Figure 4).
In contrast, Solanum and Zea have community structures that
vary substantially across soil types (Figure 5) but OTUs were
often drawn from particular orders, especially for Zea. As
a result differences are not so apparent in comparisons at
high level taxonomic rankings. These patterns suggest that
community assembly itself is plastic across plant species,
varying from relatively invariant to dynamic with respect to
soil type.

In addition, competitive/cooperative interactions within
the community or priority effects may shape community
assembly. Zea communities, for instance, have the most
dispersed and diverse communities (Figures 3, 5) relative to
other plant species. While the most common community
type is dominated by alpha Proteobacteria, the next most
common community has a distinct but also consistent make-
up (Verrucomicrobia dominated) regardless of the soil type
in which the hosts grew. Speculatively, community assembly

in Zea may take the forms of multiple alternative stable
states (van der Heijden and Hartmann, 2016). Experimental
results in simple systems suggest that dynamic community
assembly scenarios such as alternative stable states do occur
(Tkacz et al., 2015). These alternative stable states may be
the result of priority effects, such as community assembly,
member order effects or competition structuring effects (Bever
et al., 2010; Agler et al., 2016). Potentially, keystone taxa
such as Actinobacteria can limit diversity in rhizosphere
communities as they do in soil (Agler et al., 2016; Jung
et al., 2016). Also, competition within the root system can
lead to spatial variation in bacterial community diversity,
where for instance community composition responds to
various co-occurring fungi, differing from root tip to root tip
(Marupakula et al., 2016).

It is well-documented that members of the Alliaceae
have distinct anti-microbial profiles including flavonoids
and glycosides with broad antimicrobial activity (Deberdt
et al., 2012; Arnault et al., 2013). We might, therefore,
expect a strong host plant signature in their root bacterial
communities. Our results support this: Allium had a distinct
composition in terms of Actinobacteriales, Entobacteriales,
and Burkholderiales. Allium roots were enriched in
Actinobacteria including Microbacteriaceae, Micrococcaceae,
and Frankiaceae. Currently, only a single study of bacteria
associated with Allium roots has been conducted using high-
throughput sequencing (Gardner et al., 2011), and also found
significantly more Actinobacteria in Allium compared to
the rhizospheres of other hosts grown in the same soil or
bulk soil. Furthermore, Allium bacterial communities are
peculiar in their elevated abundance of a single OTU from
the Bradyrhizobiaceae (Balneimonas), which had increased
relative abundance particularly in woodland soil. The production
of extracellular polysaccharides (EPS) is an important factor
in the development and survival of Balneimonas species,
and has been attributed to their function in bacterial soil
crusts (Elliott et al., 2014). Alliaceae are notable for their
mucilaginous root; the production of mucilage or EPS
reduces friction as their roots ramify through soil. It is
plausible that an association with copious biofilm producing
bacteria such as Balneimonas contributes to this phenotype
(Augimeri et al., 2015).

In animals the emerging model of microbial community
assembly in the gut is a nested hierarchy of factors complicated
by interactions such as diet (Voreades et al., 2014; Wang et al.,
2014) and metabolic and behavioral cycle of the host (Thaiss
et al., 2014). By contrast the relative importance of factors
shaping rhizosphere community assembly in roots is less clear.
Not only are root associated microbial communities continuous
with the environment and generally an order of magnitude
more diverse than gut communities, but different assembly rules
appear to be at play for different taxa. For instance the role of
local conditions and spatial scale appears to be paramount for
fungi (Maherali and Klironomos, 2012; Lagunas et al., 2015; Rúa
et al., 2016) whereas host genotype and compartment seem to
be more important factors in rhizosphere bacteria (Hacquard,
2016). Community assembly rules certainly varied in this
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study; ranging from both relatively constant to highly variable
with respect to soil. As yet we cannot determine if variable
community composition is due to a lack of discrimination,
or whether different plants select different microbes in
different habitats to help shape environment-dependent
fitness, or indeed if there is variable colonization driven by
bacterial responses. (Rodriguez et al., 2008; Rolli et al., 2015;
Hiruma et al., 2016).

There is the suggestion that domestication and soil
management have limited the evolutionary potential of
microbial interactions in crop associated microbes (White et al.,
2013; Perez-Jaramillo et al., 2016). Improved application of
bacteria in agriculture could benefit from better understanding
rhizosphere community assembly patterns. For instance,
if crop species such as onion are highly discriminating, it
would make sense to select PGPR that are members of a
known crop associated community. Conversely, attempts
to alter community composition may be more successful in
species such as maize, which has a more variable community,
with the caveat that we do not yet understand if variable
communities imply less discriminating assembly. These
results predict that blanket application of generic PGPR
may be at best a naive strategy, as their potential effect on
microbiome composition and plant performance may be limited
by restrictions on host range, establishment, or invasion.
A challenge for the future understanding of the ecology of
PGPR and rhizobacterial communities is to identify when
communities in agro-ecosystems limit plant yields and to use
the available molecular tools to explore strategies to manipulate
communities effectively.
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