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Abstract: Online Chemical Modeling Environment (OCHEM) was used for QSAR analysis of a set of
ionic liquids (ILs) tested against multi-drug resistant (MDR) clinical isolate Acinetobacter baumannii
and Staphylococcus aureus strains. The predictive accuracy of regression models has coefficient of
determination q2 = 0.66 − 0.79 with cross-validation and independent test sets. The models were used
to screen a virtual chemical library of ILs, which was designed with targeted activity against MDR
Acinetobacter baumannii and Staphylococcus aureus strains. Seven most promising ILs were selected,
synthesized, and tested. Three ILs showed high activity against both these MDR clinical isolates.

Keywords: ionic liquids (ILs); Acinetobacter baumannii; Staphylococcus aureus; enoyl-ACP reductase;
FabI; OCHEM; imidazolium; pyridinium; guanidinium; Structure-Activity modeling; QSAR

1. Introduction

The World Health Organization has included the bacterial pathogens Acinetobacter
baumannii and Staphylococcus aureus with high levels of antibiotic resistance in the list of
“priority microorganisms” that pose the greatest threat to human health and require urgent
action to develop new antimicrobial agents [1]. These bacteria are found in hospitals and are
very effective human colonizers [2,3]. The research and development of new antibacterials
with the purpose of overcoming microbial multidrug resistance to known antibiotics is a
serious challenge desiderated to be done. On the one hand, ionic liquids comprising of
bulk organic cations and different anions attract significant interest as extremely promising
cationic antibacterials. Long-chain ILs are efficient antibacterial agents against a wide
range of clinical pathogenic microbial cultures that opens us to broader opportunities for
their use as potential medical supplies [4–6]. On the other hand, the enzymes involved in
bacterial fatty acid biosynthesis (FASII) are important targets for new antimicrobials [7].
This pathway is common for both gram-negative and gram-positive pathogens, e.g., A.
baumannii and S. aureus, respectively. Enoyl-ACP reductase (FabI) (EC: 1.3.1.9) is one of the
key enzymes in bacterial fatty acid biosynthesis (Figure 1) [8]. FabI catalyzes the reduction
of the double bond in the enoyl moiety, which is connected to the acyl carrier protein
(ACP). The enzyme also takes part in the fatty acids elongation cycle, which is important
in lipid metabolism and biotin biosynthesis. In a number of studies, the mechanism of
IL action is associated with AChE inhibition (EC50 values as low as 13 µM) [9]. The ILs
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inhibited AMP deaminase with IC50 ranged from 0.3 to 500 µM [10]. The inhibitory effect
of IL on tyrosinase was also presented [11]. The interaction of lactic dehydrogenase with IL
is known [12]. Imidazole and pyridine-containing compounds are one class of the known
FabI inhibitors [13,14].
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Figure 1. Key role of enzyme FabI (highlighted in red) in A. baumannii and S. aureus fatty acid
biosynthesis [15].

In this work, we analyzed a series of imidazolium and pyridinium based ionic liquids
as potential FabI inhibitors with high antibacterial potential against MDR A. baumannii and
S. aureus using QSAR modeling and biological tests.
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2. Results
2.1. Regression Models (Dataset I)

The initial dataset of 1078 compounds with activity against A. Baumannii was split
by chance into training (862) and test (216) sets. Since the activity data were collected
from different sources, it contributed to their variation due to differences in the laboratory
protocols used in different studies. The regression models built by the Trans-CNN [16],
ASNN [17], and XGBOOST [18] methods (see Table 1) calculated the best performances.
For this analysis E-state [19], ALOGPS [20], CDK2 [21], and Dragon descriptors [22] were
included in the best models for all methods. The results are partially summarized in Table 1.
Other statistical parameters and performances of individual models are shown in Figure S1
of the Supplementary Materials.

Table 1. Statistical coefficients calculated for QSAR models obtained for dataset I with activity against A. baumannii.

Method
Training Set a Test Set a

R2 q2 RMSE c R2 q2 RMSE

ASNN b 0.74 ± 0.04 0.73 ± 0.05 0.55 ± 0.04 0.74 ± 0.06 0.70 ± 0.08 0.64 ± 0.09

ASNN c 0.70 ± 0.05 0.70 ± 0.05 0.59 ± 0.05 0.74 ± 0.06 0.69 ± 0.08 0.64 ± 0.09

RFR b 0.73 ± 0.04 0.73 ± 0.04 0.55 ± 0.04 0.73 ± 0.09 0.72 ± 0.09 0.6 ± 0.1

Consensus d 0.77 ± 0.04 0.77 ± 0.04 0.51 ± 0.04 0.77 ± 0.06 0.74 ± 0.07 0.6 ± 0.09
a The training and test sets included 862 and 216 molecules, respectively. The cross-validation results are reported for the training set; b

ASNN and XGBOOST models were developed by using E-state [19], ALOGPS [20] and CDK2 [21] descriptors; c ASNN model was created
using Dragon [22] descriptors; d Consensus model was built by averaging outputs of all four models. R2—square of correlation coefficient;
q2 coefficient of determination; RMSE—Root Mean Squared Error.

The q2 values were 0.66–0.75 and 0.68–0.79 for training and test sets, respectively. A
consensus model, which is an average of all four models, obtained the best performance.
It was used to provide a quantitative evaluation of activity of compounds against A.
Baumannii as described in Section 2.3. The variances of individual predictions of the
consensus model were used to calibrate the prediction errors and estimate their applicability
domain [23].

2.2. Regression Models (Dataset II)

We randomly divided the initial dataset of 212 compounds with activity against S.
aureus into a training set (164 compounds) and a test set (48 compounds). The models
were developed using the same protocols as in Section 2.1. The QSAR models built by
ASNN and RFR methods (see Table 2) calculated the highest performance. The final
set of descriptors included E-state [19] and ALOGPS [20], CDK2 [21], and the type of
anion, which systematically contributed to the top performing models for the investigated
machine learning methods.

Table 2. Statistical coefficients calculated for QSAR models obtained for dataset II with activity against S. aureus.

Method
Training Set a Test Set a

R2 q2 RMSEc R2 q2 RMSE

ASNN b 0.74 ± 0.04 0.73 ± 0.05 0.55 ± 0.04 0.74 ± 0.06 0.70± 0.08 0.64 ± 0.09

ASNN c 0.70 ± 0.05 0.70 ± 0.05 0.59 ± 0.05 0.74 ± 0.06 0.69± 0.08 0.64 ± 0.09

RFR b 0.73 ± 0.04 0.73 ± 0.04 0.55 ± 0.04 0.73 ± 0.09 0.72 ± 0.09 0.6 ± 0.1

Consensus d 0.77 ± 0.04 0.77 ± 0.04 0.51 ± 0.04 0.77 ± 0.06 0.74 ± 0.07 0.6 ± 0.09
a The training and test sets included 164 and 48 molecules, respectively. The cross-validation results are reported for the training set.
b ASNN and RFR [24] models were developed by using E-state and ALOGPS descriptors; c ASNN model was created using CDK2
descriptors; d The consensus model was built by an average of the individual models.
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The selected models had similar performances in terms of R2, q2, and RMSE as
summarized in Table 2 (see also Figure S2 of the Supplementary Materials). The calculated
cross-validated coefficients were q2 = 0.70–0.77 for the training sets and q2 = 0.69–0.74 for
the test sets. A consensus model, which was built by an average of these individual models,
gave the best performance. It was used to provide a quantitative evaluation of potential
anti-S. Aureus agents as described in the next section.

2.3. Evaluation of the Mode of Action (MoA) and Descriptor Importance

To investigate the influence of descriptor selection we developed ASNNs using E-
state [19] and ALOGPS [20] descriptors, which contributed to the majority of models in
Tables 1 and 2. Usually in the OCHEM the ASNN models were developed with unsuper-
vised selection of descriptors. To evaluate the importance of the descriptors, we used a
sensitivity analysis method based on pruning algorithms [25,26] as implemented in the
ASNN software. The pruning algorithms operate so-called “sensitivities” (S) [25,26] that
are based on the evaluation of the importance of the weight matrix of the ANN. The
pruning works similarly to a stepwise multiple regression analysis, whereby one input
parameter considered to be non-significant is excluded at each step until performance of
the model starts to decrease. Contrary to unsupervised descriptor selection, the pruning
requires information about the target property as well as more computational resources.

Table S1 summarized the statistical parameters for models developed with merged set
of descriptors selected for each property using unsupervised filtering and descriptor sets
optimized using pruning. The pruning did not influence the performances of the respective
models for both properties. Majority of descriptors, namely, 13 out of 15 descriptors for
S. aureus were amid 27 descriptors selected for A. Baumannii (see Table S2). The number
of descriptors selected for A. Baumannii was larger due to its higher diversity while the
descriptor set for S. Aureus had SssssSi (atom-type E-state index for >Si< group), which
was found for this set only. If we used descriptors selected for A. Baumannii and to develop
model for S. aureus, we got model with very similar performance to that using descriptors
selected specifically for S. aureus. This result can be used as indirect evidence that both
properties share the same MoA. Contrary to that using 15 descriptors selected for S. aureus
to develop model against A. Baumannii resulted in a model with much lower performance.
Such lower performance could be due to insufficient diversity of the smaller S. aureus set.

2.4. Evaluation Activity of New Compounds

A virtual database of drug-like ILs was generated based on available synthetic blocks
and reactions. It included 24 ILs with different substitution patterns (see Supplementary
Materials, Table S3). These compounds were screened using the consensus model against
A. baumannii. The 19 ILs predicted as most active within the applicability domain (i.e.,
compounds with Minimum Inhibitory Concentration MIC, <50 µM) were selected for
further evaluation (see also Supplementary Materials, Table S4) and were screened using the
consensus regression model against S. aureus. The 7 ILs with the highest predicted activity
(MIC < 50µM) were retained for synthesis and testing (see Table 3 and Tables S3 and S4 in
Supplementary Materials).

The next analysis was to examine the toxic effects of the studied ILs using the OCHEM
published models against in vivo toxicity [27] and Ames test [28]. All seven compounds
were predicted as inactive against the Ames test. The Table S5 demonstrates that drugs and
tested ILs had similar toxicities associated with the species type, route of administration
and toxicity types.

We have provided an analysis of the toxicity of ILs according to the OECD Guidance
document on acute oral toxicity testing [29]. The Table S6 shows that the predicted oral
LD50 values of compounds 3 and 4 are in the range of 188–310 mg/kg for all animal species,
which corresponds to Category 3 of Globally Harmonized System of Classification and
Labeling of Chemicals (GHS) while compounds 13, 16, 17, 20, and 22 with LD50 values
ranging 317–1900 mg/kg belong to Category 4 of GHS severity.
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Table 3. Antibacterial activities of studied ILs with predicted activity.

Compound
The Inhibition Zones Diameters (mm)

A. baumannii S. aureus

3 * 20.3 ± 0.6 25.3 ± 0.6

4 * 17.0 ± 0.9 19.7 ± 0.3

13 15.3 ± 0.6 14.0 ± 0.6

16 * 16.3 ± 0.6 22.7 ± 0.9

17 17.0 ± 0.3 12.0 ± 0.3

20 15.7 ± 0.3 15.3 ± 0.3

22 11.0 ± 0.3 13.7 ± 0.6

Ampicillin n/a n/a

Oxacillin n/a n/a

Ceftriaxone 15.3 ± 0.3 15.7 ± 0.6
* Star indicates compounds with the highest activity. n/a—no activity. The standard mean errors were evaluated
based on n = 3 experimental studies.

The Table S7 shows that the predicted dermal LD50 values of compounds 3, 4, 20,
and 22 ranging 410–917 mg/kg to rabbit belong to Category 3 of GHS according to the
OECD Guidelines for the testing of chemicals [30]. However the predicted dermal toxicity
(LD50) results of ILs 16 and 17 to rabbit and LD50 values of ILs 3 and 4 to rat ranging
1320–1560 mg/kg allow to classify them into Category 4. Compound 13 with predicted
dermal LD50 value 2080 mg/kg to rabbit and compounds 13, 16, 17, 20, and 22 with pre-
dicted dermal LD50 values in the range of 2300–4990 mg/kg to rat belong to the Category 5
of severity.

Thereby, the comparative analysis of the predicted toxicity values of drugs and tested
compounds allows classification of the ILs into the non-toxic Category 5 as well as to less
toxic GST Categories 3 and 4, which indicates their promise as effective antimicrobials.

2.5. Biology
Antibacterial Activity

The biological study results of imidazolium and pyridinium based ionic liquids with
predicted activity against MDR A. baumannii and S. aureus are shown in Table 3.

As shown in Table 3, compounds 3, 4, and 16 demonstrated the highest activity against
antibiotic-resistant strains A. baumannii and S. aureus with inhibition zone diameters ranged
from 16.3 to 20.3 mm and 19.7 to 25.3 mm, respectively. Their inhibitory activity was thus
higher than that of known antibiotics Ceftriaxone, as well as Ampicillin and Oxacillin,
which did not demonstrate any activity against these bacteria.

Considering that active compounds 3, 4, and 16 showed activity against both strains,
we hypothesized that they shared a similar mechanism of action. Since imidazole and
pyridine-containing compounds are known FabI inhibitors [13,14] and our active com-
pounds contained these moieties, they could also inhibit this enzyme. We performed
molecular docking and found a set of favorable binding poses and Gibbs energy estima-
tions to support our idea (see Supporting Information for details). This study as well as
descriptor sensitivities analysis both suggested that ILs may share the same MoA. However,
the action mechanism could also be non-specific conditioned on the ability of long-chain
moieties to incorporate into cell membranes [31]. Further experimental validations are
required to answer this question.

3. Discussion

We used Online Chemical Modeling Environment to identify ionic liquids as antibac-
terials against MDR clinical isolate A. baumannii and S. aureus strains. The created QSAR
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models show high stability, robustness, and predictive power. The predictive accuracy of
regression models had a coefficient of determination q2 = 0.66–0.79 with cross-validation
and independent test sets. The sensitivity analysis identified common sets of descriptors,
thus suggesting that the developed models predicted similar MoAs. The created mod-
els were successful to screen a virtual chemical library of ILs, which was designed with
targeted activity against MDR A. baumannii and S. aureus strains.

Seven most promising ILs were identified, synthesized and tested against MDR A.
baumannii and S. aureus strains. Three ILs, 1-dodecylpyridinium chloride (PyrC12-Cl), 1-
tetradecylpyridinium bromide (PyrC14-Br) and 1-(2-hydroxyethyl)-3-dodecylimidazolium
chloride (IMC2OHC12-Cl), demonstrated high activity against both these MDR clini-
cal isolates.

Molecular docking of these ILs suggested that they can form a complex with FabI
which is a key enzyme in the biosynthesis of bacterial fatty acids and could be a promising
target for potential antibacterial drugs [32,33]. Our work also included the results of
comparing the primary and secondary structures of the enzyme involved in the fatty acids
metabolism of both bacterial pathogens, i.e., the significant structural enzyme similarity of
AFabI and SFabI as shown in Figures S3 and S4 confirmed the qualitative visual similarity
of the secondary structure of the studied enzymes.

It is important that among the wide range of known FabI inhibitors, there are also
imidazole and pyridine derivatives, structurally similar to ILs, which were the object of
our study [13]. Moreover, the success of using this enzyme as a target for antibacterials is
due to the presence of certain structural features characteristic for bacterial biosynthesis of
fatty acids (type II) in contrast with mammalian biosynthesis of fatty acids (type I).

However, considering that docking of ILs is a rather new application of the method,
which has not been intensively validated with experimental studies, we cannot completely
exclude other MOAs, such as ability of long-chain moieties to incorporate into cell mem-
branes [31], could also explain the antibacterial activity of ILs. The future experimental
studies using NMR and/or X-ray should provide a definite answer to this question.

The obtained results of biological testing confirmed the high antibacterial potential of
the studied ILs (with high predicted activity) against both the gram-positive MDR clinical
isolate Staphylococcus aureus and the gram-negative MDR clinical isolate Acinetobacter
baumannii strains. The established fact is of special interest. Moreover, a number of
authors [31,34] also presented experimental results the IL with longer alkyl chain had
antibacterial activity against a number of gram-positive and gram-negative strains from
the ATCC (American Type Culture Collection).

Our results not only allowed us to ascertain the high antibacterial potential of a
number of long-chain ILs based on imidazolium and pyridinium against Acinetobacter
baumannii (gram-negative bacteria) and Staphylococcus aureus (gram-positive bacteria) but
also fulfill the promise of using studied ILs against their MDR clinical isolates.

4. Materials and Methods
4.1. Data

The data for our analysis were obtained from multiple publications. These data were
uploaded into the On-line Chemical Database and Modeling Environment (OCHEM) [35]
web-based platform designed for storing experimental properties and chemical activities
with the primary goal of in silico modeling.

Two datasets were used to build the models against both analyzed strains. The first
dataset (1078 compounds) consisted of diverse chemical series with minimum inhibitory
concentration (MIC) values of the molecules ranging from 0.0906 to 9400 µM against
A. baumannii. However, this set contained only few ILs. The second dataset included
212 ILs and their bioactivities against S. aureus. The MIC values were ranging from 0.005
to 8600 µM. The log(1/MIC) values were used to develop regression models. By using
models developed with both these sets we expected to design compounds active against
both strains but also covering ILs.
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4.2. On-Line Chemical Database and Modeling Environment

Interactive OCHEM web platform was used for creation public and freely accessible
on-line models. The OCHEM calculates standard mean errors for each prediction and
allows users to conclude whether the predictions are sufficiently accurate for their studies.

4.2.1. Methods

Different machine-learning methods such as Associative Neural Networks (ASNNs) [17],
Transformer Convolutional Neural Network (Trans-CNN) [16], XGBOOST [18], and Ran-
dom Forest Regression (RFR) [24] were used to build QSAR models.

4.2.2. Associative Neural Network (ASNN)

ASNN [17] represents a combination of an ensemble of the Feed-Forward Backpropa-
gation Neural Networks and the k-Nearest Neighbors (kNN) method, which was inspired
by thalamo-cortical organization of brain [36]. An ensemble of neural networks (n = 100)
was used in this study while kNN provided its local correction to increase its accuracy.

4.2.3. Extreme Gradient Boosting (XGBoost)

XGBoost [18] is a machine learning algorithm based on a decision tree and using a
gradient boosting framework. Gradient boosting is a learning technique for classification
and regression problems that builds a prediction model in the form of an ensemble of weak
predictive models, usually decision trees. The overfitting problem is solved by minimizing
the norm of the learn weights. A greedy search is used to add new branches that most
improve the objective function of the algorithm [18].

4.2.4. Transformer Convolutional Neural Network (Trans-CNN)

The Trans-CNN method uses the internal representation of molecules based on their
SMILES notation for extracting information-rich real-value embeddings during the encod-
ing process and uses them for further QSAR-oriented blocks to model biological activity or
physicochemical properties [16]. The Transformer-CNN architecture usually requires a few
tens iterations to converge for new tasks. The method predicts the target value based on an
average of an individual forecast for a batch of augmented SMILES belonging to the same
molecule. The deviation within the batch can serve as a measure of a confidence interval
of the prognosis, whereas the possibility to canonize SMILES can be used for deriving
applicability domains of models.

4.2.5. Random Forest Regression (RFR)

The random forest is a recursive partition ensemble method consisting of a number
of decision trees. The decision tree is built using an initial copy of the training set and
randomly selected subsets of descriptors. The final prediction is done by most of the votes
of the individual trees [24].

4.2.6. Descriptors

There are many software packages for the calculation of diverse types of molecular de-
scriptors in the OCHEM. In this study, we used E-state indices [19], AlogPS [20], CDK2 [21],
and Dragon descriptors [22] which were frequently top-performing descriptors according
to our previous studies. Type of IL anion was provided as an additional descriptor using
conditions of experiments feature of the OCHEM.

The electro-topological state indices define key structural features of a molecule and
combine both electronic and topological attributes of the compounds [19].

AlogPS program calculates estimates lipophilicity (logP) and solubility in water (logS)
of chemical compounds [20].

CDK calculates 256 molecular descriptors such as topological, geometrical, constitu-
tional, electronic, and hybrid descriptors [21].
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The Dragon 7 program calculates 5270 molecular descriptors. The user can calculate
the simplest atom types, functional groups, fragment counts, several topological and geo-
metrical descriptors, polar surface area, RDF, WHIM descriptors, atom-centered fragments,
molecular properties, and many others [22]. The 3D structures of molecules were optimized
using Corina [37].

4.2.7. Descriptor Preprocessing

The unsupervised filtering of descriptors was used. Descriptors with fewer than two
unique variables or with a coefficient of variance, less than 0.01 were omitted to avoid
useless redundancy. Descriptors with values that tightly correlated with those of other
descriptors (i.e., a pairwise non-parametric Pearson’s correlation coefficient R > 0.95) were
grouped. Additionally, the Unsupervised Forward Selection (UFS) method [38] was applied
to select a representative non-redundant set of descriptors. The selected descriptors were
normalized to [−1, 1] interval for the ASNN but were used “as is” for RFR and XGBOOST
methods, which are decision trees and do not require standardization of descriptors.

4.2.8. Model Validation

Two validation protocols were used. First of all, the initial data were split by chance
into training and test sets. For the training set five-fold cross-validation (CV) with variable
selection in each step of the analysis was used to estimate accuracy of models for the
training set [23]. Each data set of compounds was divided into 5 subsets of approximately
equal size. Out of 5 subsets a single subset was retained for validation while the remaining
data were used as training set. For each subdivision, OCHEM first selects descriptors using
the respective training set, develops the model and then applies it to predict the excluded
molecules from the respective validation set. Then the statistical coefficients for the full set
combining all five test subsets were computed. The prediction performance of the final
model was tested by using an external test set of compounds. The CV and results for
prediction of the test set are reported.

Prediction accuracy estimation: The OCHEM incorporated a number of tools for esti-
mation the applicability domain and the accuracy for each prediction [39]. The prediction
accuracy is calibrated according to the performance of models during the CV analysis as
described elsewhere [39].

We used two criteria to access the goodness of fitting: the squared correlation coeffi-
cient R2 and the coefficient of determination q2. In addition, we used root mean square error
(RMSE) and the Mean Absolute Error (MAE) statistics to estimate the errors in predictions.
A detailed description of used machine-learning methods, all selected descriptors, and
validation procedures can be found in the Supplementary materials and in the OCHEM
manual (http://docs.ochem.eu/display/MAN).

4.3. Synthesis
4.3.1. General

Following chemicals were used for the synthesis of ionic liquids: pyridine (99%),
1-chlorododecane (97%), 1-bromotetradecane (97%), imidazole, 1-methylimidazole (for
synthesis), chloroacetyl chloride (98%), 1-dodecanol (99%), 2-chloroethanol (99%), benzene,
hexane, ethyl acetate (98%), methylene chloride (99%), thiourea (for synthesis), methanol
(98%), hydrochloric acid (37%), isopropanol (98%), dodecylamine (for synthesis), (Sigma-
Aldrich, Merck KGaA, St. Louis, MO, USA), 2-imidazolidinethione (98%) (Fluka, Thermo
Fisher Scientific, Waltham, MA, USA). 1H NMR spectra were recorded in CDCl3 and DMSO-
d6 on a 400 MHz Gemini-2000 (Varian, Inc., Palo Alto, CA, USA) spectrometer using TMS
(tetramethyl silane) as internal standard. Melting points were determined on a Fisher–Johns
(Thermo Fisher Scientific, Waltham, MA, USA) apparatus and are uncorrected.

4.3.2. Synthesis of Ionic Liquids

1-alkylpyridinium ionic liquids were synthesized according to Scheme 1.

http://docs.ochem.eu/display/MAN
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Scheme 1. Synthesis of 1-alkylpyridinium ILs.

1-dodecylpyridinium chloride (PyrC12-Cl) (3)

The mixture of pyridine (10 g, 0.12 mol) and 1-chlorododecane (31 g, 0.15 mol) was
stirred at 140 ◦C for 20 h. The obtained solid product was purified by recrystallization from
ethyl acetate-hexane mixture (1:3 v/v). Yield: 65% (22 g), white solid, mp 92–94 ◦C.

1H NMR (400 MHz, DMSO-D6): δ = 0.84 (t, 3H, CH3), 1.24 (m, 18H, CH3(CH2)9), 1.9
(m, 2H, NCH2CH2), 4.6 (t, 2H, NCH2), 8.2 (t, 2H, C3-H, C5-H), 8.6 (t, 1H, C4-H), 9.2 (d, 2H,
C2-H, C6-H).

1-tetradecylpyridinium bromide (PyrC14-Br) (4)

The mixture of pyridine (10 g, 0.12 mol) and 1-bromotetradecane (36 g, 0.13 mol) was
stirred at 120 ◦C for 2 h. The obtained solid product was purified by double recrystallization
from ethyl acetate-hexane mixture (1:1 v/v). Yield: 76% (32 g), white solid, mp 64-66 ◦C.

1H NMR (400 MHz, DMSO-D6): δ = 0.83 (t, 3H, CH3), 1.21 (m, 22H, CH3(CH2)11), 2.0
(m, 2H, NCH2CH2), 4.9 (t, 2H, NCH2), 8.14 (t, 2H, C3-H, C5-H), 8.51 (t, 1H, C4-H), 9.44 (d,
2H, C2-H, C6-H).

Long-chain imidazolium IL containing polar ester group in the alkyl radical was
synthesized according to Scheme 2.
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Scheme 2. Synthesis of ester-functionalized imidazolium IL.

1-(dodecyloxycarbonylmethyl)-3-methylimidazolium chloride (IMC1CH2COOC12-Cl) (13)

Chloroacetyl chloride (13.5 g, 0.12 mol) was added dropwise to the stirred mixture
of 1-dodecanol (20 g, 0.1 mol) and potassium carbonate (14 g, 0.1 mol) in dry benzene
(200 mL). The reaction was carried out for 6 h at room temperature. After completion of
the reaction, the reactionary mixture was washed with water until the pH became neutral.
The organic layer was separated and dried overnight over calcium chloride. Benzene was
distilled, residual solvent was removed in vacuum 10 mbar at 50 ◦C. The prepared crude
dodecyl chloroacetate was further used for the synthesis of the IL.

The mixture of 1-methylimidazole (5 g, 0.06 mol) and dodecyl chloroacetate (18 g,
0.07 mol) was stirred at 120 ◦C for 2 h. After cooling, the solid product was purified by
double recrystallization from ethyl acetate. Yield: 68% (14 g), white solid, mp 58–60 ◦C.
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1H NMR (400 MHz, CDCl3): δ = 0.86 (t, 3H, CH3), 1.24 (m, 18H, (CH2)9), 1.63 (m, 2H,
COOCH2CH2), 4.06 (s, 3H, NCH3), 4.16 (t, 2H, COOCH2), 5.45 (s, 2H, NCH2CO), 7.47 (d,
1H, C4-H), 7.54 (d, 1H, C5-H), 10.24 (s, 1H, C2-H).

Long-chain imidazolium ILs comprising polar 2-hydroxyethyl groups were synthe-
sized according to Scheme 3.
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Scheme 3. Synthesis of hydroxyl-functionalized imidazolium ILs.

1-(2-hydroxyethyl)-3-dodecylimidazolium chloride (IMC2OHC12-Cl) (16)

Potassium carbonate (38 g, 0.28 mol) was added to the solution of imidazole (12 g,
0.16 mol) and 1-chlorododecane (24 g, 0.12 mol) in 100 mL DMF. The mixture was stirred
at 60 ◦C for 20 h after that it was poured into water (300 mL). The top layer of water
immiscible oil product was separated, dissolved in methylene chloride (200 mL) and
washed again with water (2 × 300 mL). The solution was dried over sodium sulfate.
Methylene chloride was distilled and residual solvent was removed in vacuum 15 mbar at
60 ◦C. 1-dodecylimidazole was obtained as light yellow liquid.

1H NMR (400 MHz, CDCl3): δ = 0.87 (t, 3H, CH3), 1.24 (m, 18H, (CH2)9, 1.75 (m, 2H,
NCH2CH2), 3.9 (t, 2H, NCH2), 6.89 (d, 1H, C4-H), 7.04 (d, 1H, C5-H), 7.44 (s, 1H, C2-H).

The mixture of 1-dodecylimidazole (15 g, 0.06 mol) and 2-chloroethanol (7.6 g, 0.095 mol)
was stirred at 120–130 ◦C for 24 h. The residual reagent was removed in vacuum 5 mbar
at 80 ◦C. The prepared semi-solid product of light brown color was purified by washing
with hexane-ethyl acetate mixture (1:3 (v/v). Residual solvents were removed in vacuum
15 mbar at 60 ◦C. Yield: 45% (8.5 g), white semi-solid.

1H NMR (400 MHz, DMSO-D6): δ = 0.85 (t, 3H, CH3), 1.24 (m, 18H, CH3(CH2)9),
1.79 (m, 2H, NCH2CH2), 3.72 (t, 2H, NCH2CH2OH), 4.16 (t, 2H, NCH2), 4.22 (t, 2H,
NCH2CH2OH), 5.35 (m, 1H, OH), 7.78 (br s, 1H, C4-H), 7.81 (br s, 1H, C5-H), 9.27 (s,
1H, C2-H).

1-(2-hydroxyethyl)-3-tetradecylimidazolium bromide (IMC2OHC14-Br) (17)
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Potassium carbonate (38 g, 0.28 mol) was added to the solution of imidazole (10 g,
0.14 mol) and 2-chloroethanol (11 g, 0.14 mol) in 120 mL acetonitrile. The mixture was
stirred at 60 ◦C for 20 h. The residue of inorganic salts was filtered off. Acetonitrile was
distilled from reactionary mixture. Residual 2-chloroethanol was removed in vacuum 65
mbar at 80 ◦C. The crude product, 1-(2-hydroxyethyl)imidazole (Scheme 4) was prepared
as viscous oil and used in the next stage without purification.
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Scheme 4. Synthesis of long-chain guanidinium based ionic liquids (ILs).

The mixture of crude 1-(2-hydroxyethyl)imidazole and 1-bromotetradecane (38 g,
0.14 mol) was stirred at 120 ◦C for 2 h. The obtained semi-solid product of light brown color
was purified by washing with ethyl acetate (3 × 100 mL). Yield: 52% (28 g), white semi-solid.

1H NMR (400 MHz, DMSO-D6): δ = 0.85 (t, 3H, CH3), 1.23 (m, 22H, CH3(CH2)11),
1.78 (m, 2H, NCH2CH2), 3.73 (t, 2H, NCH2CH2OH), 4.18 (t, 2H, NCH2), 4.21 (t, 2H,
NCH2CH2OH), 5.16 (m, 1H, OH), 7.77 (br s, 1H, C4-H), 7.81 (br s, 1H, C5-H), 9.2 (s,
1H, C2-H).

Guanidinium based long-chain ILs were synthesized according to Scheme 4.

2-dodecylaminoimidazoline-2 hydrochloride (C12AIM-Cl) (20)

2-methylmercaptoimidazoline-2 chlorohydrate was synthesized using the method
described in [40]. 40 g (0.39 mol) of 2-imidazolidinethione were suspended in the mixture
of methanol (50 mL) and concentrated hydrochloric acid (50 mL) with magnetic stirrer. The
mixture was heated to reflux for 12 h. Residual methanol was distilled and water solution
was evaporated. The solid residue was then purified by recrystallization from isopropanol.
Yield: 70% (41.6 g), white solid, mp 160 ◦C.

1H NMR (300 MHz, DMSO-D6): δ = 2.71 (t, 3H, CH3), 3.84 (s, 4H, CH2), 10.64 (s,
2H, NH).

2-methylmercaptoimidazoline-2 chlorohydrate (15 g, 0.1 mol) was added to the stirred
solution of dodecylamine (18.5 g, 0.1 mol) in 150 mL of isopropanol. The mixture was
heated to boiling for 6 h. Methyl mercaptan released during the reaction was captured
with 20% aqueous potassium hydroxide solution. Isopropanol was removed from the
reactionary mixture at reduced pressure. The solid residue was purified by recrystallization
from ethyl acetate-hexane (1:3 v/v) mixture. Yield: 74% (22 g), white solid, mp 54–56 ◦C.

1H NMR (300 MHz, DMSO-D6): δ = 0.85 (t, 3H, CH3), 1.25 (m, 18H, CH3(CH2)9), 1.46
(m, 2H, NCH2CH2), 3.18 (t, 2H, NCH2), 3.4 (s, 2H, 4-CH2), 3.56 (s, 2H, 5-CH2), 8.1–8.9 (br s,
3H, NH).
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N-dodecylguanidine hydrochloride (C12G-Cl) (22)

S-methylisothiuronium chloride (MIT-Cl) was synthesized by the method similar to
that described for the synthesis of 2-methylmercaptoimidazoline-2 chlorohydrate, using
thiourea instead of ethylenethiourea. Yield: 65% (32 g), white solid, mp 116 ◦C. The ionic
liquid C12G-Cl was prepared using the method similar to that described for the synthesis of
C12AIM-Cl, using S-methylisothiuronium chloride instead of 2-methylmercaptoimidazoline-
2 chlorohydrate (Scheme 4). After recrystallization from ethyl acetate-hexane (1:2 v/v)
mixture, white solid residue was obtained. Yield: 65% (17 g), white solid, mp 116 ◦C.

1H NMR (400 MHz, DMSO-D6): δ = 0.86 (t, 3H, CH3), 1.25 (m, 18H, CH3(CH2)9), 1.46
(m, 2H, NCH2CH2), 3.11 (t, 2H, NCH2), 6.8–7.8 (br s, 4H, NH), 7.86 (s, 1H, NH).

4.4. Biology

The antibacterial activity of the studied ILs was estimated against MDR clinical isolates
A. baumannii and S. aureus. The strains were provided from the Microbial Culture Collection
Museum of the P.L. Shupyk National Medical Academy of Postgraduate Education.

Disc diffusion method in Mueller–Hinton agar was used to evaluate the antibacterial
properties of studied compounds [41]. The inoculum was prepared at a final concentration
of 1 × 105 colony-forming unit (CFU) per mL using 0.5 McFarland standard as a reference
to adjust the bacterial suspensions turbidity. Test compounds in an amount of 0.02 mL
were applied to standard paper disks (6 mm), which were placed on each agar plate. All
compounds were tested at identical concentrations and presented as content of compound
on a disk that was 0.7 µM.

The known antibiotics Ampicillin, Oxacillin, and Ceftriaxone were used as posi-
tive controls.

The antibacterial activity of tested ILs was assessed by measuring zone diameter
of the growth inhibition, which indicates the degree of susceptibility or resistance of A.
baumannii and S. aureus isolate against the test compounds. The compounds, which formed
zones > 15 mm of inhibition growth of microorganisms, were selected as active.

4.5. Molecular Docking

The docking was performed similarly to our earlier studies [42,43]. The crystal struc-
tures of enoyl-ACP reductase of A. baumannii (AFabI) and S. aureus (SFabI) were obtained
from the RCSB Protein Data Bank (PDB ID: 6AH9, 3GR6) [44]. Subunits A of FabI A. bau-
mannii and S. aureus were used for docking. The ligands and water molecules were deleted
from the crystal structure using Accelrys DS 4.0 [45]. AutoDock Tools (ADT) 1.5.6 [46] was
used to prepare the protein and ligands. All polar hydrogens were added to the protein
molecules by ADT. The renumbering all atoms with included new hydrogen atoms were
conducted by noBondOrder method. The Gasteiger method was applied for calculation
and addition of partial charges. The prepared protein was saved in PDBQT format. The
ChemAxon Marvin Sketch 5.3.735 program [47] was to create, optimize and save the ligand
structures in Mol2 format. The ligands optimization and energy minimization were per-
formed using MOPAC2016 [48] program. Partial charges and torsion angles of the ligands
were altered with ADT and saved in PDBQT format. Docking was performed by AutoDock
4.2 [46] program. The Lamarckian genetic algorithm and rigid protein docking procedure
were used for docking simulations. A grid and docking parameter files were generated
by ADT tools. The ligand TCL (Triclosan) was set in the center of the box and the grid
map (40 × 40 × 40 points) with grid spacing of 0.375Å. The other parameters were set as
default. The analysis and visualization of protein-ligand interactions were performed by
Accelrys DS 4.0 (Dassault Systemes, BIOVIA, Waltham, MA, USA).

5. Conclusions

A number of predictive regression models based on different machine learning meth-
ods were built using the OCHEM platform. The developed QSAR models demonstrated
good stability, robustness, and predictive power. Seven ILs were synthesized and their
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activities against A. baumannii and S. aureus MDR isolates were evaluated. ILs 3, 4, and 16
with a long C12-C14 alkyl chain showed high in vitro activity against clinical isolates of
both gram-positive S. aureus and gram-negative A. baumannii strains. These results are of
certain interest due to the known data on ILs derived from N-cinnamyl imidazole with
a similar alkyl chain length active only against gram-positive bacteria [31]. Molecular
docking as well as a number of other indirect evidences demonstrated the ligand-FabI
complexes formation could be the potential MoA, but this hypothesis need to be further
validated experimentally.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1422
-0067/22/2/563/s1.
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