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Sjögren’s Syndrome (SS) is a chronic autoimmune disease of unknown etiology which
primarily affects the salivary and lacrimal glands resulting in the loss of secretory function.
Treatment options for SS have been hampered due to the lack of a better understanding
of the underlying gene regulatory circuitry and the interplay between the myriad
pathological cellular states that contribute to salivary gland dysfunction. To better
elucidate the molecular nature of SS, we have performed RNA-sequencing analysis of
the submandibular glands (SMG) of a well-established primary Sjögren’s Syndrome (pSS)
mouse model. Our comprehensive examination of global gene expression and
comparative analyses with additional SS mouse models and human datasets, have
identified a number of important pathways and regulatory networks that are relevant in SS
pathobiology. To complement these studies, we have performed single-cell RNA
sequencing to examine and identify the molecular and cellular heterogeneity of the
diseased cell populations of the mouse SMG. Interrogation of the single-cell
transcriptomes has shed light on the diversity of immune cells that are dysregulated in
SS and importantly, revealed an activated state of the salivary gland epithelial cells that
contribute to the global immune mediated responses. Overall, our broad studies have not
only revealed key pathways, mediators and new biomarkers, but have also uncovered the
complex nature of the cellular populations in the SMG that are likely to drive the
progression of SS. These newly discovered insights into the underlying molecular
mechanisms and cellular states of SS will better inform targeted therapeutic discoveries.
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INTRODUCTION

Sjögren’s Syndrome (SS) is a chronic inflammatory autoimmune
disease that commonly affects middle-aged women with a female
to male ratio of up to 20:1 (1, 2). Although the etiology of SS
remains largely unknown, hallmark features of this disease
include lymphocytic infiltration of the salivary glands (SG) and
lacrimal glands (LG), as well as loss of saliva and tear production.
While this disease primarily involves the SG and LG, it can affect
a wide range of other organs including the skin, kidneys, lungs
and nervous system (3). Sjögren’s Syndrome can exist alone,
referred to as primary Sjögren’s Syndrome (pSS), or as secondary
Sjögren’s Syndrome, where it occurs in conjunction with other
autoimmune connective tissue diseases (4). While SS
overwhelmingly manifests as ocular and oral dryness, fatigue,
and pain, patients are at elevated risk for the development of
comorbidities such as pulmonary fibrosis, cardiovascular disease,
B cell lymphoma, and other malignancies (5, 6).

Despite the well-characterized clinical manifestations
associated with this disease, the underlying pathogenesis of pSS
remains largely unknown. This is in part, due to the fact that pSS
is a complex multifactorial disease that is triggered by genetic
and environmental factors. Indeed, the search for genetic risk
factors for pSS have led to the discovery of several alleles within
the human leukocyte antigen (HLA) Class II and the major
histocompatibility complex (MHC) Class II loci that are
associated with pSS (7, 8). Furthermore, genome wide
association studies (GWAS) have also identified numerous
susceptibility genes including STAT4, IRF5, and SH2D2A (9).
Interestingly, several of these genes have been implicated in the
Interferon (IFN) signaling pathway, an important regulatory
pathway previously shown to be a central player in pSS disease
pathogenesis (10–12). In addition to IFN signaling, recent
studies have also pointed to a prominent role for various
signaling molecules including cytokines and chemokines, in
directing the immune related effects associated with this
disease. Notably, several chemokines including CCL19, CCL21,
and CXCL13 have been shown to play key roles not only in
recruiting various types of immune cells including B cells and
T cells to the SGs but also in mediating their cellular responses
(13–15). Despite some progress in our understanding of the
molecular underpinnings of the disease, many facets of SS
biology remain unexplored. This is an area of significant
unmet need since current treatment options are mainly limited
to symptomatic relief, and no effective cure has been developed
to date (3).

Mouse models have served valuable roles in deciphering
various facets of SG biology. Indeed, the last several decades
have witnessed the generation of a large number of mouse
models to study various aspects of human diseases affecting the
SG, including pSS (16–26). Among such mouse strains, the
nonobese diabetic (NOD) derived strain of mice remains
perhaps one of the most extensively characterized and well-
studied mouse models to investigate the pathogenesis of SS.
Although the initial NOD inbred (NOD/ShiLt) strain displayed
symptoms resembling SS including the presence of inflammatory
cell infiltrates and impaired salivary and lacrimal secretion, these
Frontiers in Immunology | www.frontiersin.org 2
animals also developed type I diabetes (T1D) (19, 21). To
circumvent the difficulties of studying SS in the background of
T1D (27), we utilized a mouse model in which the NOD/ShiLt
major histocompatibility complex was replaced with that of a
healthy C57BL/10 strain, resulting in a congenic strain of mice
(NOD.B10Sn-H2b/J or NOD.B10) that develop pSS but are
protected from T1D (16). Indeed, these animals share many
clinical features associated with pSS including a female disease
predilection, focal lymphocytic infiltration of the SMG and
lacrimal glands, reduced salivary flow and systemic disease
manifestations affecting the kidney and lung (17, 28–30).
Mechanistic studies performed in these mice have revealed
roles for Toll Like Receptor (TLR) and Myd88 signaling
pathways in promoting disease development (30–32). While
these studies have informed on specific pathways and
mediators of disease development, comprehensive studies
aimed at uncovering global alterations in gene expression have
been lacking.

To obtain a better understanding of the underlying
mechanisms contributing to pSS disease development, here we
have performed bulk RNA-sequencing (RNA-seq) to examine
the global gene expression profiles of mouse salivary glands
from control and NOD.B10 female mice. Functional gene
enrichment and regulatory pathway analysis of the salivary
glands revealed a number of molecular players and networks
that are relevant in SS pathobiology including various cytokine
and toll like receptor signaling pathways. In parallel, we have
performed single-cell RNA-sequencing (scRNA-seq) to explore
the cellular transcriptomic landscapes of control and NOD.B10
salivary glands. Interrogation of the single-cell transcriptomes
have not only revealed the degree of cellular heterogeneity of
SS glands, but have offered a glimpse into the vast number of
immune cells present in diseased glands and the diverse
nature of these immune cell types. Moreover, our comparative
analysis of the bulk and scRNA-seq datasets has shed light on
the altered gene expression profile of specific epithelial
populations such as the acinar and ductal cells of the affected
salivary glands. Another revealing finding from these analyses is
the expression of various genes in the epithelial cells that are
typically associated with innate and acquired immune responses.
This observation reaffirms the prevailing notion that the
activated and inflamed state of the epithelial cells in pSS is
likely to play a prominent role and be a major contributing factor
to disease pathophysiology (33–36). Overall, our comprehensive
studies have highlighted the importance of key signaling
networks and pathways and offered new insights into the
underlying molecular nature of the diverse and afflicted cellular
subpopulations in pSS.
MATERIAL AND METHODS

Mouse Models
All animal experiments and procedures were performed in
accordance with the State University of New York at Buffalo
(University at Buffalo) Institutional Animal Care and Use
November 2021 | Volume 12 | Article 729040
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Committee (IACUC) regulations. All procedures were approved
by University at Buffalo IACUC. NOD.B10 and C57BL/10SnJ
(BL/10) control mice were purchased from Jackson Laboratories
(stock numbers #002591 and 000666, respectively). Female mice
were used in all experiments.

Primary Sjögren’s Syndrome Mouse
Models Examined in This Study
Both mouse models (NOD.B10 and the C57BL/6.NOD-
Aec1Aec2) develop primary SS (pSS) and are derived from the
nonobese diabetic (NOD/Lt) inbred strain, however, these
animals do not share a common genetic background. Briefly,
the NOD.B10 mice were generated by replacing the major
histocompatibility complex (MHC) I-Ag7 molecule of NOD/Lt
mice with MHC I-Ab from the C57BL/10SnJ strain, and thus
these animals are congenic with the NOD/Lt mouse strain (16,
17). The C57BL/6.NOD-Aec1Aec2 NOD-derived mouse strain
were bred on a C57BL/6 background but carry two autoimmune
exocrinopathy loci from the NOD/Lt mice (18).

RNA Isolation and Quantitative RT-PCR
Total RNA was extracted from whole mouse submandibular
salivary gland tissues from control BL/10 (7 months of age) and
NOD.B10 (7-8 months of age) female mice as previously
described (37). For quantitative reverse-transcription polymerase
chain reaction (qRT-PCR) a total of 1 microgram of RNA was
reverse transcribed using the iScript cDNA Synthesis Kit (Bio-
Rad, 1708890) according to the manufacturer’s instructions.
Quantitative reverse-transcription polymerase chain reaction
was performed on a CFX96 Touch™ Real-Time PCR Detection
System (Bio-Rad, 1855195) using iQ SYBR Green Supermix
(Bio-Rad, 1708882). All qRT-PCR assays were performed
in triplicates in at least three independent biological replicates.
Relative expression values of each target gene were normalized
to hypoxanthine guanine phosphoribosyltransferase (Hprt)
expression. Primer sequences are provided in Supplementary
Table S22.

Bulk RNA-Sequencing, Differentially
Expressed Gene (DEG) and
Enrichment Analyses
Total RNA was extracted from whole mouse salivary gland
tissues as previously described (37). For each RNA sample,
50bp cDNA-libraries were generated using the TrueSeq RNA
Sample Preparation Kit (Illumina). Libraries were sequenced on
the Illumina HiSeq 2500. Quality metrics were generated using
FASTQC (38) v0.4.3, and high quality reads were mapped to the
Mus musculus genome (mm9 build) with the Tophat2 (39)
v2.0.13 wrapper for Bowtie2 (40) v2.2.6. The reads that aligned
to the mouse genome were counted using featureCounts (41). All
RNA-seq analysis was performed as previously described (37,
42). For determining differentially expressed genes, an adjusted
p-value < 0.05 based on Benjamini-Hochberg method was used
as a cut-off using DESeq2. Top ranked upregulated and
downregulated genes (based on fold change) were used for
subsequent pathway analyses as indicated. Datasets have been
Frontiers in Immunology | www.frontiersin.org 3
deposited in the Gene Expression Omnibus (GEO) database
under the accession number GEO: GSE175649.

Single-Cell RNA Sequencing Analysis
Single cell suspensions from 1 freshly isolated female control and
1 female NOD.B10 SMGs were generated for scRNA-seq analysis
as previously described (43–45). A total of 21,386 cells from
control SMGs were sequenced to a depth of 339 million reads,
15,891 reads per cell and 867 median genes per cell. A total of
13,846 NOD.B10 SMG cells were sequenced to a depth of 438
million reads, 31,651 reads per cell and 456 median genes per
cell. The output from 10X Genomics Cellranger version 3.0.1
pipeline was used as input into the R analysis package Seurat
version 4.0.1 (46). Cells with high unique molecular index counts
(nCount_RNA > 40,000), and outlier gene detection rates
(nFeature_RNA 200 and > 5,000), high mitochondrial
transcript load (>50%), and high transcript counts for red
blood cell markers were filtered from the analysis. After
filtering and down-sampling to control for variable cell capture
efficiencies on the 10X platform, a total of 12,000 control cells
and 10,641 NOD.B10 cells were analyzed. The data was
normalized using Seurat’s logNormalize with a scale factor of
10,000. Principle component analysis (PCA) and Uniform
Manifold Approximation and Projection (UMAP) algorithm
was used for dimensionality reduction and visualization,
followed by the construction of a Shared Nearest Neighbor
(SNN) graph and clustering analysis. Using the called clusters,
cluster-to-cluster differential expression testing using the
Wilcoxon Rank Sum identified unique gene markers for each
cluster. To validate our annotation, our control scRNA-seq
dataset was mapped to additional scRNA-seq datasets that
were recently reported in the mouse SMG (47). Label transfer
from the Hauser et al. adult murine data set was performed by
utilizing the Azimuth workflow for mapping query datasets in
Seurat 4.0 release (48). Briefly, the Seurat R data object generated
by Hauser et al. was used as a reference data set, leveraging the
cell cluster annotations as define by Hauser et al. (47). The
Hauser et al. P30 adult female cell data set was then subset from
the R data object and subsequently integrated with our single-cell
data set using the MapQuery function that identifies transfer
anchors (or pairs of cells which are mutual nearest neighbors)
which allows for sample-to-sample integration into a shared
uniform manifold approximation and projection (UMAP) plot.
To confirm successful label transfer, feature plots for individual
marker genes were compared to confirm common expression
patterns between data sets. A complete list of genes enriched
per cluster using a 0.25 log2 fold change cut-off is provided
in Supplementary Tables S9, S10. Pathway analyses was
performed using DAVID and Ingenuity Pathway Analysis
(IPA, QIAGEN Inc., https://www.qiagenbioinformatics.com/
products/ingenuitypathway-analysis). Additionally, the lists of
DEGs generated from subsets of the scRNA-seq dataset were
overlayed with the DEGs identified in our bulk RNA-seq dataset
in order to identify concordant DEGs (Supplementary Tables
S18–S20). Datasets have been deposited in the Gene Expression
Omnibus (GEO) database under the accession number
GEO: GSE175649.
November 2021 | Volume 12 | Article 729040
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RESULTS

Defining the Transcriptome of
Mouse Primary Sjögren’s Syndrome
Submandibular Glands
To better define global alterations in the gene expression patterns
of pSS and identify molecular players that may contribute to
disease pathogenesis, we performed RNA-sequencing based
profiling of 7-month-old submandibular salivary glands (SMG)
from C57BL/10 (control) and NOD.B10 female mice. NOD.B10
animals have been shown to develop clinical disease by 6 months
of age. Moreover, these mice acquire several associated
histopathological features including focal lymphocytic
infiltration of the SMG and reduced salivary flow, which is
common to human pSS (17, 28, 49). We utilized three
biological replicates of SMG from the control and NOD.B10
mice to capture source variability and to ensure robust
downstream inferential analysis. Importantly, we also
performed histological analysis of the SMGs which showed
focal lymphocytic infiltration in NOD.B10 salivary glands, but
not in control glands, as visualized by hematoxylin and eosin
(H&E) staining (Supplementary Figure S1). To better analyze
the RNA-seq based gene expression patterns between the control
and NOD.B10 SMGs, we first utilized principal component
analysis (PCA). As expected, we observed a clear separation
between the two samples, highlighting the inherent differences
in gene expression between the control and NOD.B10
glands (Figure 1A).

The generation of bulk RNA-seq data from NOD.B10 SMGs
allowed us to investigate not only the altered gene expression
pattern in this specific mouse model, but also examine the degree
of overlap with other pSS mouse models and human pSS
(described in the experimental scheme in Supplementary
Figure S2). Towards this end, we first compared the
transcriptomic profiles of the control and NOD.B10 SMGs.
This analysis identified 1076 differentially expressed genes
(DEGs) between the control and NOD.B10 SMGs, with 542
genes being upregulated and 534 showing downregulation
at a false discovery rate (FDR) of 0.05 (Figure 1B and
Supplementary Table S1). To probe the biological relevance
of the transcriptomic differences between the control and
NOD.B10 SMGs, we analyzed the top 200 upregulated genes,
based on fold change, using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) (50). As
expected, in the NOD.B10 SMGs we observed specific
enrichment of biological processes associated with immune
responses including immune system process, innate immune
response, defense response to bacterium, and inflammatory
response - many of which have been implicated in SS
pathogenesis (51, 52) (Figure 1C and Supplementary Table
S2). Of note was the observed upregulation of the Myd88-
dependent toll-like receptor signaling pathway which is in
good agreement with recent studies that demonstrated
amelioration of local and systemic SS disease manifestations
upon the loss of Myd88 expression in the NOD.B10 mouse
model (30–32). In contrast, the top 200 downregulated genes
Frontiers in Immunology | www.frontiersin.org 4
based on fold change were associated with positive regulation of T
cell mediated immune response to tumor cell, positive regulation
of angiogenesis and response to wounding (Supplementary
Figure S3 and Supplementary Table S3). Of the biological
processes associated with genes showing downregulation,
positive regulation of angiogenesis was particularly interesting
given the observed link between angiogenesis and SS (53, 54).

The generation of RNA-seq datasets allowed us to also focus
on broader changes in gene expression patterns that may be
related to salivary gland dysfunction. We reasoned this approach
would provide additional relevant insight into the
pathophysiological features associated with this disease. Indeed,
our analysis uncovered alterations to a number of genes
(Supplementary Figure S4) that are associated with exocytosis
in the acinar cells, a key biological process that can affect the
secretion of salivary proteins and alter the contents of saliva.
These results were noteworthy given the fact that one of the
hallmark features of pSS is reduced salivary flow, which has been
also documented in the NOD.B10 mouse model (49).
Interestingly, we observed downregulation of a number of
genes belonging to the Ras superfamily of GTPases (RAB
GTPases). RAB GTPases play critical roles in exocytosis and
membrane trafficking including vesicle formation, docking and
membrane fusion, all vital functions necessary for proper saliva
secretion (55). More specifically, we observed reduced gene
expression levels of Rabac1 and Rab6b in the salivary glands of
SS mice compared to control animals (Supplementary Figure
S4). Taken together, the transcriptomic profiling of the
NOD.B10 mouse SMG has led to a better understanding of
gene regulatory networks that are likely to be relevant for
pSS pathobiology.

Comparative Analysis of Primary Sjögren’s
Syndrome in Mouse and Humans
In order to facilitate the discovery of genes and networks that
may be important drivers of SS etiology, we next compared our
results to microarray-based transcriptomic datasets generated
from the well-established C57BL/6.NOD-Aec1Aec2 mouse
model of pSS (56). Comparison of the datasets revealed 33
common genes of which 18 were upregulated and 15
downregulated (Figure 2A and Supplementary Table S4).
Despite the paucity of common genes between these two
datasets, it is important to note that a number of these genes
have been previously implicated in SS pathogenesis including
Prss23, Tmem173, Tgfb2, Dusp4, and Arg1 (57–61). To better
appreciate the biological significance of the common genes, we
performed pathway analysis on the 18 upregulated genes. As
expected, we observed specific enrichment of biological processes
associated with immune function including immune system
processing, positive regulation of T cell mediated cytotoxicity,
and general programs common to antigen processing and
presentation (Figure 2B and Supplementary Table S5).

Having established the transcriptomic repertoire of the
NOD.B10 salivary glands, we wondered if there existed any
commonalities between the mouse pSS salivary glands and
those of human pSS patients. Towards this end, we compared
November 2021 | Volume 12 | Article 729040
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the control and NOD.B10 salivary gland global transcriptome to
RNA-seq datasets of human minor salivary glands of non-SS and
pSS patients, which were recently generated in our lab (62). Of
the 1076 DEGs identified in the NOD.B10 SMGs, we found 166
genes which showed concordant gene expression patterns to be
shared across the two datasets. Of these DEGs, 57 were
upregulated in both mouse and human while 109 were
downregulated (Figure 3A and Supplementary Table S6).
Notably, a number of common genes identified across both
datasets have been previously demonstrated to play important
roles in pSS pathogenesis including Cxcl13, Tmsb10, Tap1, C1qa,
Serpinb9, and Cds1 (14, 63–67) (Figure 3A and Supplementary
Table S6). As expected, pathway analysis of the common
upregulated genes revealed specific enrichment in biological
processes important for innate immune response, antigen
Frontiers in Immunology | www.frontiersin.org 5
processing and presentation, regulation of cytokine secretion,
toll-like receptor signaling, and Myd88-dependent toll-like
receptor signaling pathway (Figure 3B and Supplementary
Table S7). Conversely, shared downregulated genes showed
enrichment in processes associated with O-glycan processing,
ER to Golgi vesicle-mediated transport, carbohydrate metabolic
process, and protein N-linked glycosylation via asparagine
(Supplementary Figure S5 and Supplementary Table S8).
Interestingly, the observed downregulation of genes important
for normal glycan function is in good agreement with the
suggested role glycans play in influencing salivary flow, which
is commonly reduced in pSS patients (68).

To further validate our findings, we next performed
quantitative reverse-transcription polymerase chain reaction
(qRT-PCR) using an independent set of salivary glands from
A

B

C

FIGURE 1 | Comprehensive Transcriptomic Analysis of Submandibular Salivary Glands of NOD.B10 pSS Mice. (A) Plot shows Principal Component Analysis (PCA)
coordinates for three control and three NOD.B10 mouse salivary glands. Blue and yellow circles represent control and NOD.B10 mice, respectively. (B) Heatmap
visualization of differentially expressed genes (DEGs) in submandibular salivary glands of the control and NOD.B10 mice. (C) Bar plot highlighting enriched biological
processes in the top 200 upregulated DEGs identified in panel (B) above.
November 2021 | Volume 12 | Article 729040
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control and NOD.B10 mice that were not included in our RNA-
seq analysis. We focused on a select number of candidate genes
that were common across both mouse and human datasets,
several of which have been implicated in SS pathobiology.
Consistent with our RNA-seq results, we found elevated
mRNA expression levels of Apoe, B2m, Tlr1, Def6, Entpd1, and
reduced expression levels of Xbp1 (69–74) (Supplementary
Figure S6).

Single-Cell Characterization of NOD.B10
Salivary Gland Tissue
To follow up our observations from bulk RNA-seq experiments
and to obtain a more detailed view of the cellular identities and
states associated with SS pathology, we performed single-cell
RNA-sequencing (scRNA-seq) analysis of adult control and
Frontiers in Immunology | www.frontiersin.org 6
NOD.B10 salivary glands. SMGs were isolated, dissociated into
single cell suspensions and subjected to scRNA-seq using the
10X Genomics sequencing platform for single-cell capture to
achieve in-depth expression profiling of individual SMG cells.
After standard data processing and quality control procedures
(see Material and Methods), we obtained transcriptomic profiles
for 21,386 control cells and 13,846 NOD.B10 cells and performed
downstream analysis (Supplementary Figure S7).

In order to appreciate the level of cellular heterogeneity in the
control glands, we first performed unsupervised clustering with
affinity propagation based on the expression of high-variance
genes. This analysis identified 15 clusters (C) of distinct cellular
populations which we visualized via uniform manifold
approximation and projection (UMAP) (Figure 4A). Cell type
assignments were made based on the expression of known/
A

B

FIGURE 2 | Comparative Analysis of Sjögren’s Syndrome Mouse Models. (A) Heatmap visualization of the common 33 overlapping genes identified in the RNA-seq
datasets described here (Horeth et al.) and the Nguyen et al. (56) microarray dataset. (B) Bar plot highlights the biological processes enriched in the common 18
upregulated genes identified in panel (A) above.
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validated marker genes, similar to what we and others have
reported in the SGs (Supplementary Tables S9, S10) (43, 45, 47,
62, 75). A dot plot showing the expression of markers used for
annotation is shown in Supplementary Figure 8. Interestingly,
comparative analysis revealed striking differences between the
various cell populations of the control and NOD.B10 samples
(Figure 4A). These differences are further highlighted in
Figure 5A in which the top 20 DEGs across all clusters
between the control and NOB.B10 mice are shown (Figure 5A
and Supplementary Table S11). As expected, we observed a
dramatic increase in the number of immune cells in the
NOD.B10 mouse salivary gland compared to control glands
(Figure 4). This included elevated numbers of B cells, T cells,
and myeloid cells as demonstrated by elevated mRNA expression
levels of the cell type specific markers Cd79a, Icos, and Cd68,
respectively (Figure 4B). This observation was further validated
by examining the percentage of cells per cluster between control
Frontiers in Immunology | www.frontiersin.org 7
and NOD.B10 mice SMGs (Figure 4C). In stark contrast to the
control SMG, the NOD.B10 sample consisted of reduced
numbers of cells that comprise the epithelial cell populations
with the NOD.B10 mice having a total of 3,626 epithelial cells (or
~34%) compared to 4,955 epithelial cells (or ~41%) observed in
the control glands (Figure 4). This finding is not surprising given
that the loss of these cell populations is commonly observed in
pSS and has been attributed to the loss of salivary flow in patients
(76). Overall, our scRNA-seq analyses has revealed the degree of
cellular heterogeneity and the broad range of cell types associated
with pSS diseased state.

To obtain a more detailed view of the molecular
characteristics of the various cell populations we performed
DEG analysis and concentrated on the 3 major cell types
including acinar, ductal and immune cells from the control
and NOD.B10 glands. Interrogation of the 2 acinar clusters
(C5 and C6) of the control and NOD.B10 mice identified 388
A

B

FIGURE 3 | Integrated Analysis of Mouse and Human Sjögren’s Syndrome Datasets. (A) Volcano plot shows the distribution of statistically significant upregulated
and downregulated DEGs in NOD.B10 SMGs (grey dots) and common DEGs (blue dots) between mouse and human SS. (B) Bar plot highlights the biological
processes enriched in the common upregulated DEGs identified between the NOD.B10 and human pSS datasets.
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DEGs with 263 genes showing upregulation and 125 showing
downregulation (Figure 6A and Supplementary Table S12). We
next utilized DAVID and Ingenuity Pathway Analysis (IPA) to
explore the gene regulatory networks and pathways represented
by the 388 DEGs. This analysis revealed enrichment of biological
processes associated with translation and protein folding, which
is not surprising given the secretory function of acinar cells
(Figure 5B and Supplementary Table S13). Remarkably,
enrichment of genes associated with immune cell processes
including antigen processing and presentation, positive
regulation of T cell mediated cytotoxicity and T cell receptor
signaling were enriched in acinar cells of NOD.B10 glands
(Figure 5B and Supplementary Figure S9).

We next performed similar DEG analyses focusing on the 5
ductal-specific clusters (C1, C3, C4, C7 and C15). This resulted
in a total of 987 DEGs of which 543 were upregulated and 444
downregulated (Figure 6B and Supplementary Table S14).
Interestingly, our pathway analyses of the 987 DEGs identified
enrichment of pathways associated with immune cell function
including antigen presentation and Eif2 signaling, the latter of
which has been implicated in SS pathogenesis (77) (Figure 5B,
Frontiers in Immunology | www.frontiersin.org 8
Supplementary Figure S10, and Supplementary Table S15).
Taken together these findings suggest that the acinar and ductal
epithelial cells of the affected NOD.B10 glands may transition
into a hybrid epithelial/immune cell-like state by aberrantly
expressing molecules conventionally associated with immune
cells. Finally, our DEG analysis of the 4 immune cell clusters
(C10, C11, C12, C14) identified 1215 DEGs, with 793 being
upregulated and 422 genes downregulated (Figure 6C and
Supplementary Table S16). As expected, our pathway analyses
of the 1215 DEGs revealed enrichment of processes associated
with immune specific functions including immune system
process and response as well as antigen presentation
(Figure 5B, Supplementary Figure S11 and Supplementary
Table S17).

Given that the bulk RNA-seq and scRNA-seq were
independent experiments performed on separate control and
NOD.B10 SMG samples, we next sought to compare these
datasets. For this purpose, we leveraged the scRNA-seq derived
acinar, ductal, and immune cell cluster gene signatures and
performed comparative analyses with the bulk RNA-seq
dataset. Comparison of the 388 acinar DEGs with the 1076
A

B

C

FIGURE 4 | Single-cell RNA-sequencing Reveals Alterations in Cellular Heterogeneity in Mouse pSS SMGs. (A) Uniform manifold approximation and projection
(UMAP) of control and NOD.B10 mouse SMGs. Cell cluster identities are also shown. (B) Feature plots demonstrate the expression of known acinar, ductal, basal
and myoepithelial and immune genes. (C) Bar graph shows the proportion of cells per cluster.
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DEGs obtained from the bulk RNA-seq studies identified 48
genes which showed concordant gene expression patterns with
32 showing upregulation and 16 being downregulated
(Figure 6A middle panel and Supplementary Table S18).
Interestingly, while a number of the upregulated genes showed
widespread expression based on feature plot analysis (Figure 6A
right panel), we did identify beta-2-microglobulin (B2m) which
has been shown to be associated with increased disease severity
in patients with pSS (2, 70). Among the 987 ductal DEGs, we
found 129 genes that showed concordant gene expression
patterns with 84 being upregulated and 45 downregulated in
the bulk RNA-seq data (Figure 6B middle panel and
Supplementary Table S19). Of note, several of these genes
belong to the kallikrein family of serine proteases, which have
recently been linked to pSS as well as other autoimmune diseases
(Figure 6B right panel) (78–80). Finally, similar analyses of the
immune cell clusters revealed that of the 1215 DEGs detected
Frontiers in Immunology | www.frontiersin.org 9
between the control and NOD.B10 scRNA-seq datasets, 71 genes
showed concordant gene expression patterns with 39 being
upregulated and 32 showing downregulation (Figure 6C
middle panel and Supplementary Table 20). Of these genes,
we found early B cell factor 1 (Ebf1) and high mobility group
nucleosome binding domain 1 (Hmgn1) to be upregulated
(Figure 6C right panel). While Ebf1 and Hmgn1 have not been
directly linked to SS, they have been shown to play important
roles in immune function and may serve as potential candidates
for future follow-up studies (81–83). While the DEGs common
between the bulk RNA-seq and scRNA-seq datasets might seem
relatively modest at first glance, we suspect that this might be in
part due to poor gene coverage (from expressional dropout for
instance) for the scRNA-seq data. Nevertheless, the comparative
analysis does provide a reasonable number of genes with high
confidence that are likely to be critical to the underlying pSS
pathogenic state of the NOD.B10 SMGs.
A

B

FIGURE 5 | Analysis of Cellular Populations as Identified by Single-cell RNA-sequencing. (A) Heatmap visualization of the top 20 differentially expressed genes in
each cluster as compared with all clusters between control (C) and NOD.B10 (N) SMGs. Upper bars represent cluster assignments. (B) DAVID analysis of all DEGs in
the acinar (green), ductal (purple), and immune (pink) cell clusters.
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Intrinsic Activation of Salivary
Gland Epithelial Cells Contribute
to Immune Dysregulation
>While salivary gland dysfunction has been commonly thought to
occur as a consequence of abnormal B cell and T cell responses,
emerging evidence suggests a functional role for the epithelial cells
in contributing to disease development and progression. Indeed,
salivary gland epithelial cells isolated from patients with SS have
been shown to play an active role in driving the initial local
autoimmune responses by mediating recruitment, homing,
activation, and differentiation of immune cells (34, 35). To better
appreciate the functional role of the epithelial cells, we mined our
scRNA-seq datasets from control and NOD.B10mice and focused
on the 9 epithelial cell clusters and performed differential gene
expression analysis (Figure 7A and Supplementary Table S21).
This analysis identified a number of upregulated DEGs in the
epithelial cells of theNOD.B10glands thathave been shown toplay
important roles in immune cell responses. IFN signaling has
Frontiers in Immunology | www.frontiersin.org 10
emerged as a key driver in the pathogenesis of pSS with patients
demonstrating elevated expression levels of genes associated with
this signaling pathway (84, 85). In agreement with these findings,
our analysis revealed a number of molecular players involved in
IFN signaling to be markedly upregulated in the epithelial cells of
the NOD.B10 mice compared to control cells. For instance, we
identified interferon-regulatory factor 7 (Irf7), chemokine (C-X-C
motif) ligand 10 (Cxcl10), bonemarrow stromal cell antigen 2 (Bst-
2), signal transducer and activator of transcription 1 (Stat1),
interferon induced irotein 35 (Ifi35) and interferon-induced
protein with tetratricopeptide repeats 1 (Ifit1) to be enriched in
the epithelial cell clusters of the NOD.B10 mice (Figure 7B) (86).

In addition to genes involved in IFN signaling, we observed
upregulation of Cd14, a GPI-anchored pattern recognition
receptor that functions in innate immune responses (87). More
specifically, Cd14 is a co-receptor in the toll like receptor 4
(TLR4) complex, activation of which results in the recruitment of
Myd88 and various IL-1R associated kinases (IRAKs) leading to
AA

BB

CC

FIGURE 6 | Comparative Analysis of the Bulk RNA-seq and Single Cell RNA-seq Datasets. (A) Heatmap visualization of DEGs identified in scRNA-seq datasets (left
panel) which are common with the bulk RNA-seq datasets (middle panel) with representative feature plots (right panel) of genes in the acinar, ductal (B), and immune
cell clusters (C).
November 2021 | Volume 12 | Article 729040

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Horeth et al. Transcriptomic and Single-Cell Mouse Sjögren’s
NF-kB and MAPK signaling pathway activation (88, 89). Not
surprisingly, we also observed elevated gene expression levels of
Irak1, an important mediator of this signaling cascade (90)
(Figure 7B). In line with these findings, several genes involved
in antigen processing and presentation were also selectively
upregulated in the NOD.B10 salivary epithelial cells including
Cd74, transporter associated with antigen processing 1 (Tap1),
and Tap2 (Figure 7C) (91, 92). Taken together, our results
suggest that similar to immune cells, epithelial cells appear to
play a reactive role in driving the immune related changes
associated with pSS.

DISCUSSION
Primary Sjögren’s Syndrome is a complex systemic autoimmune
disease with no known cause or effective cure. Despite extensive
Frontiers in Immunology | www.frontiersin.org 11
research efforts over the last several decades, the underlying
molecular mechanisms driving SS pathogenesis, remains elusive.
Here we have performed a comprehensive transcriptomic
characterization of the underlying global circuitry in the
salivary glands of a well-established pSS mouse model. In
parallel, we have utilized single-cell RNA-seq to interrogate
alterations in the cellular heterogeneity of mouse pSS salivary
glands and have described the immuno-reactive state of the
epithelial cells suggesting that they are active participants in pSS
pathogenesis. Our multipronged genomic and genetic approach
has revealed novel insight into the transcriptional regulatory
circuitry and the various cell types spurring the immune related
changes underlying this disease.

Mouse models have long served as valuable model systems to
study various aspects of human disease. Over the years, SS mouse
models have provided a myriad of information regarding
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different aspects of SS pathogenesis including onset, progression,
and treatment. While these studies have been invaluable in
providing insight into the complex nature of this disease, no
studies to date have comprehensively dissected the cellular
heterogeneity and examined the various cellular states of the
salivary glands of pSS mice. Although it is no surprise that our
scRNA-seq analysis identified increased populations of immune
cells in the glands of pSS mice, our findings uncovering the
degree to which the epithelial cells exist in an immune activated
state and expressed markers that are commonly associated with
immune cell function, was striking. It is tempting to speculate
that the NOD.B10 epithelial ductal cells are transitioning and
displaying a similar gene expression profile to that of immune
cells. However, this requires further investigation. While the
contribution of pSS epithelial cells has received some attention
(33–35), future studies aimed at investigating the transcriptional
changes the epithelial cells undergo as they transition to this
activated state will be important. Moreover, identifying the
signals that drive the epithelial activated state will be critical to
understanding how they contribute to this disease.

Our comparative transcriptomic analysis of mouse and
human pSS glands allowed us to identify genes that are
common and potentially relevant in driving the underlying
molecular mechanisms contributing to this disease.
Interestingly, our analysis revealed that of the 1076 DEGs we
identified in the SGs of the NOD.B10 mice, only 166 genes were
common to the human RNA-seq studies of pSS and non-pSS
salivary gland tissue (62). While this number was surprisingly
low, the discrepancies can be attributed to a number of factors
including the inherent differences between the types of glands
included in our analysis. For example, in the current study we
compared NOD.B10 submandibular salivary glands datasets to
human minor salivary glands. It is also plausible that the modest
number of overlapping genes we observed may be due to
differences in disease stages or a reflection of the complex
nature of this disease. Despite the modest overlap, in addition
to identifying conserved networks and pathways, our analysis
also identified a number of common genes which have been
previously reported to play key roles in SS. In addition, we
uncovered several genes that have not been previously associated
with this disease and which may serve as candidates for future
studies. For instance, we identified a number of genes involved in
sialic acid biosynthesis and sialylation including glucosamine
(UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase
(Gne), an important enzyme in the sialic acid biosynthetic
pathway. Although Gne has not been directly linked to SS,
sialic acids have been shown to play important roles in
autoimmunity (93). Additionally, we identified cytidine
monophosphate N-acetylneuraminic acid synthetase (Cmas), a
catalyzing enzyme involved in the sialylation pathway, to be a
common gene between mouse and human SS. While no direct
link to SS has been reported, Cmas has been demonstrated to
direct various immune responses (94, 95).

The wealth of transcriptomic data from the mouse model of
pSS described in this paper is a critical first step in understanding
both the cellular and molecular mechanisms of this disease. One
Frontiers in Immunology | www.frontiersin.org 12
major advantage of the NOD.B10 model is the possibility of
performing a time course of genomic studies that addresses the
nuances of the gradual and progressive nature of pSS pathology.
Indeed, this approach will likely uncover the early triggers and
precipitating factors that contribute to the etiology of pSS. Future
studies, particularly those that take advantage of single cell
techniques such as spatial transcriptomics, are also needed to
reveal the topological map of the niche in which subtypes of
various epithelial and immune cells co-exist, crosstalk with each
other and more importantly, contribute to SMG dysfunction
in pSS.
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