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Abstract: In this study, we employed electrospinning technology and in situ polymerization to
prepare wearable and highly sensitive PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors. PEDOT,
PEDOT:PSS, and TiO2 were prepared via in situ polymerization and tested for characteristic peaks
using energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy
(FT-IR), then characterized using a scanning electron microscope (SEM), a four-point probe resistance
measurement, and a gas sensor test system. The gas sensitivity was 3.46–12.06% when ethanol with a
concentration between 12.5 ppm and 6250 ppm was measured; 625 ppm of ethanol was used in the
gas sensitivity measurements for the PEDOT/composite conductive woven fabrics, PVP/PEDOT:PSS
nanofiber membranes, and PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors. The latter exhibited
the highest gas sensitivity, which was 5.52% and 2.35% greater than that of the PEDOT/composite
conductive woven fabrics and PVP/PEDOT:PSS nanofiber membranes, respectively. In addition, the
influence of relative humidity on the performance of the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas
sensors was examined. The electrical sensitivity decreased with a decrease in ethanol concentration.
The gas sensitivity exhibited a linear relationship with relative humidity lower than 75%; however,
when the relative humidity was higher than 75%, the gas sensitivity showed a highly non-linear
correlation. The test results indicated that the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors
were flexible and highly sensitive to gas, qualifying them for use as a wearable gas sensor platform at
room temperature. The proposed gas sensors demonstrated vital functions and an innovative design
for the development of a smart wearable device.

Keywords: gas-sensitive nanofiber; micro/nanofiber gas sensor; gas sensitivity; smart wearable device

1. Introduction

Gas is invisible and the lives of people as well as their livelihoods can be jeopardized
by various accidents, including coal mine explosions, sewer biogas incidents, and poisoning
incurred by carbon monoxide, the threats of which are unpredictable. Gas sensors are a
vital measure to detect the components and concentrations of gas and, as such, effectively
control the release and dissemination of toxic gas in living and working spaces. As a result,
gas sensors are commonly used in the military, anti-terrorism, industry, home safety, and
environmental monitoring; at the same time, wearable electronic textiles are beginning to
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gain extensive attention via a progressive internet and wearable technology. In other words,
wearable textile-based gas sensors are promising products that are worth developing.

Gas sensors have a high sensitivity as well as resilience, durability, and weaveability
and can be bonded with textile matrices to form wearable electronic textiles that can be used
as convenient detectors for people to examine the transient state of their surroundings to
guard their health and prevent toxic gas accidents. Conductive polymers are a recently dis-
covered material [1]. As a thiophene conductive polymer, poly(3,4-ethylenedioxythiophene)
(PEDOT) has a high transparency, a stable chemical nature, and good conductivity; these
attributes have made PEDOT popular in the widespread research on gas detection [2,3].
As it is more eco-friendly than other conductive polymers such as polyaniline (PANI) and
polypyrrole (PPy), PEDOT has gained increasing attention as a tool that can be used to
detect the presence of NH3, HCL, ethanol, and NO [4]. At present, gas sensors are mostly
made of polythiophene [5,6], polyaniline [7], polypyrrole [8], graphene [9,10], titanium diox-
ide (TiO2) [11,12], and zinc oxide (ZnO) [13]. Zhang et al. [14] employed an electrospinning
machine equipped with a high-pressure airflow to produce polyvinyl alcohol/poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) (PVA/PEDOT:PSS) composite ultrafine
fibers and characterized the electric properties of the PVA/PEDOT:PSS nanofibers with
different diameters. In an attempt to obtain transient response characteristics, Liu et al. [15]
prepared PPy-PAN NH3 gas sensors using both electrospinning and in situ polymerization.
The resulting products were examined for NH3 gas detection at a concentration ranging
from 250 ppm to 2000 ppm and had a gas sensitivity value ranging between 1.0 and 1.5%.
Pang et al. [16] developed a flexible, light, and highly conductive porous graphene network
to serve as a humidity sensor.

With further investigation and development, society has become increasingly fond of
TiO2 gas-sensitive materials because of their desirable attributes, including a low working
environment temperature, an efficient functionality, and ease of production. Based on
the findings of the current studies, the performance of TiO2 gas-sensitive materials has
been improved mainly via atomic doping, heterojunction structure construction, ganic
molecular modification, and shape control methods. Notably, the heterojunction structures
are very diverse, e.g., PPy/WO3 [17], PANI/TiO2 [18], and ZnO/TiO2/PANI [19], which
can concurrently strengthen the gas sensitivity as well as the sensing performance and gas
diversity. The main methods used in gas sensor production include electrospinning [20,21],
in situ polymerization [22], drip coating and dipping [5], electrostatic self-assembly [9],
interfacial polymerization [7], hydrothermal systems [23], nano-level soft lithography [24],
and chemical vapor deposition (CVD) [25]. Specifically, electrospun membranes feature a
large specific surface area and only require a simple manufacturing process. The electro-
spun nanofilms have sufficient transmission channels for gas detection; hence, they exhibit
a greater gas sensitivity. However, the main chains of the conductive polymers are rigid,
which causes lower levels of entanglement and interaction among the polymers. Therefore,
it is rather difficult to manufacture PEDOT:PSS nanofibers [26] and their production de-
mands a non-conductive carrier polymer such as polyvinylpyrrolidone (PVP), with a good
biocompatibility and film formation. Figure 1 shows the electrospinning assembly.

Fiber- or fabric-based gas sensors are characterized by their ease of processing, low
production cost, light weight, and greater sensor efficacy at room temperature. With
several advantages, including a low cost along with wearable and portable features, the
incorporation of textiles with flexible sensors has found widespread applications [27–29].
Fiber- or textile-based gas sensors can be made in different manners to fit fabric products
more effectively than conventional solid gas sensors, flexible film sensors, or paper gas
sensors [30]. The majority of the studies on textile gas sensors employ electrospinning
to produce nanofibers with a large specific surface area; however, there is a relatively
small number of studies on textile-type gas sensors. Conductivity is a vital factor for
electronic textile-based gas sensors as it directly affects the gas sensitivity. Hence, a rise in
conductivity is associated with highly sensitive electronic textile-based gas sensors. Hong
et al. used in situ polymerization to prepare PANI-nylon 6 composite fabrics and the



Polymers 2022, 14, 1780 3 of 14

products were highly sensitive to NH3 and had a quick reaction time [31]. To produce NH3
gas sensors, Wu et al. constructed PANI/PAN with a uniaxial arrangement and coaxial
UACNY via electrospinning and in situ polymerization [32]. Yun et al. [33] prepared an
electronic textile gas sensor based on reduced graphene oxide (RGO); the resulting gas
sensor displayed a 28% response toward 0.45 ppm NO2 gas. Lee et al. [34] prepared a
graphene-based electronic textile gas sensor that was made of a dopamine–graphene-mixed
electronic textile yarn (DGY). The graphene was adhered to the surface of the yarn using
dopamine, which allowed the gas sensors to function with a high priority and sensitivity
toward NO2 gas.
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Figure 1. PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensor structure.

In this study, we used an innovative and convenient in situ polymerization method to
coat PEDOT over a conductive woven fabric surface, forming highly conductive and gas-
sensitive Cu/Pc-80 composite conductive woven fabrics. The loading level of PEDOT and
the gas sensitivity of the products were also tested and analyzed. Finally, the electrospin-
ning technique was used to develop highly sensitive and flexible PVP/PEDOT:PSS/TiO2
micro/nanofiber gas sensors. The gas sensitivity and morphology of the resulting gas
sensors were then investigated using energy-dispersive X-ray spectroscopy (EDS) analyses,
X-ray diffraction (XRD) analyses, and Fourier transform infrared spectroscopy (FT-IR) in
order to evaluate their performance.

2. Experimental Procedure
2.1. Materials

EDOT was purchased from Adamas Reagent Co., Ltd., Shanghai, China. FeCl3·6H2O,
(NH4)2S2O8, Na2S2O8, and absolute ethanol (C2H6O) were purchased from Fengchuan
Chemical Reagent Technology Co., Ltd., Tianjin, China. The PVP (Macklin Biochemical Co.,
Ltd., Shanghai, China) had a molecular weight of 1,300,000 MW. PEDOT:PSS was purchased
from Sigma-Aldrich, China, DMSO was obtained from Yuanli Chemical Co., Ltd., Tianjin,
China, and TiO2 was purchased from Macklin Biochemical Co., Ltd., Shanghai, China.

2.2. Instruments

The scanning electron microscope (Phenom pure) was purchased from Phenom Co.,
Rotterdam, The Netherlands. The electrospinning assembly (JDF05) was acquired from
Nayi Instrument Technology Co., Ltd., Changsha, China. The energy-dispersive X-ray spec-
troscopy analysis was carried out with OCTANE SUPER equipment, purchased from Itax
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Co., Ltd., USA. The D8 Discover, used for X-ray diffraction, was purchased from Bruker AG,
Germany. The Fourier transform infrared spectrophotometer (Nicolet iS50) was purchased
from Thermo Fisher Scientific Co., Ltd., Shanghai, China. The gas-sensitive component
measurement system (WS-30B) was procured from Weisheng Electronic Technology Co.,
Ltd., Zhengzhou, China. The vacuum drying oven (DZF-6020) was purchased from Boxun
Industrial Co., Ltd., Shanghai, China.

2.3. Preparation of PEDOT/Composite Conductive Woven Fabrics

Figure 1 shows the manufacturing process for the PEDOT/composite conductive
woven fabrics employing in situ polymerization. First, 0.3 mol/L oxidant (Fecl3·6H2O) and
0.1 mol/L EDOT monomer were separately dissolved in 10 mL of absolute ethanol. The
non-woven fabrics were then placed in dishes, after which the two solutions were separately
infused over the fabrics to soak the surface, forming PEDOT/composite conductive woven
fabrics. The conductive fabrics were repeatedly washed with deionized water and vitamin
C powder to ensure that the oxidants and iron ions were removed.

2.4. Preparation of PEDOT:PSS Micro/Nanofiber Gas Sensors

PVP at 8, 9, or 10% was mixed with a water/absolute ethanol (1:3) mixture at 500 r/min
for 4 h. A total of 5 g of PEDOT:PSS and DMSO at a 3:1 ratio were individually added to the
mixture for another 4 h mixing period and the final mixtures were stored for 12 h. DMSO
was added in an attempt to improve the electrical conductivity of the PVP/PEDOT:PSS
nanofiber membranes. The PEDOT/composite conductive woven fabrics were then fixed
to the roller of the electrospinning assembly. The electrospinning technology was applied
to produce PVP/PEDOT:PSS nanofiber membranes with the following parameters: a
collection distance of 200 cm, an injection rate of 0.3 mm/L, and an anode high voltage
of 25 kV. The collected PVP/PEDOT:PSS nanofiber membranes were dried in a vacuum
drying case at 60 ◦C for 24 h.

2.5. Preparation of PEDOT:PSS/TiO2 Micro/Nanofiber Gas Sensors

The PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors were prepared as described
above. TiO2 was ultrasonically dispersed in water and absolute ethanol in advance. TiO2
(0.2 g) was then added to the PVP/PEDOT:PSS (9%) spinning solution systems and stored
for 12 h. A certain volume of the electrospinning solutions was infused into a double
injector whilst the PEDOT/composite conductive woven fabric was fixed to the roller
of the electrospinning assembly. The electrospinning parameters used to produce the
PVP/TiO2 and PVP/PEDOT:PSS/TiO2 nanofiber membranes were as follows: a collection
distance of 200 cm, an injection rate of 0.3 mm/L, and an anode high voltage of 25 kV.
Finally, the membranes were placed in a vacuum drying oven at 60 ◦C for 24 h to form the
PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors, as shown in Figure 1.

2.6. Testing and Characterization

To evaluate the morphology of the fibers using the SEM, the PEDOT/composite
conductive woven fabrics were fixed to the platform of the tester using a conductive glue
and coated with a thin layer of gold. A Phenom desktop scanning electron microscope was
used to observe the accumulation of PEDOT particles on the conductive woven fabrics at an
accelerating voltage of 10 kV. Afterwards, the surface morphology of the PVP/PEDOT:PSS,
PVP/PEDOT:PSS/TiO2, and PVP/TiO2 nanofiber membranes was observed.

Fourier transform infrared spectroscopy (FT-IR; Nicolet iS50) was used to measure the
FIR characteristics of the PEDOT/composite conductive woven fabrics, PVP/PEDOT:PSS
nanofiber membranes, and PVP/PEDOT:PSS/TiO2 nanofiber membranes. The wavelength
range was 4000–400 cm−1 and the resolution was 0.09 cm−1. The energy-dispersive X-ray
spectroscopy (EDS) measurements (OCTANE SUPER model) were used to analyze the
element content and distribution in the PVP/PEDOT:PSS and PVP/PEDOT:PSS/TiO2
nanofiber membranes. The samples were fixed to the platform of the tester in advance for
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the gold spray treatment. The X-ray diffraction (XRD) measurements (D8 Advance) were
used to detect the crystallization phase of the PVP/PEDOT:PSS/TiO2 nanofiber membranes.
The diffraction target was Cu Kα, the angle range was 20◦–80◦, the step length was 0.02◦,
and the scan rate was 0.2 s/step.

A gas sensitivity measurement gas sensor test system (WS-30B) was used to measure
the gas sensitivity of the PEDOT/composite conductive woven fabrics, PVP/PEDOT:PSS
nanofiber membranes, and PVP/PEDOT:PSS/TiO2 nanofiber membranes. Figure 2 shows
the gas sensor assembly circuit using ethanol as the test gas. The sensor was incorporated
with a voltage of 5 V. Through the suitable load card, the baseline steadily moved between
0 and 1. After two minutes, the corresponding part of the instrument was infused with
the specified gas or liquid, after which the detector measured the difference in the electric
resistivity. A heater was employed to efficiently evaporate the ethanol and the resulting
gas was diffused into the whole test case via a blowing air set. The test was conducted at
room temperature and air served as the carrier gas, thereby simulating a common sensor
environment. The materials were evaluated for gas sensitivity and its relation to the relative
humidity. The electric resistivity (S) was the comparison of the gas sensor before and after
the test, and could be written as follows:

S = (Rg − Ra)/Ra × 100% (1)

where Ra is the electric resistivity of the gas sensor materials in the air and Rg is the electric
resistivity of the gas sensor materials in the test gas.
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3. Results and Discussion
3.1. Surface Morphology of PEDOT/Composite Conductive Woven Fabrics

Figure 3a shows the morphology of the optimal PEDOT/composite conductive woven
fabrics; a magnified image is shown in Figure 3b. Figure 3c demonstrates the morphology
of the Cu/Pc-80 conductive woven fabrics (i.e., the control group). Compared with the
control group, the PEDOT/composite conductive woven fabrics were unevenly coated
with the polymer particles. From a macro perspective, the white surface of the fabrics
turned dark blue, which suggested that PEDOT had been successfully loaded over the
Cu/Pc-80 woven fabrics to form the PEDOT/composite conductive woven fabrics.

3.2. FT-IR Analysis of PEDOT/Conductive Woven Fabrics

Figure 4 shows the FT-IR spectra of the Cu/Pc-80 conductive woven fabrics and the PE-
DOT/composite conductive woven fabrics at 500–4000 cm−1. Both groups showed similar
FT-IR bands; this once again validated that PEDOT had been successfully polymerized over
the surface of the Cu/Pc-80 conductive woven fabrics, which in turn changed the spectra.
Hence, in the PEDOT/composite conductive woven fabrics, the characteristic peaks of
PEDOT were present at 900–1520 cm−1, including stretch peaks at 1576 and 1320 cm−1
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for C=C and C–C, respectively; stretch peaks at 1210, 1125, and 1051 cm−1 for C–O–C in
ethylenedioxy; and peaks at 967, 822, and 682 cm−1 for C–S in the thiophene ring [4].
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3.3. Gas Sensitivity of PEDOT/Composite Conductive Woven Fabrics

Five different concentrations (62.5, 312.5, 625, 3125, and 6250 ppm) of ethanol were in-
dividually heated until they reached full volatility to obtain the ethanol gas. When exposed
to the ethanol gas, the PEDOT/composite conductive woven fabrics reacted within 180 s
and showed differences in electric resistivity (kΩ). Figure 5 demonstrates the gas sensitivity
of the PEDOT/composite conductive woven fabrics in relation to the ethanol concentration.
The test results showed that the incorporation of PEDOT provided the fabrics with gas
sensitivities of 0.43% for an ethanol concentration of 62.5 ppm and 5.37% for a concentration
of 6250 ppm, respectively. Therefore, the gas sensitivity of the PEDOT/composite con-
ductive woven fabrics was directly proportional to the ethanol concentration. According
to Figure 3a,c, unlike the Cu/Pc-80 conductive woven fabrics, the PEDOT/composite
conductive woven fabrics were coated with a considerable amount of PEDOT. Due to its
intrinsic conductivity, PEDOT enabled the PEDOT/composite conductive woven fabrics to
detect the gas by providing the test gas with enough conductive transmission tunnels over
the Cu/Pc-80 conductive woven fabrics.
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3.4. Morphology Characterization of Gas-Sensing Membranes

The morphology of the nanofibers was observed using a scanning electron microscope.
Figure 6a–c,a’–c’ show the morphology of the pure nanofiber membranes and PEDOT:PSS
nanofiber membranes in relation to the PVP content (8, 9, and 10%), respectively. When
the PVP content was 8 and 10%, the resulting PVP/PEDOT:PSS nanofiber membranes
generated a considerable number of bead-like nanofibers. In contrast, a PVP content of
9% provided the PVP/PEDOT:PSS nanofiber membranes with a morphology that did not
contain bead-like nanofibers. A lower PVP content resulted in the electrospinning solution
comprising a greater proportion of the solvent. The solvent could not evaporate completely,
resulting in the considerable presence of bead-like nanofibers. Moreover, the nanofibers
demonstrated a diameter and morphology that were directly dependent on the electrospin-
ning concentration. An excessively low or excessively high concentration caused a high
force variation between the surface tension of the solution and the electrospinning force,
which was associated with uneven splitting [31]. As shown in Figure 6d,d’, at a specified
PVP concentration of 9%, the PVP/TiO2 nanofiber membranes exhibited nanofibers with
larger diameters and an irregular alignment whereas the PVP/PEDOT:PSS/TiO2 nanofiber
membranes exhibited nanofibers with smaller diameters and a sleek surface.

3.5. EDS Analysis of Gas-Sensing Membranes

An EDS analysis was conducted to characterize the elements on the surface of the
PVP/PEDOT:PSS nanofiber membranes and PVP/PEDOT:PSS/TiO2 nanofiber membranes;
the results are displayed in Figure 7a,b. As shown in Figure 7a, the analysis revealed large
amounts of C, O, and S elements, which indicated that a considerable amount of PEDOT:PSS
was electrospun into the nanofiber membranes. Moreover, as shown in Figure 7b, the
PVP/PEDOT:PSS/TiO2 nanofiber membranes contained Ti in addition to C, O, and S.
The presence of a weight ratio of 0.52%, representative of Ti derived from TiO2, indicated
that the TiO2 powder successfully bonded with the PVP/PEDOT:PSS/TiO2 nanofiber
membranes. In addition, the EDS analysis substantiated the presence of TiO2, as evidenced
by the characteristic peaks of Ti indicated by yellow circles in Figure 7b.
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3.6. XRD Analysis of Gas-Sensing Membranes

For the PVP/PEDOT:PSS/TiO2 nanofiber membranes, the 0.2 g of TiO2 added was
relatively small compared with the PEDOT:PSS content, which may have affected the XRD
pattern of the TiO2. Therefore, XRD measurements were collected in order to examine
whether TiO2 was present in the PVP/PEDOT:PSS/TiO2 nanofiber membranes. Figure 8a,b
shows the XRD patterns of the TiO2 powder and PEDOT:PSS/TiO2 nanofiber membranes.
The TiO2 nanocrystals produced peaks at 2 θ with corresponding crystal phases at 25.27◦

(101), 37.85◦ (004), 48.07◦ (200), 53.79◦ (105), 55.03◦ (211), 62.59◦ (204), 68.91◦ (116), 70.31◦

(220), and 75.19◦ (215) [35–37]. Meanwhile, the diffraction peaks of the PEDOT:PSS/TiO2
nanofiber membranes resembled those of the TiO2 nanopowder, with peaks at 29.45◦ (101),
39.39◦ (004), 43.22◦ (200), 47.58◦ (105), 48.63◦ (211), 50.96◦ (204), 56.4◦ (116), 57.62◦ (220),
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and 60.92◦ (215). The PVP/PEDOT:PSS/TiO2 nanofiber membranes were prepared with
PVP/TiO2 mixtures composed of (3:1) PEDOT:PSS and DMSO solutions followed by the
electrospinning process. There were peaks characteristic of TiO2 in the XRD pattern of the
PVP/TiO2 nanofiber membrane, which proved that the PVP/PEDOT:PSS/TiO2 nanofiber
membranes contained TiO2 nanopowder.
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3.7. FT-IR Analysis of Gas-Sensing Membranes

Figure 9 shows the FT-IR spectra of both the PVP/PEDOT:PSS and PVP/PED-
OT:PSS/TiO2 micro/nanofiber gas sensors, which further substantiated the presence of
PEDOT:PSS and TiO2 in the electrospun membranes. Figure 9a–d presents the FT-IR spectra
for the PEDOT:PSS solution, pure PVP nanofiber membranes, PVP/PEDOT:PSS nanofiber
membranes, and PVP/PEDOT:PSS/TiO2 nanofiber membranes. As shown in Figure 9a,
the PEDOT:PSS solution showed peaks at 2912 cm−1 characteristic of C=O stretching [38];
peaks at 1642 cm−1 corresponded with the stretching of the C=C pendant phenyl group and
EDOT quinoid and peaks at 1372 cm−1 corresponded with the C–C stretching of the thio-
phene ring. Moreover, peaks at 1130 cm−1 and 806 cm−1 corresponding with the stretching
of the S−OH molecules and SO3H groups in PSS, respectively, were also present [39].

As shown in Figure 9b, the pure PVP nanofiber membrane exhibited a C–H stretching
vibration peak at 2954 cm−1 [38] and a C = O stretching vibration absorption peak at
1665 cm−1, which were characteristic of PVP. Meanwhile, the peaks at 1462 cm−1 and
1287 cm−1 were attributed to C–H flexural vibration absorption and C–N stretching vibra-
tion absorption, respectively. As shown in Figure 9c for the PVP/PEDOT:PSS nanofiber
membranes, the peaks at 2158 cm−1 were ascribed to C–O–C absorption whereas the peaks
at 1548 cm−1 were attributed to C=C absorption caused by vibration in the thiophene
ring. Finally, in Figure 9d, the peaks at 1024 cm−1 exhibited by the PVP/PEDOT:PSS/TiO2
nanofiber membranes indicated the stretching of the metal oxide bond (Ti–O–Ti) [39]. The
presence of peaks characteristic of TiO2 indicated that TiO2 was successfully incorporated
into the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors.
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3.8. Gas Sensitivity Response

Figure 10a shows the gas sensitivity response–gas concentration (12.5 ppm–6250 ppm)
curve of the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensor. It was produced based on
the principle that the conductivity of the porous conductor (TiO2) changed with a change
in the oxygen content of the exhaust gas; this is also called a resistive oxygen sensor. A
gas-sensitive film made of these metal oxides is an impedance device and ions can be
exchanged between the gas molecules and the sensitive film [40]; a reduction reaction then
occurs, resulting in a change in the resistance of the sensitive film and the dependence of
the sample on the gas concentration can be investigated. The gas sensitivity response was
12.06% for a concentration of 6250 ppm and 3.46% for a concentration of 12.5 ppm; these
results showed that, following a rise in ethanol concentration, the gas sensors exhibited an
improved response due to a greater gas sensitivity. The PEDOT:PSS micro/nanofiber gas
sensors proposed by Dan et al. exhibited a gas sensitivity of 0.06% for 76 ppm methanol
vapors, 0.14% for 110 ppm ethanol vapors, and 0.5% for 120 ppm acetone vapors [41].
Figure 10b shows the gas sensitivity to 625 ppm ethanol, which was 7.56%, 2.04%, and
5.21% for the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors, PEDOT/composite
conductive woven fabrics, and PEDOT:PSS micro/nanofiber gas sensors, respectively. The
PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors clearly outperformed the other two
groups in terms of the gas sensitivity response, which was ascribed to the synergistic effect
and compensation behavior between the PEDOT:PSS and TiO2. In addition, regardless
of the ethanol concentration, the PEDOT/composite conductive woven fabrics (i.e., the
components) had an influence on the continuous gas sensitivity response–recovery curves
of the resulting PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors.

The high sensitivity of the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors could
be correlated with many influential factors such as the gas sensitivity and the nanostructure
of the PEDOT:PSS nanofiber membranes as well as the potential CP doping effect of TiO2.
Furthermore, PVP is insulating, which excluded the possibility of transfer incurred by the
mutual reaction between the charge and steam. On the other hand, the polymer exerted
gas sensitivity as a result of the expansion process as well as the interaction between
the polymers and the volatile organic compounds. Notably, the PVP/PEDOT:PSS/TiO2
micro/nanofiber gas sensors containing 0.2 g of TiO2 exhibited a maximal response toward
the ethanol. As PEDOT:PSS and TiO2 can build a heterostructure (i.e., the P–N structure), the
CP electronic structure was transferred and the gas sensitivity was strengthened accordingly.
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The interaction with the gas after adsorption could easily adjust the conductivity of the
heterojunction [42,43].
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Figure 10. (a) The response curve of PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors exposed to
different concentrations of ethanol (62.5 ppm-6250 ppm). (b) Comparative response curve of different
sensors with a specified ethanol concentration of 625 ppm.

Exposure to colorless ammonia vapor can result in the failure of human organs or even
death; the higher the humidity, the easier it is for ammonia vapor to enter the body [44].
Additionally, PEDOT:PSS also exhibits a greater gas sensitivity response with an increase in
relative humidity [45]; therefore, the gas sensitivity response of the PVP/PEDOT:PSS/TiO2
micro/nanofiber gas sensors in relation to the relative humidity was examined in this study,
as shown in Figure 11. Through the incorporation of a saturated salt solution composed of
LiCl, MgCl2, NaCl, and KCl in glass containers, humidities of 11, 23, 43, 75, and 86% were
acquired [46], after which the sensors were placed into the glass containers to examine the
gas sensitivity response. The PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors demon-
strated a high response capability in relation to the relative humidity (RH). The maximal gas
sensitivity response occurred at an RH of 75%, demonstrating a highly non-linear response
due to the presence of a water meniscus over the PVP/PEDOT:PSS/TiO2 micro/nanofiber
gas sensors [47]. When the RH was lower than 75%, the PVP/PEDOT:PSS/TiO2 mi-
cro/nanofiber gas sensors functioned as a humidity sensor.
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4. Conclusions

In this study, wearable, highly sensitive, reversible, recyclable, and ultrasoft gas sen-
sors were produced from PEDOT/composite conductive woven fabrics and PVP/PED-
OT:PSS/TiO2 micro/nanofiber gas sensors using in situ polymerization. The serial perfor-
mances of the products were evaluated and the results could be summarized as follows.
The PEDOT/composite conductive woven fabrics had a basic sensing function and exhib-
ited a sensitivity of 0.43% and 5.37% when the ethanol concentration was 62.5 ppm and
6250 ppm, respectively. The PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors were suc-
cessfully produced using electrospinning technology and showed a higher gas sensitivity
than that of the PEDOT/composite conductive woven fabrics and the PVP/PEDOT:PSS
micro/nanofiber gas sensors. The resulting ethanol gas sensitivity response was 3.46%
for 12.5 ppm ethanol and 12.06% for 6250 ppm ethanol. At 625 ppm, the gas sensitivity
of the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors was 5.52% and 2.35% higher
than that of the PEDOT/composite conductive woven fabrics and the PVP/PEDOT:PSS
micro/nanofiber gas sensors, respectively. Moreover, the gas sensitivity response of the
PVP/PEDOT:PSS/TiO2 micro/nanofiber exhibited a linear relationship with the humidity
when the humidity was lower than 75%; however, the opposite was the case for a humid-
ity higher than 75%. The improved production techniques for PVP/PEDOT:PSS/TiO2
micro/nanofiber gas sensors proposed here are valuable as they provide a basis for the
development of smart clothing from an innovative perspective. Many gas sensors based
on conductive fabrics are not as effective as metal-based metal oxide semiconductor sen-
sors [48]; however, one advantage is that they can be implemented in wearables. High-
precision fiber-based gas sensors produce irreversible changes such as discoloration once
the target gas is detected [49]. Studies on conductive textile-based gas sensors need to
show repeatability; however, to improve their performance, the conductive properties
of conductive textiles are required. Thus, improvements can be made to effectively and
significantly improve their gas-sensing performance.
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