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Non-coding RNA (ncRNA) plays a crucial role in numerous biological processes including

gene expression and post-transcriptional gene regulation. The biological function of

ncRNA is mostly realized by binding with related proteins. Therefore, an accurate

understanding of interactions between ncRNA and protein has a significant impact on

current biological research. The major challenge at this stage is the waste of a great

deal of redundant time and resource consumed on classification in traditional interaction

pattern prediction methods. Fortunately, an efficient classifier named LightGBM can solve

this difficulty of long time consumption. In this study, we employed LightGBM as the

integrated classifier and proposed a novel computational model for predicting ncRNA and

protein interactions. More specifically, the pseudo-Zernike Moments and singular value

decomposition algorithm are employed to extract the discriminative features from protein

and ncRNA sequences. On four widely used datasets RPI369, RPI488, RPI1807, and

RPI2241, we evaluated the performance of LGBM and obtained an superior performance

with AUC of 0.799, 0.914, 0.989, and 0.762, respectively. The experimental results of

10-fold cross-validation shown that the proposed method performs much better than

existing methods in predicting ncRNA-protein interaction patterns, which could be used

as a useful tool in proteomics research.

Keywords: ncRNA-protein interactions, PSSM, LightGBM, Pseudo-Zernike moments, k-mers

INTRODUCTION

Non-coding RNAs (ncRNAs) are regarded as the “dark matter” in the genome because of their
inability in coding proteins. These years, a variety of ncRNA has been discovered by researchers
which plays an indispensable role in most processes of vital movements in the field of biology
including amino acids transporting, RNA modification and so on (Pan et al., 2016). According
to recent research on ncRNA, ncRNA has been proved to be inextricably associated with human
diseases and even cancer. For instance, Tian Y et al. have demonstrated that the role of ncRNA
in diabetes is emerging significantly since ncRNA is involved in the modulation of 0205 cell
mass, insulin synthesis, secretion and signaling (Tian et al., 2018). However, compared to those
ncRNAs with known functions in vital processes occurring in living organisms, there is still a
large part of ncRNAs whose functions are not yet clear. In order to gain insight into the function
of ncRNA, it is essential to determine whether these ncRNAs interact with other proteins which
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subserve the comprehension of the mechanism behind biological
processes involving RNA-Binding proteins(RBPs) (Li and Nagy,
2011). Although reliable models in predicting ncRNA and
protein were composed by a large number of experimental
analyses such as RBPs (Pan et al., 2017), RPI-Bind (Luo
et al., 2017), RNA Compete-S (Cook et al., 2017), there
is still a limited number of structural features available in
the protein data bank(PDB) about RNA-protein complexes
causing these experiments were time-consuming and resource-
consuming (Berman et al., 2000) Therefore, researchers focused
their attention on predicting interactions between ncRNA and
protein only based on sequences which was regarded as a
reliable computational approach since the sequences carried
enough information required for prediction (Suresh et al.,
2015). This sequence-based method can be used to identify
potential ncRNA and protein partners in the absence of their
structural information during the experiment (Muppirala et al.,
2011).

Machine learning provides researchers one of the most
cost-effective ways to construct predictive models in an
experimental environment where validated training data is
available (Muppirala et al., 2011). In Mohammad et al.’s article,
they collectedmotif information and repetitive patterns extracted
from validated interactions between RNA and protein with
the combination of sequence composition as descriptors to
build a RPI prediction model called rpiCOOL by using a
random forest classifier (Akbaripour-Elahabad et al., 2016). The
random forest classifier is an ensemble of decision trees of
which each tree is constructed through training a subset of
features that are sampled from the input feature sets randomly
(Akbaripour-Elahabad et al., 2016). And in Wang Ying et al.’s
article, they proposed a new ncRNA-protein interaction model
extended Bayesian classifier which selected valid features by
reducing likelihood scores and allowed transparent feature
integration during prediction (Wang et al., 2013). After feature
extraction, the extracted features were sent to Bayesian classifier
for training. Bayesian classifier is one of the most basic
statistical classification methods which principle is to calculate
the posterior probability of an object by using Bayesian formula,
and select the class with the maximum posterior probability
as the class to which the object belongs (Cheng et al.,
2017). Hai-cheng Yi et al. proposed a computational RPI-
SAN model by using the deep-learning stacked auto-encoder
network to mine the hidden high-level features from RNA
and protein sequences and fed them into a Random forest
classifier to predict ncRNA binding proteins (Yi et al., 2018).
They further employed Stacked assembling to improve the
accuracy of the proposed method (Long et al., 2017; Patel et al.,
2017). Including random forests and Bayesian classifiers, these
classifiers are traditional classical machine learning classifiers
which effectiveness have verified by a large-scale number of
experiments (Liu et al., 2016; Wang et al., 2016; Luo and Liu,
2017). However, these traditional classifiers still have much
room for improvement in classification performance and time
consumption.

In recent years, an improved gradient boosting decision
tree classifier named LightGBM has been proposed. LightGBM

is a histogram-based decision tree algorithm, which divides
continuous feature values into discontinuous feature blocks, and
transforms these feature blocks into feature histograms during
training (Shi et al., 2018). This LightGBM classifier algorithm
had been used to speed up the decision tree building process on
GPUs (Graphics Processing Units) and improved its scalability
in the article of Huan Zhang et al. (Zhang et al., 2017). In
their paper, a large number of experimental data shown that
the training speed in constructing decision trees of LightGBM
classification algorithm was much faster than general decision
tree algorithms with the same classification accuracy (Mitchell
and Frank, 2017).

In the field of biology, the discovery of ncRNAs has far
exceeded the speed of research on their functions in ncRNA and
protein interactions. Therefore, it is urgent to study an efficient
prediction tool in the field of ncRNA-protein interactions which
is less-time consuming and resource saving. Hence, we applied
this efficient LightGBM classifier to large-scale ncRNA and
protein interaction prediction and proposed a new machine
learning model using sequence-based information named LGBM
in this context. More specifically, each sequence of ncRNA is
converted into a k-mers sparse matrix and the feature vectors of
ncRNA are extracted from the resulting k-mers sparse matrices
using the singular value decomposition (SVD). For proteins,
based on the evolutionary point mutation model of protein
sequences, we converted each protein sequence into a position-
specific scoring matrix (PSSM) where the position information
and frequency information were contained. Afterwards, each
protein sequence was characterized by the feature vector obtained
from a transform processing by using the pseudo-Zernike
moment (PZM) algorithm. After extracting features of ncRNA
and protein, we fed these reprehensive features into LightGBM
classifier for classifying learning and predicting interactions
between ncRNA and protein. In order to evaluate the predictive
performance of the machine learning model, we used a 10-fold
cross-validation to reduce overfitting. During the experiment, we
employed four benchmark datasets to evaluate the performance
of our model which was RPI369, RPI488, RPI1807, and RPI2241,
respectively, and compared the prediction results of our model
with other advanced models at the present stage. Experimental
results indicated that our model LGBM performed well on four
datasets above.

METHODS

Protein Feature Extraction
In this section, we selected the PZM feature extraction algorithm
to extract sequence-based protein feature vectors using PSSM
(Maali et al., 2016; Kheirkhah et al., 2017). The PSSM algorithm
first integrates the biological evolution information to predict
distantly related proteins, and has achieved good performances
in protein binding sites and disordered region prediction (Yi
et al., 2018). Let P be a PSSM matrix as the representative of an
arbitrary protein. A matrix P consists of r rows and 20 columns
with the explanation that r means the length of the primary
sequence of an arbitrary protein while 20 means the quantity of
amino acids (Sharma et al., 2013). Based on this, a PSSMmatrix is
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represented as follows:

P =







p1,1 · · · p1,20
...

. . .
...

pr,1 · · · pr,20






(1)

Where pi,j in ith row jth column denotes the relative probability
of jth amino acid at the ith position of the same protein sequence
with which PSSMmatrix comes from (Hayat and Khan, 2011). In
experiments, the position-specific iterated BLAST (PSI-BLAST)
tool was used to transform original protein sequences into PSSM
matrices with the parameter err-value set to be 0.001.

Then we extracted PZM feature vectors from the resulting
PSSM matrices above. The PZM is a statistical feature extraction
algorithm that is computationally efficient for using global
information to extract features (Haddadnia, 2001). Pseudo-
Zernike polynomials are orthogonal sets of complex-valued
polynomials defined as follows (Haddadnia et al., 2003):

Vαβ

(

x, y
)

= Rαβ (ρ) exp
(

jβ tan−1
( y

x

))

(2)

Where x2 + y2 ≤ 1, α ≥ 0, |β| ≤ α and ρ =
√

x2 + y2 is the
length of the vector from the origin to the pixel (x, y). And the
radial polynomials Rαβ are defined as:

Rαβ

(

x, y
)

=
∑α−|β|

t= 0
Zα,|β|,t

(

x2 + y2
)

α−t
2 (3)

Where

Zα,|β|,t = (−1)t
2α + 1− t

t! (α − |β| − t)! (α − |β| − t + 1)!
(4)

And Rα,−β (ρ) = Rα,β (ρ) Therefore, the Zernike moments of
order α with repetition β for a continuous image function f

(

x, y
)

that vanishes outside the unit circle are as follows (Kim and Lee,
2003):

Mαβ =
α + 1

π

∫∫

x2+y2≤1
f
(

x, y
)

V∗
αβ (ρ, θ) dxdy (5)

Pseudo-Zernike polynomials are orthogonal and satisfy the
following equation:

∫∫

x2+y2≤1

[

V
∗
αβ

(

x, y
)

]

× Vmn

(

x, y
)

dxdy =
π

α + 1
δαmδβn (6)

With

δab = f (x) =
{

1, a = b
0, otherwise

(7)

Hence, based on the derivation of the above formulas, the feature
vectors of protein sequences can be represented as follows (Wang
Y. et al., 2017):

−→
F =

[

|M11| , |M22| , · · · ,
∣

∣Mαβ

∣

∣

]T
(8)

ncRNA Feature Extraction
As for ncRNA, we used the SVD algorithm to extract feature
vectors from the k-mers sparse matrix represented ncRNA
sequences. In the k-mers sparse matrix construction algorithm,
we traversed each complete ncRNA sequence (A, C, G,
U) stepping one nucleotide at a time, which is considered
characteristic of each nucleotide (Yi et al., 2018). After that, the
frequency of the combined triplet feature based on 4 nucleotide
letters was extracted for each RNA sequence and obtained
4k dimensional features (You et al., 2016). Each characteristic
value is the normalized frequency of 4-mers nucleotides in
the ncRNA sequences, which is AAAA, AAAC . . . TTTT (Pan
et al., 2016). Therefore, we obtainedmatrices including frequency
information, location information and more hidden information
represented the ncRNA sequences (Yi et al., 2018).

Furthermore, we used SVD algorithm to decompose k-mers
sparse matrix. The Q represent the original k-mers sparse matrix
from above and there is singular value decomposition as follows:

Q = UΣV (9)

Where the elements of diagonal inΣ represent the singular value
of Q. It obtained the most information from original matrix Q.
Consequently, We reconstruct a 1× 4k dimensional vector from
Q shows as follows:

−→
F = U (10)

LightGBM Algorithm
After obtaining potential features of ncRNA and protein
calculated from above feature representation approaches, we fed
these high-level features into LightGBM classifier to train the
prediction scheme for predicting RPIs.

The traditional gradient boosting decision tree (GBDT)
algorithm is a widely used machine learning algorithm which
ensemble decision trees in an integrated learning model (Ke
et al., 2017). This GBDT algorithm learns the decision trees by
fitting the negative gradients (Friedman, 2001). In the process
of learning decision trees, the most time-consuming and labor-
consuming step is to find the best split points (Appel et al.,
2013). The traditional GBDT algorithm uses the histogram-
based algorithm to store continuous eigenvalues into discrete
regions which are used to construct feature histograms during
training instead of selecting the best split points (Li et al.,
2007). However, with the increase of data volume, the workload
of scanning all the data instances to estimate the information
gain of all possible split points is increasing which costs time-
consuming a lot (Chen and Guestrin, 2016). In order to address
the limitation of this problem, an improved algorithm based on
GBDT named LightGBM was proposed which improving the
accuracy of classification in proposing two new novel techniques
called Gradient Based One-side Sampling (GOSS) and Exclusive
Feature Bundling (EFB) (Ke et al., 2017).

Through the GOSS algorithm, the problem that no native
sample weights in GBDT avoiding hurting the accuracy of the
learned model was solved by discarding those data instances
with small gradients. Firstly, training instances were sort by their
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gradients from high to low in order. Second, select top p × 100%
instances with high gradients and sample q percent data instances
in the remaining subsets randomly. Let A ∪ B represents their
collection. Hence, the estimated variance gain Ṽs

(

b
)

of splitting
feature s at point b over the subset A ∪ B can be define as follows
(Ke et al., 2017):

Ṽs

(

b
)

=
1

n







(

∑

xi∈Al
gi + 1−p

q

∑

xi∈Bl gi
)2

ns
l

(

b
)

+

(

∑

xi∈Ar
gi + 1−p

q

∑

xi∈Br gi
)2

nsr
(

b
)






(11)

Where Al =
{

xi ∈ A; xij ≤ b
}

, Ar =
{

xi ∈ A; xij > b
}

,
Bl =

{

xi ∈ B; xij ≤ b
}

and Br =
{

xi ∈ B; xij > b
}

.
On the second step, the EFB algorithm was used to effectively

reduce the number of features by bundling exclusive features
into a single feature avoiding hurting the accuracy. By adopting
the EFB algorithm, building the same feature histograms from
the resulting feature bundles above were available as those from
individual features (Meng et al., 2016). Therefore, the complexity
of histogram building was reduced from O

(

#data× #feature
)

to
O

(

#data× #bundle
)

since #bundle≪#feature. First, we used NP-
hard to partition features into a smallest number of exclusive
bundles just as the graph coloring problem (Zuev, 2015). Second,
offsets were added to the original values of feature vectors to
merging the features in the same bundle and ensured that the
values of the original values can be identified from the resulting
feature bundles.

Evaluation Criteria
In this study, we used a 10 - fold cross-validation method to
avoid overfitting and guarantee the accuracy of our algorithm
of our model which divided the datasets into 10 equal parts
randomly. During each training test, one part was taken as the
testing dataset, while the remaining nine parts were the training
datasets1. Therefore, a total of 10 experiments were conducted.
To evaluate the performance of our model LGBM, we followed
several widely used evaluation criteria including accuracy,
sensitivity, specificity, precision, and Matthews Correlation
Coefficient(MCC) as follows (Liu and Chen, 2012):

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Sensitivity =
TP

TP + FN
(13)

Specificity =
TN

TN + FP
(14)

Precision =
TP

TP + FP
(15)

MCC =
TP × TN − FP × FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(16)

1K-Fold Cross Validation. Classification.

TABLE 1 | The specific composition of four required datasets.

Datasets Positive pairs Negative

pairs

The number

of proteins

The number

of ncRNAs

RPI369 369 369 338 332

RPI488 243 245 247 25

RPI1807 1,807 1,436 1,807 1,078

RPI2241 2,241 943 2,043 842

where TP, FP, TN, and FN are respectively interpreted as the
number of true positive, false positive, true negative and false
negative. The Receiver Operating Characteristic(ROC) curve can
be represented as the threshold between SP and SN, which x-ray
depicts false positive rate (FPR) while y-ray depicts true positive
rate (TPR) (Huang et al., 2015). Meanwhile, the AUC is regarded
as the area of the graphical under the ROC curve.

Datasets
To verify the robust and effectiveness of our model LGBM,
we selected four ncRNA and protein interactions datasets
including RPI369, RPI488, RPI1807, and RPI2241. Among
them, the dataset RPI369 and RPI2241 were selected from
the databases PRIDB which is a database of ncRNA-protein
interfaces calculated from their complexes in the protein data
bank (Berman et al., 2000; Wang et al., 2013). RPI2241 is a
positive sample set consisting of 2,241 pairs of experimentally
verified ncRNA-protein pairs including 2,043 protein chains and
842 ncRNA chains. RPI369 is a subpart of RPI2241 with 369
pairs including 338 protein chains and 332 ncRNA chains which
excludes all ncRNA-protein interaction pairs that interact with
ribosomal proteins or ribosomal ncRNA in various organisms
(Muppirala et al., 2011). For dataset RPI369 and RPI2241, an
approximately negative sample dataset was constructed with
twice number of pairs by pairing ncRNA and protein sequences
after removing the pairs in the positive sample dataset randomly
(Wang et al., 2013). RPI488 is a non-redundant lncRPI dataset
based on structural complexes which consists of 488 lncRNA-
protein pairs, including 245 non-interacting pairs and 243
interacting pairs from shen et.al. (Pan et al., 2016). And RPI488
is smaller than other datasets since there are fewer lncRNA-
protein complexes in PDB where ncRNA-protein complexes are
destroyed from downstream (Ying et al., 2010). The dataset
RPI1807 consists of 1807 positive ncRNA-protein pairs including
1078 ncRNA chains and 1807 protein chains and 1436 negative
pairs with 493 ncRNA chains and 1436 Protein chains. It
is established by parsing a nucleic acid database (NAD) that
provides RNA protein complex data and protein RNA interface
data (Yi et al., 2018). The specific composition of these four
datasets are described in Table 1.

Experimental Results
In this study, we proposed a machine learning classification
model based on improved gradient boosting decision tree to
predict interactions between ncRNA and protein named LGBM
which used PSSM and PZM algorithms to extract protein feature
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FIGURE 1 | Step-wise work flow for the purposed LGBM machine learning model.

TABLE 2 | Ten-fold cross-validation results on dataset RPI369.

Testing

set

Accuracy

(%)

Precision

(%)

Sensitivity

(%)

Specificity

(%)

MCC

(%)

1 75.00 73.17 81.08 68.57 50.12

2 70.83 73.53 67.57 74.29 41.90

3 76.39 76.32 78.28 74.29 52.73

4 76.39 75.68 77.78 75.00 52.80

5 76.39 71.11 88.89 63.89 54.51

6 69.44 65.91 80.56 58.33 39.89

7 73.61 72.97 75.00 72.22 47.24

8 75.00 72.50 80.56 69.44 50.31

9 74.65 71.43 83.33 65.71 49.89

10 70.42 69.23 75.00 65.71 40.91

Average 73.81 72.18 68.75 78.81 48.03

vectors and combined k-mers matrices and SVD algorithms to
extract RNA feature vectors. The specific steps of the machine
learning model are shown in the Figure 1. To verify the
performance of the proposed model LGBM, we evaluated the
prediction ability of LGBM on datasets RPI369 and RPI488 and
had a comparison with the prediction performance of other
classifiers under the same feature extraction condition firstly. In
addition, we also evaluated the predictive performance of datasets
RPI1807 and RPI2241 and compared the prediction results of
these two datasets with those of other proposed models in earlier
papers.

Prediction Ability of LGBM
In this section, we validated our machine learning model LGBM
with 10-fold cross-validation on datasets RPI369 and RPI488

TABLE 3 | Ten-fold cross-validation results on dataset RPI488.

Testing

set

Accuracy

(%)

Precision

(%)

Sensitivity

(%)

Specificity

(%)

MCC

(%)

1 91.84 100.0 83.33 100.0 84.76

2 87.76 94.00 77.27 96.30 75.91

3 87.76 88.89 88.89 86.36 75.25

4 95.92 100.0 92.00 100.0 92.15

5 75.51 75.00 60.00 86.21 48.43

6 91.84 91.30 91.30 92.31 83.61

7 93.75 100.0 86.36 100.0 87.99

8 87.50 96.30 83.87 94.12 75.19

9 91.60 95.24 86.96 96.00 83.54

10 91.67 91.67 91.67 91.67 83.83

Average 89.52 93.28 94.30 84.17 79.02

to predicting ncRNA-protein interactions. The 10-fold cross-
validation contributed LGBM to avoid over-fitting and had a
better performance. As a result, the summary of experimental
prediction results under 10-fold cross-validation are shown in
Tables 2, 3.

As shown inTables 2, 3, when LGBMmachine learningmodel
was used to predict interactions between ncRNA and protein on
dataset RPI369, the mean performance of accuracy, precision,
sensitivity, specificity and MCC were 73.81, 72.18, 68.75, 78.81,
and 48.03%, respectively. While for dataset RPI488, the mean
performance of accuracy, precision, sensitivity, specificity and
MCC highly achieved 89.52, 93.28, 94.30, 84.17, and 79.02%,
respectively. At the meantime, in 10-fold cross-validation, the
accuracy of one validation was even as high as 95.92% while there
were other five validations achieved the accuracy of 90%.
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TABLE 4 | Performance evaluation on different classifiers.

Dataset Classifier Accuracy

(%)

Precision

(%)

Sensitivity

(%)

Specificity

(%)

MCC

(%)

RPI369 LGBM 73.81 72.18 68.75 78.81 48.03

SVM 71.60 71.70 70.74 72.51 43.62

GBDT 71.74 71.79 70.74 72.79 43.90

RPI488 LGBM 89.52 93.28 94.30 84.17 79.02

SVM 86.22 88.62 89.86 82.27 72.44

GBDT 86.01 88.54 89.86 81.81 72.04

The bold value indicates this measure performance is the best among the compared

methods.

FIGURE 2 | The ROC curve of dataset RPI369 on three classifiers.

The prediction accuracy of LGBM on datasets RPI369 and
RPI488 illustrated the feasibility of predicting ncRNA and
protein interactions only based on their sequence information.
In fact, the protein and ncRNA feature extraction methods
can extract more in-depth information hidden in sequences
including location, frequency and interaction information into
PSSM matrices and k-mers matrices (You et al., 2016). In
addition, selecting PZM algorithm to extract feature vectors
makes better use of the properties of PZM (Khotanzad andHong,
1990).

Comparison Between Different Classifiers
In this comparison module, we compared the prediction
performance of LightGBM classifier, SVM classifier and
traditional gradient boosting decision tree classifier in datasets
RPI369 and RPI488 sharing the same feature extraction
condition. As a result, the summary of experimental prediction
results under 10-fold cross-validation is shown in Table 4 and
the corresponding trade-off between false positive rate and
true positive rate shown in the receiver operating characteristic
(ROC) curve in Figures 2, 3.

FIGURE 3 | The ROC curve of dataset RPI488 on three classifiers.

As can be seen from Table 4, the LightGBM classifier achieved
an accuracy of 73.81% in predicting interactions between ncRNA
and protein in dataset RPI369, which was higher than 71.60%
of SVM classifier and 71.74% of traditional GBDT classifier.
And as for precision, sensitivity and MCC except specificity, the
LightGBM classifier also had a better performance with exact
percent of 72.18, 78.81, and 48.03% respectively, while 71.70,
72.51, and 43.62% under SVM classifier and 71.79, 72.79, and
43.90% under traditional GBDT classifier. For dataset RPI488,
whether accuracy, precision and sensitivity or specificity and
MCC, LightGBM classifier performed better than the other two
classifiers with the exact results of 89.52, 93.28, 84.17, 94.30,
and 79.02%, respectively. That is to say, under the evaluation
of each evaluation criterion, our LightGBM classifier had a
better classification performance than SVM and traditional
GBDT classifiers which proved the feasibility and effectiveness of
choosing LightGBM classifier to process sequence information in
our model LGBM.

The comparison results shown the feasibility and effectiveness
of selecting LightGBM as classifier in our model (Zhu et al.,
2017). In fact, LightGBM, as an improved gradient boosting
decision tree, processing the advantages of reducing the number
of features and gaining enough information gain through smaller
datasets by EFB and GOSS, is superior to other classifiers in terms
of computational speed and memory consumption (Wang et al.,
2017).

Comparison With Other Existing Methods
In this section, we compared the prediction performance
combined with 10-fold cross-validation of LGBM model at
datasets RPI488, RPI1807, and RPI2241 with RPI-Pred, RPISeq-
RF, and Inc-Pro. RPI-Pred is a SVM-based ncRNA-protein
interactions prediction model proposed by Suresh et al. which
based on sequence and structure information (Suresh et al.,
2015). The accuracy of the RPI-Pred model on dataset RPI1807
is 93.00%. RPISeq-RF is a random forest classifier-based model
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TABLE 5 | Comparison between LGBM and other methods in RPI488, RPI1807,

and RPI2241.

Dataset Method Accuracy

(%)

Precision

(%)

Sensitivity

(%)

Specificity

(%)

MCC

(%)

RPI488 LGBM 89.52 93.28 94.30 84.17 79.02

RPISeq-

RF

88.00 93.20 92.60 82.20 76.20

IncPro 87.00 91.00 90.00 82.70 74.00

RPI1807 LGBM 96.42 96.21 95.20 97.40 92.76

RPI-Pred 93.00 94.00 95.00 N/A N/A

IncPro 96.90 95.50 96.50 98.10 93.80

RPI2241 LGBM 68.86 72.76 76.38 61.50 38.33

RPISeq-

RF

63.96 65.37 64.83 62.59 27.98

IncPro 65.40 66.90 65.90 64.00 31.00

The bold value indicates this measure performance is the best among the compared

methods.

FIGURE 4 | The ROC curve of dataset RPI488 on 10-fold cross- validation.

proposed by Usha K Muppirala et al. which extracts feature
vectors from ncRNA and protein sequence information only
(Muppirala et al., 2011). And the accuracy of the RPISeq-RF
model on datasets RPI488, RPI1807, and RPI2241 are 88.00,
97.30, and 63.96%, respectively. IncPro is a model proposed
by Lu et al. which encodes lncRNA and protein sequences as
digital vectors and scores each lncRNA-protein pair using matrix
multiplication (Lu et al., 2013). Based on this IncPro model,
the accuracy of datasets RPI488, RPI1807, and RPI2241 achieves
87.00, 96.90, and 65.40%, respectively. The summary comparative
results of the experiments are shown in Table 5. And the 10-
fold cross-validation ROC curve for our model LGBM at RPI488,
RPI1807, and RPI2241 are shown in Figures 4–6.

As shown in Table 5, our machine learning model LGBM
achieved an experimental prediction accuracy of 89.52 %,
higher than 88.00% of RPISeq-RF and 87.00% of IncPro on

FIGURE 5 | The ROC curve of dataset RPI1807 on 10-fold cross- validation.

FIGURE 6 | The ROC curve of dataset RPI2241 on 10-fold cross- validation.

dataset RPI488. At the meantime, LGBM also had a better
performance in other evaluation criterions including precision,
sensitivity, specificity and MCC of 93.28, 94.30, 84.17, and
79.02%, respectively. While the performance of RPISeq-RF were
88.00, 93.20, 92.60, 82.20, 76.20% and IncPro were 87.00, 91.00,
90.00, 82.70, and 74.00%. On dataset RPI2241, except specificity,
our model had a better performance of 68.86, 72.76, 76.38% on
accuracy, precision and sensitivity. While on dataset RPI1807,
although our experimental prediction performance was not as
good as IncPro, it was still as high as 96.42, 96.21, 95.20, 97.40,
and 97.26%, which is not much lower than 96.90, 95.50, 96.50,
98.10, and 93.80% of IncPro on accuracy, precision, sensitivity,
specificity and MCC respectively. PRI-Pred performed slightly
worse which was 93.00, 94.00, and 95.00% on accuracy, precision
and sensitivity.
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By comparing the prediction results, we are able to see
that our prediction model LGBM has a better performance on
datasets RPI488 and RPI2241, however, on dataset RPI1807, the
prediction accuracy is worse than IncPro, while the accuracy is
still more than 96%. In general, our model LGBM is effective
and robust in predicting interactions between ncRNA and
protein.

CONCLUSION

In this study, we proposed an efficient prediction model
LGBM using sequence and evolutionary information to predict
interactions between ncRNA and protein. In order to obtain
evolutionary information from protein sequences, the Zernike
Moment algorithm is used to extract feature vectors of proteins
from PSSM. Meanwhile, the SVD was used to extract features
from k-mers sparse matrix of ncRNA, in which both the location
and frequency information is preserved. On this basis, we
fed the high-level feature vectors into the LightGBM classifier
to predict the interaction between ncRNA and protein. To
verify the accuracy and robustness of our model, 10-fold cross

validation was used. Experimental results on datasets RPI369,
RPI488, RPI1807 and RPI2241 demonstrated the robustness and
effectiveness of ourmodel. Therefore, the proposed LGBMmodel
is feasible, reliable and full of generalization ability to predict
ncRNA-protein interaction. Our research can be a useful tool to
further biological research.
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